Commit 04f129fc by huchi

clean all comments about requireLink

parent c6f2dbdf
...@@ -229,9 +229,8 @@ where i is the index of the item ...@@ -229,9 +229,8 @@ where i is the index of the item
>> c - result tensor >> c - result tensor
>> alpha - the coefficient >> alpha - the coefficient
>> leadingDim - the dimension along which we perform broadcasting >> leadingDim - the dimension along which we perform broadcasting
>> requireLink - if add operation to network
*/ */
void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadingDim, bool requireLink) void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadingDim)
{ {
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) { if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a); InitTensor(&c, &a);
......
...@@ -54,7 +54,7 @@ element-wise division of two tensors: ...@@ -54,7 +54,7 @@ element-wise division of two tensors:
c(i) = a(i)/b(i) + \alpha * c(i) c(i) = a(i)/b(i) + \alpha * c(i)
where i is the index of the element where i is the index of the element
*/ */
void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha = 0.0, int leadingDim = 0, bool requireLink = false); void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha = 0.0, int leadingDim = 0);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -183,9 +183,8 @@ i.e., a is divided with b by broadcasting ...@@ -183,9 +183,8 @@ i.e., a is divided with b by broadcasting
>> c - where we put result. we save it in a if c is NULL >> c - where we put result. we save it in a if c is NULL
>> n - the dimension index >> n - the dimension index
>> alpha - the scaling factor >> alpha - the scaling factor
>> requireLink - if add operation to network
*/ */
void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha, bool requireLink) void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha)
{ {
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) { if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a); InitTensor(&c, &a);
......
...@@ -59,7 +59,7 @@ c(i) = a/b + \alpha * c ...@@ -59,7 +59,7 @@ c(i) = a/b + \alpha * c
where the size of b is equal to the n-th dimension of a, where the size of b is equal to the n-th dimension of a,
i.e., a is divided with b by broadcasting i.e., a is divided with b by broadcasting
*/ */
void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha = (DTYPE)0.0, bool requireLink = false); void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha = (DTYPE)0.0);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -304,7 +304,7 @@ XTensor MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA, ...@@ -304,7 +304,7 @@ XTensor MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA,
void MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA, void MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA,
const XTensor &b, MATRIX_TRANS_TYPE transposedB, XTensor &c, const XTensor &b, MATRIX_TRANS_TYPE transposedB, XTensor &c,
DTYPE alpha, XPRunner * parallelRunner, bool requireLink) DTYPE alpha, XPRunner * parallelRunner)
{ {
CheckNTErrors(a.dataType == b.dataType, "Input tensors should have the same data type!"); CheckNTErrors(a.dataType == b.dataType, "Input tensors should have the same data type!");
CheckNTErrors(a.order >= 2 && b.order >= 2, "Input tensors must have a order >= 2!"); CheckNTErrors(a.order >= 2 && b.order >= 2, "Input tensors must have a order >= 2!");
...@@ -400,7 +400,7 @@ XTensor MatrixMul(const XTensor &a, const XTensor &b, ...@@ -400,7 +400,7 @@ XTensor MatrixMul(const XTensor &a, const XTensor &b,
} }
void MatrixMul(const XTensor &a, const XTensor &b, XTensor &c, void MatrixMul(const XTensor &a, const XTensor &b, XTensor &c,
DTYPE alpha, XPRunner * parallelRunner, bool requireLink) DTYPE alpha, XPRunner * parallelRunner)
{ {
CheckNTErrors(a.dataType == b.dataType, "Input tensors should have the same data type!"); CheckNTErrors(a.dataType == b.dataType, "Input tensors should have the same data type!");
CheckNTErrors(a.order >= 2 && b.order >= 2, "Input tensors must have a order >= 2!"); CheckNTErrors(a.order >= 2 && b.order >= 2, "Input tensors must have a order >= 2!");
......
...@@ -60,14 +60,14 @@ XTensor MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA, const XTensor ...@@ -60,14 +60,14 @@ XTensor MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA, const XTensor
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL); DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
void MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA, const XTensor &b, MATRIX_TRANS_TYPE transposedB, void MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA, const XTensor &b, MATRIX_TRANS_TYPE transposedB,
XTensor &c, DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL, bool requireLink = false); XTensor &c, DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
/* matrix multiplication with no transposition c = a * b * alpha*/ /* matrix multiplication with no transposition c = a * b * alpha*/
XTensor MatrixMul(const XTensor &a, const XTensor &b, XTensor MatrixMul(const XTensor &a, const XTensor &b,
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL); DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
void MatrixMul(const XTensor &a, const XTensor &b, XTensor &c, void MatrixMul(const XTensor &a, const XTensor &b, XTensor &c,
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL, bool requireLink = false); DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -230,9 +230,8 @@ where i is the index of the item ...@@ -230,9 +230,8 @@ where i is the index of the item
>> c - result tensor >> c - result tensor
>> alpha - the coefficient >> alpha - the coefficient
>> leadingDim - the dimension along which we perform broadcasting >> leadingDim - the dimension along which we perform broadcasting
>> requireLink - if add operation to network
*/ */
void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadingDim, bool requireLink) void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadingDim)
{ {
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) { if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a); InitTensor(&c, &a);
......
...@@ -54,7 +54,7 @@ element-wise product of two tensors: ...@@ -54,7 +54,7 @@ element-wise product of two tensors:
c(i) = a(i)*b(i) + \alpha * c(i) c(i) = a(i)*b(i) + \alpha * c(i)
where i is the index of the element where i is the index of the element
*/ */
void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha = 0.0, int leadingDim = 0, bool requireLink = false); void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha = 0.0, int leadingDim = 0);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -180,9 +180,8 @@ i.e., a is multiplied with b by broadcasting ...@@ -180,9 +180,8 @@ i.e., a is multiplied with b by broadcasting
>> b - another tensor whose size is equal to that of dimension n of a >> b - another tensor whose size is equal to that of dimension n of a
>> c - where we put a * b + \alpha * c. we save it in a if c is NULL >> c - where we put a * b + \alpha * c. we save it in a if c is NULL
>> n - the dimension index >> n - the dimension index
>> requireLink - if add operation to network
*/ */
void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n, bool requireLink) void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n)
{ {
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) { if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a); InitTensor(&c, &a);
...@@ -347,9 +346,8 @@ where some of dimensions of b can be of size 1 ...@@ -347,9 +346,8 @@ where some of dimensions of b can be of size 1
>> a - a tensor >> a - a tensor
>> b - another tensor that would be broadcasted >> b - another tensor that would be broadcasted
>> c - the resulting tensor >> c - the resulting tensor
>> requireLink - if add operation to network
*/ */
void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c, bool requireLink) void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c)
{ {
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) { if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a); InitTensor(&c, &a);
......
...@@ -40,7 +40,7 @@ XTensor MultiplyDim(const XTensor &a, const XTensor &b, int n); ...@@ -40,7 +40,7 @@ XTensor MultiplyDim(const XTensor &a, const XTensor &b, int n);
/* tensor multiplication c = a * b + \alpha * c where the size of b is equal to the n-th dimension of a, /* tensor multiplication c = a * b + \alpha * c where the size of b is equal to the n-th dimension of a,
i.e., a is multiplied with b by broadcasting */ i.e., a is multiplied with b by broadcasting */
void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n, bool requireLink = false); void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n);
/* tensor multiplication summation c = a * b + c * \beta where some of dimensions of b can be of size 1 */ /* tensor multiplication summation c = a * b + c * \beta where some of dimensions of b can be of size 1 */
void _MultiplyBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta = (DTYPE)1.0); void _MultiplyBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta = (DTYPE)1.0);
...@@ -50,7 +50,7 @@ void _MultiplyBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE ...@@ -50,7 +50,7 @@ void _MultiplyBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE
XTensor MultiplyBroadcast(const XTensor &a, const XTensor &b); XTensor MultiplyBroadcast(const XTensor &a, const XTensor &b);
/* tensor multiplication summation c = a * b + c * \beta where some of dimensions of b can be of size 1 */ /* tensor multiplication summation c = a * b + c * \beta where some of dimensions of b can be of size 1 */
void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c, bool requireLink = false); void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -83,9 +83,8 @@ XTensor Negate(const XTensor & a) ...@@ -83,9 +83,8 @@ XTensor Negate(const XTensor & a)
set every entry to its minus value set every entry to its minus value
>> a - input tensor we are processing >> a - input tensor we are processing
>> b - output tensor we are processing >> b - output tensor we are processing
>> requireLink - if add operation to network
*/ */
void Negate(const XTensor & a, XTensor & b, bool requireLink) void Negate(const XTensor & a, XTensor & b)
{ {
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) {
InitTensor(&b, &a); InitTensor(&b, &a);
......
...@@ -42,7 +42,7 @@ make a new tensor to keep the result and return it ...@@ -42,7 +42,7 @@ make a new tensor to keep the result and return it
XTensor Negate(const XTensor & a); XTensor Negate(const XTensor & a);
/* set every entry to its minus value */ /* set every entry to its minus value */
void Negate(const XTensor & a, XTensor & b, bool requireLink = false); void Negate(const XTensor & a, XTensor & b);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -89,9 +89,8 @@ XTensor Sign(const XTensor & a) ...@@ -89,9 +89,8 @@ XTensor Sign(const XTensor & a)
set every entry to its sign value set every entry to its sign value
>> a - input tensor we are processing >> a - input tensor we are processing
>> b - output tensor we are processing >> b - output tensor we are processing
>> requireLink - if add operation to network
*/ */
void Sign(const XTensor & a, XTensor & b, bool requireLink) void Sign(const XTensor & a, XTensor & b)
{ {
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) {
InitTensor(&b, &a); InitTensor(&b, &a);
......
...@@ -42,7 +42,7 @@ make a new tensor to keep the result and return it ...@@ -42,7 +42,7 @@ make a new tensor to keep the result and return it
XTensor Sign(const XTensor & a); XTensor Sign(const XTensor & a);
/* set every entry to its sign value */ /* set every entry to its sign value */
void Sign(const XTensor & a, XTensor & b, bool requireLink = false); void Sign(const XTensor & a, XTensor & b);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -203,9 +203,8 @@ tensor subtraction c = a - b * \beta ...@@ -203,9 +203,8 @@ tensor subtraction c = a - b * \beta
>> b - another tensor >> b - another tensor
>> c - where we put a-b*\beta. we save it in a if c is NULL >> c - where we put a-b*\beta. we save it in a if c is NULL
>> beta - the scaling factor >> beta - the scaling factor
>> requireLink - if add operation to network
*/ */
void Sub(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta, bool requireLink) void Sub(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta)
{ {
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) { if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a); InitTensor(&c, &a);
......
...@@ -43,7 +43,7 @@ make a new tensor c to keep the result and return it ...@@ -43,7 +43,7 @@ make a new tensor c to keep the result and return it
XTensor Sub(const XTensor &a, const XTensor &b, DTYPE beta = (DTYPE)1.0); XTensor Sub(const XTensor &a, const XTensor &b, DTYPE beta = (DTYPE)1.0);
/* tensor subtraction c = a - b * \beta */ /* tensor subtraction c = a - b * \beta */
void Sub(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta = (DTYPE)1.0, bool requireLink = false); void Sub(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta = (DTYPE)1.0);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -183,9 +183,8 @@ i.e., a is subtracted with b by broadcasting ...@@ -183,9 +183,8 @@ i.e., a is subtracted with b by broadcasting
>> c - where we put a-b*\beta. we save it in a if c is NULL >> c - where we put a-b*\beta. we save it in a if c is NULL
>> n - the dimension index >> n - the dimension index
>> beta - the scaling factor >> beta - the scaling factor
>> requireLink - if add operation to network
*/ */
void SubDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta, bool requireLink) void SubDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta)
{ {
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) { if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a); InitTensor(&c, &a);
......
...@@ -40,7 +40,7 @@ XTensor SubDim(const XTensor &a, const XTensor &b, int n, DTYPE beta = (DTYPE)1. ...@@ -40,7 +40,7 @@ XTensor SubDim(const XTensor &a, const XTensor &b, int n, DTYPE beta = (DTYPE)1.
/* tensor subtraction c = a - b * \beta where the size of b is equal to the n-th dimension of a, /* tensor subtraction c = a - b * \beta where the size of b is equal to the n-th dimension of a,
i.e., a is subtracted with b by broadcasting*/ i.e., a is subtracted with b by broadcasting*/
void SubDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta = (DTYPE)1.0, bool requireLink = false); void SubDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta = (DTYPE)1.0);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -207,9 +207,8 @@ tensor summation c = a + b * \beta ...@@ -207,9 +207,8 @@ tensor summation c = a + b * \beta
>> a - a tensor >> a - a tensor
>> b - another tensor >> b - another tensor
>> beta - the scaling factor >> beta - the scaling factor
>> requireLink - if add operation to network
*/ */
void Sum(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta, bool requireLink) void Sum(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta)
{ {
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) { if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a); InitTensor(&c, &a);
......
...@@ -42,7 +42,7 @@ make a new tensor c to keep the result and return it ...@@ -42,7 +42,7 @@ make a new tensor c to keep the result and return it
XTensor Sum(const XTensor &a, const XTensor &b, DTYPE beta = (DTYPE)1.0); XTensor Sum(const XTensor &a, const XTensor &b, DTYPE beta = (DTYPE)1.0);
/* tensor summation c = a + b * \beta */ /* tensor summation c = a + b * \beta */
void Sum(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta = (DTYPE)1.0, bool requireLink = false); void Sum(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta = (DTYPE)1.0);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -200,9 +200,8 @@ i.e., a is summed with b by broadcasting ...@@ -200,9 +200,8 @@ i.e., a is summed with b by broadcasting
>> c - where we put a+b*\beta. we save it in a if c is NULL >> c - where we put a+b*\beta. we save it in a if c is NULL
>> n - the dimension index >> n - the dimension index
>> beta - the scaling factor >> beta - the scaling factor
>> requireLink - if add operation to network
*/ */
void SumDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta, bool requireLink) void SumDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta)
{ {
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) { if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a); InitTensor(&c, &a);
...@@ -368,9 +367,8 @@ c = a + b * \beta ...@@ -368,9 +367,8 @@ c = a + b * \beta
>> b - another tensor that would be broadcasted >> b - another tensor that would be broadcasted
>> c - the resulting tensor >> c - the resulting tensor
>> beta - the scaling factor >> beta - the scaling factor
>> requireLink - if add operation to network
*/ */
void SumBroadcast(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta, bool requireLink) void SumBroadcast(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta)
{ {
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) { if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a); InitTensor(&c, &a);
......
...@@ -44,7 +44,7 @@ XTensor SumDim(const XTensor &a, const XTensor &b, int n, DTYPE beta = (DTYPE)1. ...@@ -44,7 +44,7 @@ XTensor SumDim(const XTensor &a, const XTensor &b, int n, DTYPE beta = (DTYPE)1.
/* tensor summation c = a + b * \beta where the size of b is equal to the n-th dimension of a, /* tensor summation c = a + b * \beta where the size of b is equal to the n-th dimension of a,
i.e., a is summed with b by broadcasting */ i.e., a is summed with b by broadcasting */
void SumDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta = (DTYPE)1.0, bool requireLink = false); void SumDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta = (DTYPE)1.0);
/* tensor broadcast summation c = a + b * \beta where some of dimensions of b can be of size 1 */ /* tensor broadcast summation c = a + b * \beta where some of dimensions of b can be of size 1 */
void _SumBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta = (DTYPE)1.0); void _SumBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta = (DTYPE)1.0);
...@@ -54,7 +54,7 @@ void _SumBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta ...@@ -54,7 +54,7 @@ void _SumBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta
XTensor SumBroadcast(const XTensor &a, const XTensor &b, DTYPE beta = (DTYPE)1.0); XTensor SumBroadcast(const XTensor &a, const XTensor &b, DTYPE beta = (DTYPE)1.0);
/* tensor broadcast summation c = a + b * \beta where some of dimensions of b can be of size 1 */ /* tensor broadcast summation c = a + b * \beta where some of dimensions of b can be of size 1 */
void SumBroadcast(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta = (DTYPE)1.0, bool requireLink = false); void SumBroadcast(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta = (DTYPE)1.0);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -126,7 +126,7 @@ XTensor funcName(const XTensor &a, float num) \ ...@@ -126,7 +126,7 @@ XTensor funcName(const XTensor &a, float num) \
} \ } \
#define SIMPLE_BINARY_FUNCTION_VOID(funcName, _funcName, operationId) \ #define SIMPLE_BINARY_FUNCTION_VOID(funcName, _funcName, operationId) \
void funcName(const XTensor &a, XTensor &b, float num, bool requireLink) \ void funcName(const XTensor &a, XTensor &b, float num) \
{ \ { \
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { \ if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { \
InitTensor(&b, &a); \ InitTensor(&b, &a); \
......
...@@ -45,7 +45,7 @@ scale up tensor entires ...@@ -45,7 +45,7 @@ scale up tensor entires
b = a * scale b = a * scale
*/ */
void Scale(const XTensor & a, XTensor &b, int scale); void Scale(const XTensor & a, XTensor &b, int scale);
void Scale(const XTensor & a, XTensor &b, float scale, bool requireLink = false); void Scale(const XTensor & a, XTensor &b, float scale);
/* /*
scale up tensor entires (return an XTensor structure) scale up tensor entires (return an XTensor structure)
...@@ -72,7 +72,7 @@ descale tensor entires ...@@ -72,7 +72,7 @@ descale tensor entires
b = a / scale b = a / scale
*/ */
void Descale(const XTensor & a, XTensor & b, int scale); void Descale(const XTensor & a, XTensor & b, int scale);
void Descale(const XTensor & a, XTensor & b, float scale, bool requireLink = false); void Descale(const XTensor & a, XTensor & b, float scale);
/* /*
descale tensor entires (return an XTensor structure) descale tensor entires (return an XTensor structure)
...@@ -99,7 +99,7 @@ shift tensor entires ...@@ -99,7 +99,7 @@ shift tensor entires
b = a + shift b = a + shift
*/ */
void Shift(const XTensor & a, XTensor & b, int shift); void Shift(const XTensor & a, XTensor & b, int shift);
void Shift(const XTensor & a, XTensor & b, float shift, bool requireLink = false); void Shift(const XTensor & a, XTensor & b, float shift);
/* /*
shift tensor entires (return an XTensor structure) shift tensor entires (return an XTensor structure)
......
...@@ -94,7 +94,7 @@ XTensor Clip(const XTensor & a, DTYPE lower, DTYPE upper) ...@@ -94,7 +94,7 @@ XTensor Clip(const XTensor & a, DTYPE lower, DTYPE upper)
return b; return b;
} }
void Clip(const XTensor & a, XTensor & b, DTYPE lower, DTYPE upper, bool requireLink) void Clip(const XTensor & a, XTensor & b, DTYPE lower, DTYPE upper)
{ {
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) {
InitTensor(&b, &a); InitTensor(&b, &a);
......
...@@ -37,7 +37,7 @@ void _ClipMe(XTensor * a, DTYPE lower, DTYPE upper); ...@@ -37,7 +37,7 @@ void _ClipMe(XTensor * a, DTYPE lower, DTYPE upper);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Clip(const XTensor & a, DTYPE lower, DTYPE upper); XTensor Clip(const XTensor & a, DTYPE lower, DTYPE upper);
void Clip(const XTensor & a, XTensor & b, DTYPE lower, DTYPE upper, bool requireLink = false); void Clip(const XTensor & a, XTensor & b, DTYPE lower, DTYPE upper);
/* /*
backward of Clip function backward of Clip function
......
...@@ -107,9 +107,8 @@ get the power(a, p) ...@@ -107,9 +107,8 @@ get the power(a, p)
>> a - input tensor >> a - input tensor
>> b - output tensor >> b - output tensor
>> p - parameter >> p - parameter
>> requireLink - if add operation to network
*/ */
void Power(const XTensor & a, XTensor & b, DTYPE p, bool requireLink) void Power(const XTensor & a, XTensor & b, DTYPE p)
{ {
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) {
InitTensor(&b, &a); InitTensor(&b, &a);
......
...@@ -42,7 +42,7 @@ make a new tensor to keep the result and return it ...@@ -42,7 +42,7 @@ make a new tensor to keep the result and return it
XTensor Power(const XTensor & a, DTYPE p); XTensor Power(const XTensor & a, DTYPE p);
/* get the power(x, y) */ /* get the power(x, y) */
void Power(const XTensor & a, XTensor & b, DTYPE p, bool requireLink = false); void Power(const XTensor & a, XTensor & b, DTYPE p);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -127,9 +127,8 @@ b = a * scale + shift ...@@ -127,9 +127,8 @@ b = a * scale + shift
>> b - the output tensor >> b - the output tensor
>> scale - the scaler factor >> scale - the scaler factor
>> shift - the shift factor >> shift - the shift factor
>> requireLink - if add operation to network
*/ */
void ScaleAndShift(const XTensor & a, XTensor & b, DTYPE scale, DTYPE shift, bool requireLink) void ScaleAndShift(const XTensor & a, XTensor & b, DTYPE scale, DTYPE shift)
{ {
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) {
InitTensor(&b, &a); InitTensor(&b, &a);
......
...@@ -54,7 +54,7 @@ XTensor ScaleAndShift(const XTensor &a, DTYPE scale, DTYPE shift = 0); ...@@ -54,7 +54,7 @@ XTensor ScaleAndShift(const XTensor &a, DTYPE scale, DTYPE shift = 0);
scale and shift all tensor entires scale and shift all tensor entires
b = a * scale + shift b = a * scale + shift
*/ */
void ScaleAndShift(const XTensor &a, XTensor &b, DTYPE scale, DTYPE shift = 0, bool requireLink = false); void ScaleAndShift(const XTensor &a, XTensor &b, DTYPE scale, DTYPE shift = 0);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -83,7 +83,7 @@ XTensor funcName(const XTensor &a) \ ...@@ -83,7 +83,7 @@ XTensor funcName(const XTensor &a) \
} }
#define SIMPLE_UNARY_FUNCTION_VOID(funcName, _funcName, operationId) \ #define SIMPLE_UNARY_FUNCTION_VOID(funcName, _funcName, operationId) \
void funcName(const XTensor &a, XTensor &b, bool requireLink) \ void funcName(const XTensor &a, XTensor &b) \
{ \ { \
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { \ if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { \
InitTensor(&b, &a); \ InitTensor(&b, &a); \
...@@ -189,7 +189,7 @@ XTensor funcName(const XTensor &a) \ ...@@ -189,7 +189,7 @@ XTensor funcName(const XTensor &a) \
return b; \ return b; \
} }
#define SIMPLE_UNARY_FUNCTION_VOID(funcName, _funcName, operationId) \ #define SIMPLE_UNARY_FUNCTION_VOID(funcName, _funcName, operationId) \
void funcName(const XTensor &a, XTensor &b, bool requireLink) \ void funcName(const XTensor &a, XTensor &b) \
{ \ { \
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { \ if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { \
InitTensor(&b, &a); \ InitTensor(&b, &a); \
......
...@@ -35,7 +35,7 @@ void _AbsoluteMe(XTensor * a); ...@@ -35,7 +35,7 @@ void _AbsoluteMe(XTensor * a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Absolute(const XTensor & a); XTensor Absolute(const XTensor & a);
/* set every entry to its absolute value */ /* set every entry to its absolute value */
void Absolute(const XTensor & a, XTensor & b, bool requireLink = false); void Absolute(const XTensor & a, XTensor & b);
/* set every entry to its ceil value */ /* set every entry to its ceil value */
void _Ceil(const XTensor * a, XTensor * b); void _Ceil(const XTensor * a, XTensor * b);
...@@ -46,7 +46,7 @@ void _CeilMe(XTensor * a); ...@@ -46,7 +46,7 @@ void _CeilMe(XTensor * a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Ceil(const XTensor & a); XTensor Ceil(const XTensor & a);
/* set every entry to its ceil value */ /* set every entry to its ceil value */
void Ceil(const XTensor & a, XTensor & b, bool requireLink = false); void Ceil(const XTensor & a, XTensor & b);
/* set every entry to its exponent value */ /* set every entry to its exponent value */
void _Exp(const XTensor * a, XTensor * b); void _Exp(const XTensor * a, XTensor * b);
...@@ -57,7 +57,7 @@ void _ExpMe(XTensor * a); ...@@ -57,7 +57,7 @@ void _ExpMe(XTensor * a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Exp(const XTensor & a); XTensor Exp(const XTensor & a);
/* set every entry to its exponent value */ /* set every entry to its exponent value */
void Exp(const XTensor & a, XTensor & b, bool requireLink = false); void Exp(const XTensor & a, XTensor & b);
/* set every entry to its floor value */ /* set every entry to its floor value */
void _Floor(const XTensor * a, XTensor * b); void _Floor(const XTensor * a, XTensor * b);
...@@ -68,7 +68,7 @@ void _FloorMe(XTensor * a); ...@@ -68,7 +68,7 @@ void _FloorMe(XTensor * a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Floor(const XTensor & a); XTensor Floor(const XTensor & a);
/* set every entry to its floor value */ /* set every entry to its floor value */
void Floor(const XTensor & a, XTensor & b, bool requireLink = false); void Floor(const XTensor & a, XTensor & b);
/* if source entry is non-zero, set target entry to be one, otherwise zero */ /* if source entry is non-zero, set target entry to be one, otherwise zero */
void _IsNonZero(const XTensor *a, XTensor *b); void _IsNonZero(const XTensor *a, XTensor *b);
...@@ -79,7 +79,7 @@ void _IsNonZeroMe(XTensor *a); ...@@ -79,7 +79,7 @@ void _IsNonZeroMe(XTensor *a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor IsNonZero(const XTensor &a); XTensor IsNonZero(const XTensor &a);
/* if source entry is non-zero, set target entry to be one, otherwise zero */ /* if source entry is non-zero, set target entry to be one, otherwise zero */
void IsNonZero(const XTensor &a, XTensor & b, bool requireLink = false); void IsNonZero(const XTensor &a, XTensor & b);
/* if source entry is zero, set target entry to be one, otherwise zero */ /* if source entry is zero, set target entry to be one, otherwise zero */
void _IsZero(const XTensor *a, XTensor *b); void _IsZero(const XTensor *a, XTensor *b);
...@@ -90,7 +90,7 @@ void _IsZeroMe(XTensor *a); ...@@ -90,7 +90,7 @@ void _IsZeroMe(XTensor *a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor IsZero(const XTensor &a); XTensor IsZero(const XTensor &a);
/* if source entry is zero, set target entry to be one, otherwise zero */ /* if source entry is zero, set target entry to be one, otherwise zero */
void IsZero(const XTensor &a, XTensor & b, bool requireLink = false); void IsZero(const XTensor &a, XTensor & b);
/* set every entry to its logarithm value */ /* set every entry to its logarithm value */
void _Log(const XTensor * a, XTensor * b); void _Log(const XTensor * a, XTensor * b);
...@@ -101,7 +101,7 @@ void _LogMe(XTensor * a); ...@@ -101,7 +101,7 @@ void _LogMe(XTensor * a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Log(const XTensor & a); XTensor Log(const XTensor & a);
/* set every entry to its logarithm value */ /* set every entry to its logarithm value */
void Log(const XTensor & a, XTensor & b, bool requireLink = false); void Log(const XTensor & a, XTensor & b);
/* set every entry to its round value */ /* set every entry to its round value */
void _Round(const XTensor * a, XTensor * b); void _Round(const XTensor * a, XTensor * b);
...@@ -112,7 +112,7 @@ void _RoundMe(XTensor * a); ...@@ -112,7 +112,7 @@ void _RoundMe(XTensor * a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Round(const XTensor & a); XTensor Round(const XTensor & a);
/* set every entry to its round value */ /* set every entry to its round value */
void Round(const XTensor & a, XTensor & b, bool requireLink = false); void Round(const XTensor & a, XTensor & b);
/* set every entry to its sqrt value */ /* set every entry to its sqrt value */
void _Sqrt(const XTensor * a, XTensor * b); void _Sqrt(const XTensor * a, XTensor * b);
...@@ -123,7 +123,7 @@ void _SqrtMe(XTensor * a); ...@@ -123,7 +123,7 @@ void _SqrtMe(XTensor * a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Sqrt(const XTensor & a); XTensor Sqrt(const XTensor & a);
/* set every entry to its sqrt value */ /* set every entry to its sqrt value */
void Sqrt(const XTensor & a, XTensor & b, bool requireLink = false); void Sqrt(const XTensor & a, XTensor & b);
/* set every entry to its square value */ /* set every entry to its square value */
void _Square(const XTensor * a, XTensor * b); void _Square(const XTensor * a, XTensor * b);
...@@ -134,7 +134,7 @@ void _SquareMe(XTensor * a); ...@@ -134,7 +134,7 @@ void _SquareMe(XTensor * a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Square(const XTensor & a); XTensor Square(const XTensor & a);
/* set every entry to its square value */ /* set every entry to its square value */
void Square(const XTensor & a, XTensor & b, bool requireLink = false); void Square(const XTensor & a, XTensor & b);
/* set every entry to its sine value */ /* set every entry to its sine value */
...@@ -146,7 +146,7 @@ void _SinMe(XTensor * a); ...@@ -146,7 +146,7 @@ void _SinMe(XTensor * a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Sin(const XTensor & a); XTensor Sin(const XTensor & a);
/* set every entry to its sine value */ /* set every entry to its sine value */
void Sin(const XTensor & a, XTensor & b, bool requireLink = false); void Sin(const XTensor & a, XTensor & b);
/* set every entry to its cosine value */ /* set every entry to its cosine value */
void _Cos(const XTensor * a, XTensor * b); void _Cos(const XTensor * a, XTensor * b);
...@@ -157,7 +157,7 @@ void _CosMe(XTensor * a); ...@@ -157,7 +157,7 @@ void _CosMe(XTensor * a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Cos(const XTensor & a); XTensor Cos(const XTensor & a);
/* set every entry to its cosine value */ /* set every entry to its cosine value */
void Cos(const XTensor & a, XTensor & b, bool requireLink = false); void Cos(const XTensor & a, XTensor & b);
/* set every entry to its tangent value */ /* set every entry to its tangent value */
void _Tan(const XTensor * a, XTensor * b); void _Tan(const XTensor * a, XTensor * b);
...@@ -168,7 +168,7 @@ void _TanMe(XTensor * a); ...@@ -168,7 +168,7 @@ void _TanMe(XTensor * a);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Tan(const XTensor & a); XTensor Tan(const XTensor & a);
/* set every entry to its tangent value */ /* set every entry to its tangent value */
void Tan(const XTensor & a, XTensor & b, bool requireLink = false); void Tan(const XTensor & a, XTensor & b);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -137,9 +137,8 @@ get the max value of the items along a dimension of the tensor ...@@ -137,9 +137,8 @@ get the max value of the items along a dimension of the tensor
>> input - the input tensor >> input - the input tensor
>> output - the output tensor >> output - the output tensor
>> dim - the dimension where the reduction is performed on >> dim - the dimension where the reduction is performed on
>> requireLink - if add operation to network
*/ */
void ReduceMax(const XTensor &input, XTensor &output, int dim, bool requireLink) void ReduceMax(const XTensor &input, XTensor &output, int dim)
{ {
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!"); CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
......
...@@ -36,7 +36,7 @@ make a new tensor to keep the result and return it ...@@ -36,7 +36,7 @@ make a new tensor to keep the result and return it
XTensor ReduceMax(const XTensor &input, int dim); XTensor ReduceMax(const XTensor &input, int dim);
/* get the max value of the items along a dimension of the tensor. */ /* get the max value of the items along a dimension of the tensor. */
void ReduceMax(const XTensor &input, XTensor &output, int dim, bool requireLink = false); void ReduceMax(const XTensor &input, XTensor &output, int dim);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -94,9 +94,8 @@ For a 1-dimensional data array a, mean = (1/n) * sum_i input_i ...@@ -94,9 +94,8 @@ For a 1-dimensional data array a, mean = (1/n) * sum_i input_i
>> input - the input tensor >> input - the input tensor
>> output - the output tensor >> output - the output tensor
>> dim - the dimension where the reduction is performed on >> dim - the dimension where the reduction is performed on
>> requireLink - if add operation to network
*/ */
void ReduceMean(const XTensor &input, XTensor &output, int dim, bool requireLink) void ReduceMean(const XTensor &input, XTensor &output, int dim)
{ {
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!"); CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
......
...@@ -43,7 +43,7 @@ XTensor ReduceMean(const XTensor &input, int dim); ...@@ -43,7 +43,7 @@ XTensor ReduceMean(const XTensor &input, int dim);
get the mean value along a dimension of the tensor get the mean value along a dimension of the tensor
For a 1-dimensional data array a, mean = (1/n) * sum_i input_i For a 1-dimensional data array a, mean = (1/n) * sum_i input_i
*/ */
void ReduceMean(const XTensor &input, XTensor &output, int dim, bool requireLink = false); void ReduceMean(const XTensor &input, XTensor &output, int dim);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -244,7 +244,7 @@ XTensor ReduceSum(const XTensor &input, int dim, const XTensor &shift, DTYPE pow ...@@ -244,7 +244,7 @@ XTensor ReduceSum(const XTensor &input, int dim, const XTensor &shift, DTYPE pow
return output; return output;
} }
void ReduceSum(const XTensor &input, XTensor &output, int dim, const XTensor &shift, DTYPE power, bool isExp, bool requireLink) void ReduceSum(const XTensor &input, XTensor &output, int dim, const XTensor &shift, DTYPE power, bool isExp)
{ {
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!"); CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
...@@ -336,9 +336,8 @@ sum = \sum_i exp((a_i - shift)^power) if isExp == true ...@@ -336,9 +336,8 @@ sum = \sum_i exp((a_i - shift)^power) if isExp == true
>> shift - shift the input >> shift - shift the input
>> ieExp - specify if the exp() is performed >> ieExp - specify if the exp() is performed
>> power - we perform pow(item_i, power) on each item in the array >> power - we perform pow(item_i, power) on each item in the array
>> requireLink - if add operation to network
*/ */
void ReduceSum(const XTensor &input, XTensor &output, int dim, DTYPE power, bool isExp, bool requireLink) void ReduceSum(const XTensor &input, XTensor &output, int dim, DTYPE power, bool isExp)
{ {
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!"); CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
......
...@@ -44,7 +44,7 @@ sum = \sum_i exp(a_i - shift) if isExp == true ...@@ -44,7 +44,7 @@ sum = \sum_i exp(a_i - shift) if isExp == true
*/ */
XTensor ReduceSum(const XTensor &input, int dim, const XTensor &shift, DTYPE power = (DTYPE)1.0F, bool isExp = false); XTensor ReduceSum(const XTensor &input, int dim, const XTensor &shift, DTYPE power = (DTYPE)1.0F, bool isExp = false);
void ReduceSum(const XTensor &input, XTensor &output, int dim, const XTensor &shift, DTYPE power = (DTYPE)1.0F, bool isExp = false, bool requireLink = false); void ReduceSum(const XTensor &input, XTensor &output, int dim, const XTensor &shift, DTYPE power = (DTYPE)1.0F, bool isExp = false);
/* /*
sum the items along a dimension of the tensor (return an XTensor structure) sum the items along a dimension of the tensor (return an XTensor structure)
...@@ -61,7 +61,7 @@ For a 1-dimensional data array a, ...@@ -61,7 +61,7 @@ For a 1-dimensional data array a,
sum = \sum_i (a_i - shift) if isExp == false sum = \sum_i (a_i - shift) if isExp == false
sum = \sum_i exp(a_i - shift) if isExp == true sum = \sum_i exp(a_i - shift) if isExp == true
*/ */
void ReduceSum(const XTensor &input, XTensor &output, int dim, DTYPE power = (DTYPE)1.0F, bool isExp = false, bool requireLink = false); void ReduceSum(const XTensor &input, XTensor &output, int dim, DTYPE power = (DTYPE)1.0F, bool isExp = false);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -91,9 +91,8 @@ For a 1-dimensional data array a, sum = \sum_i (a_i - shift)^2 ...@@ -91,9 +91,8 @@ For a 1-dimensional data array a, sum = \sum_i (a_i - shift)^2
>> output - the output tensor >> output - the output tensor
>> dim - the dimension where the reduction is performed on >> dim - the dimension where the reduction is performed on
>> shift - bias on the input >> shift - bias on the input
>> requireLink - if add operation to network
*/ */
void ReduceSumSquared(const XTensor &input, XTensor &output, int dim, const XTensor &shift, bool requireLink) void ReduceSumSquared(const XTensor &input, XTensor &output, int dim, const XTensor &shift)
{ {
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!"); CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
......
...@@ -45,7 +45,7 @@ squared sum of the items along a dimension of the tensor ...@@ -45,7 +45,7 @@ squared sum of the items along a dimension of the tensor
For a 1-dimensional data array a, For a 1-dimensional data array a,
sum = \sum_i (a_i - shift)^2 sum = \sum_i (a_i - shift)^2
*/ */
void ReduceSumSquared(const XTensor &input, XTensor &output, int dim, const XTensor &shift, bool requireLink = false); void ReduceSumSquared(const XTensor &input, XTensor &output, int dim, const XTensor &shift);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -94,9 +94,8 @@ For a 1-dimensional data array a, variance = 1/n * \sum_i (a_i - mean)^2 ...@@ -94,9 +94,8 @@ For a 1-dimensional data array a, variance = 1/n * \sum_i (a_i - mean)^2
>> output - the output tensor >> output - the output tensor
>> dim - the dimension where the reduction is performed on >> dim - the dimension where the reduction is performed on
>> mean - the mean value >> mean - the mean value
>> requireLink - if add operation to network
*/ */
void ReduceVariance(const XTensor &input, XTensor &output, int dim, const XTensor &mean, bool requireLink) void ReduceVariance(const XTensor &input, XTensor &output, int dim, const XTensor &mean)
{ {
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!"); CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
......
...@@ -43,7 +43,7 @@ XTensor ReduceVariance(const XTensor &input, int dim, const XTensor &mean); ...@@ -43,7 +43,7 @@ XTensor ReduceVariance(const XTensor &input, int dim, const XTensor &mean);
variance of the items along a dimension of the tensor variance of the items along a dimension of the tensor
For a 1-dimensional data array a, variance = 1/n * \sum_i (a_i - mean)^2 For a 1-dimensional data array a, variance = 1/n * \sum_i (a_i - mean)^2
*/ */
void ReduceVariance(const XTensor &input, XTensor &output, int dim, const XTensor &mean, bool requireLink = false); void ReduceVariance(const XTensor &input, XTensor &output, int dim, const XTensor &mean);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -232,7 +232,7 @@ XTensor Merge(const XTensor &s, int whereToMerge, int leadingDim) ...@@ -232,7 +232,7 @@ XTensor Merge(const XTensor &s, int whereToMerge, int leadingDim)
return t; return t;
} }
void Merge(const XTensor &s, XTensor &t, int whereToMerge, int leadingDim, bool requireLink) void Merge(const XTensor &s, XTensor &t, int whereToMerge, int leadingDim)
{ {
if (!t.isInit || !CheckMergeSize(&s, &t, whereToMerge, leadingDim)) { if (!t.isInit || !CheckMergeSize(&s, &t, whereToMerge, leadingDim)) {
if (leadingDim < 0) if (leadingDim < 0)
......
...@@ -33,7 +33,7 @@ void _Merge(const XTensor * s, XTensor * t, int whereToMerge, int leadingDim = - ...@@ -33,7 +33,7 @@ void _Merge(const XTensor * s, XTensor * t, int whereToMerge, int leadingDim = -
e.g., (M, N/3, 3) -> (M, N) */ e.g., (M, N/3, 3) -> (M, N) */
XTensor Merge(const XTensor &s, int whereToMerge, int leadingDim = -1); XTensor Merge(const XTensor &s, int whereToMerge, int leadingDim = -1);
void Merge(const XTensor &s, XTensor &t, int whereToMerge, int leadingDim = -1, bool requireLink = false); void Merge(const XTensor &s, XTensor &t, int whereToMerge, int leadingDim = -1);
/* merge small tensors into a big tensor */ /* merge small tensors into a big tensor */
void _Merge(const TensorList * smalls, XTensor * big, int whereToMerge); void _Merge(const TensorList * smalls, XTensor * big, int whereToMerge);
......
...@@ -48,7 +48,7 @@ XTensor Reshape(XTensor &s, int order, int * dimSize) ...@@ -48,7 +48,7 @@ XTensor Reshape(XTensor &s, int order, int * dimSize)
return t; return t;
} }
void Reshape(XTensor &s, XTensor &t, int order, int * dimSize, bool requireLink) void Reshape(XTensor &s, XTensor &t, int order, int * dimSize)
{ {
if (!t.isInit || !XTensor::IsSameShaped(&t, &s)) { if (!t.isInit || !XTensor::IsSameShaped(&t, &s)) {
InitTensor(&t, &s); InitTensor(&t, &s);
......
...@@ -29,7 +29,7 @@ namespace nts { // namespace nts(NiuTrans.Tensor) ...@@ -29,7 +29,7 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
/* reshape the tensor */ /* reshape the tensor */
XTensor Reshape(XTensor &s, int order, int * dimSize); XTensor Reshape(XTensor &s, int order, int * dimSize);
void Reshape(XTensor &s, XTensor &t, int order, int * dimSize, bool requireLink = false); void Reshape(XTensor &s, XTensor &t, int order, int * dimSize);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
#endif // __RESHAPE_H__ #endif // __RESHAPE_H__
...@@ -227,7 +227,7 @@ XTensor Split(const XTensor &s, int whereToSplit, int splitNum) ...@@ -227,7 +227,7 @@ XTensor Split(const XTensor &s, int whereToSplit, int splitNum)
return t; return t;
} }
void Split(const XTensor &s, XTensor &t, int whereToSplit, int splitNum, bool requireLink) void Split(const XTensor &s, XTensor &t, int whereToSplit, int splitNum)
{ {
if (!t.isInit || !CheckSplitSize(&s, &t, whereToSplit, splitNum)) { if (!t.isInit || !CheckSplitSize(&s, &t, whereToSplit, splitNum)) {
int order = s.order + 1; int order = s.order + 1;
......
...@@ -41,7 +41,7 @@ e.g., (M, N) -> (M, N/3, 3) ...@@ -41,7 +41,7 @@ e.g., (M, N) -> (M, N/3, 3)
*/ */
XTensor Split(const XTensor &s, int whereToSplit, int splitNum); XTensor Split(const XTensor &s, int whereToSplit, int splitNum);
void Split(const XTensor &s, XTensor &t, int whereToSplit, int splitNum, bool requireLink = false); void Split(const XTensor &s, XTensor &t, int whereToSplit, int splitNum);
/* split a big tensor into small tensors */ /* split a big tensor into small tensors */
void _Split(const XTensor * big, TensorList * smalls, int whereToSplit, int splitNum); void _Split(const XTensor * big, TensorList * smalls, int whereToSplit, int splitNum);
......
...@@ -112,7 +112,7 @@ XTensor Squeeze(XTensor & source, int leadingDim) ...@@ -112,7 +112,7 @@ XTensor Squeeze(XTensor & source, int leadingDim)
return target; return target;
} }
void Squeeze(XTensor & source, XTensor & target, int leadingDim, bool requireLink) void Squeeze(XTensor & source, XTensor & target, int leadingDim)
{ {
if (!target.isInit || !XTensor::IsSameShaped(&source, &target)) { if (!target.isInit || !XTensor::IsSameShaped(&source, &target)) {
InitTensor(&target, &source); InitTensor(&target, &source);
......
...@@ -37,7 +37,7 @@ void _SqueezeMe(XTensor * source, int leadingDim = -1); ...@@ -37,7 +37,7 @@ void _SqueezeMe(XTensor * source, int leadingDim = -1);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Squeeze(XTensor & source, int leadingDim = -1); XTensor Squeeze(XTensor & source, int leadingDim = -1);
void Squeeze(XTensor & source, XTensor & target, int leadingDim = -1, bool requireLink = false); void Squeeze(XTensor & source, XTensor & target, int leadingDim = -1);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -166,7 +166,7 @@ XTensor Unsqueeze(const XTensor &a, int dim, int dSize) ...@@ -166,7 +166,7 @@ XTensor Unsqueeze(const XTensor &a, int dim, int dSize)
return b; return b;
} }
void Unsqueeze(const XTensor &a, XTensor &b, int dim, int dSize, bool requireLink) void Unsqueeze(const XTensor &a, XTensor &b, int dim, int dSize)
{ {
if (!b.isInit || !CheckUnsqueezeSize(&a, &b, dim, dSize)) { if (!b.isInit || !CheckUnsqueezeSize(&a, &b, dim, dSize)) {
int order = a.order + 1; int order = a.order + 1;
......
...@@ -35,7 +35,7 @@ void _Unsqueeze(const XTensor * a, XTensor * b, int dim, int dSize); ...@@ -35,7 +35,7 @@ void _Unsqueeze(const XTensor * a, XTensor * b, int dim, int dSize);
make a new tensor to keep the result and return it */ make a new tensor to keep the result and return it */
XTensor Unsqueeze(const XTensor &a, int dim, int dSize); XTensor Unsqueeze(const XTensor &a, int dim, int dSize);
void Unsqueeze(const XTensor &a, XTensor &b, int dim, int dSize, bool requireLink = false); void Unsqueeze(const XTensor &a, XTensor &b, int dim, int dSize);
} // namespace nts(NiuTrans.Tensor) } // namespace nts(NiuTrans.Tensor)
......
...@@ -84,7 +84,7 @@ XTensor HardTanH(const XTensor &x) ...@@ -84,7 +84,7 @@ XTensor HardTanH(const XTensor &x)
return y; return y;
} }
void HardTanH(const XTensor &x, XTensor &y, bool requireLink) void HardTanH(const XTensor &x, XTensor &y)
{ {
if (!y.isInit || !XTensor::IsSameShaped(&y, &x)) { if (!y.isInit || !XTensor::IsSameShaped(&y, &x)) {
InitTensor(&y, &x); InitTensor(&y, &x);
......
...@@ -40,7 +40,7 @@ void _HardTanH(const XTensor * x, XTensor * y); ...@@ -40,7 +40,7 @@ void _HardTanH(const XTensor * x, XTensor * y);
/* hard tanh function (return an XTensor structure) */ /* hard tanh function (return an XTensor structure) */
XTensor HardTanH(const XTensor &x); XTensor HardTanH(const XTensor &x);
void HardTanH(const XTensor &x, XTensor &y, bool requireLink = false); void HardTanH(const XTensor &x, XTensor &y);
/* de/dx */ /* de/dx */
void _HardTanHBackward(XTensor * gold, XTensor * y, XTensor * x, void _HardTanHBackward(XTensor * gold, XTensor * y, XTensor * x,
......
...@@ -58,7 +58,7 @@ XTensor Identity(const XTensor &x) ...@@ -58,7 +58,7 @@ XTensor Identity(const XTensor &x)
return y; return y;
} }
void Identity(const XTensor &x, XTensor &y, bool requireLink) void Identity(const XTensor &x, XTensor &y)
{ {
if (!y.isInit || !y.IsSameShaped(&y, &x)) { if (!y.isInit || !y.IsSameShaped(&y, &x)) {
InitTensor(&y, &x); InitTensor(&y, &x);
......
...@@ -33,7 +33,7 @@ void _Identity(const XTensor * x, XTensor * y); ...@@ -33,7 +33,7 @@ void _Identity(const XTensor * x, XTensor * y);
/* identity function y = x (return an XTensor structure) */ /* identity function y = x (return an XTensor structure) */
XTensor Identity(const XTensor &x); XTensor Identity(const XTensor &x);
void Identity(const XTensor &x, XTensor &y, bool requireLink = false); void Identity(const XTensor &x, XTensor &y);
/* de/dx */ /* de/dx */
void _IdentityBackward(XTensor * gold, XTensor * y, XTensor * x, void _IdentityBackward(XTensor * gold, XTensor * y, XTensor * x,
......
...@@ -194,7 +194,15 @@ XTensor LogSoftmax(const XTensor &x, int leadDim) ...@@ -194,7 +194,15 @@ XTensor LogSoftmax(const XTensor &x, int leadDim)
return y; return y;
} }
void LogSoftmax(const XTensor &x, XTensor &y, int leadDim, bool requireLink) /*
log scale softmax y = log(e^x / \sum_{i} e^{x_i})
make a new tensor to keep the result and return it
>> x - input vector
>> y - output vector
>> leadDim - leading dimension (along which we perform reduction)
*/
void LogSoftmax(const XTensor &x, XTensor &y, int leadDim)
{ {
int ld = leadDim; int ld = leadDim;
if (ld < 0) if (ld < 0)
...@@ -213,26 +221,7 @@ void LogSoftmax(const XTensor &x, XTensor &y, int leadDim, bool requireLink) ...@@ -213,26 +221,7 @@ void LogSoftmax(const XTensor &x, XTensor &y, int leadDim, bool requireLink)
XLink::AddParamToHeadInt(&y, ld); XLink::AddParamToHeadInt(&y, ld);
} }
} }
/*
log scale softmax y = log(e^x / \sum_{i} e^{x_i})
make a new tensor to keep the result and return it
>> x - input vector
>> y - output vector
>> leadDim - leading dimension (along which we perform reduction)
*/
void LogSoftmax(const XTensor &x, XTensor &y, int leadDim)
{
if(!XTensor::IsSameShaped(&x, &y))
InitTensor(&y, &x);
/* call _LogSoftmax function */
_LogSoftmax(&x, &y, leadDim);
/* tensor connection */
XLink::MakeLink(&x, NULL, &y, FUNC_LOGSOFTMAX);
XLink::AddParamToHeadInt(&y, leadDim);
}
/* /*
backward computation for dense matrices with default data type backward computation for dense matrices with default data type
......
...@@ -33,7 +33,7 @@ void _LogSoftmax(const XTensor * x, XTensor * y, int leadDim); ...@@ -33,7 +33,7 @@ void _LogSoftmax(const XTensor * x, XTensor * y, int leadDim);
/* log scale softmax y = log(e^x / \sum_{i} e^{x_i}) (return an XTensor structure) */ /* log scale softmax y = log(e^x / \sum_{i} e^{x_i}) (return an XTensor structure) */
XTensor LogSoftmax(const XTensor &x, int leadDim); XTensor LogSoftmax(const XTensor &x, int leadDim);
void LogSoftmax(const XTensor &x, XTensor &y, int leadDim, bool requireLink = false); void LogSoftmax(const XTensor &x, XTensor &y, int leadDim);
/* log scale softmax y = log(e^x / \sum_{i} e^{x_i}) (with both argument of x and y) */ /* log scale softmax y = log(e^x / \sum_{i} e^{x_i}) (with both argument of x and y) */
void LogSoftmax(const XTensor &x, XTensor &y, int leadDim); void LogSoftmax(const XTensor &x, XTensor &y, int leadDim);
......
...@@ -77,7 +77,7 @@ XTensor Rectify(const XTensor &x) ...@@ -77,7 +77,7 @@ XTensor Rectify(const XTensor &x)
return y; return y;
} }
void Rectify(const XTensor &x, XTensor &y, bool requireLink) void Rectify(const XTensor &x, XTensor &y)
{ {
if (!y.isInit || !XTensor::IsSameShaped(&y, &x)) { if (!y.isInit || !XTensor::IsSameShaped(&y, &x)) {
InitTensor(&y, &x); InitTensor(&y, &x);
......
...@@ -33,7 +33,7 @@ void _Rectify(const XTensor * x, XTensor * y); ...@@ -33,7 +33,7 @@ void _Rectify(const XTensor * x, XTensor * y);
/* rectify function y = max(0, x) (return an XTensor structure) */ /* rectify function y = max(0, x) (return an XTensor structure) */
XTensor Rectify(const XTensor &x); XTensor Rectify(const XTensor &x);
void Rectify(const XTensor &x, XTensor &y, bool requireLink = false); void Rectify(const XTensor &x, XTensor &y);
/* de/dx */ /* de/dx */
void _RectifyBackward(XTensor * gold, XTensor * y, XTensor * x, void _RectifyBackward(XTensor * gold, XTensor * y, XTensor * x,
......
...@@ -75,7 +75,7 @@ XTensor Sigmoid(const XTensor &x) ...@@ -75,7 +75,7 @@ XTensor Sigmoid(const XTensor &x)
return y; return y;
} }
void Sigmoid(const XTensor &x, XTensor &y, bool requireLink) void Sigmoid(const XTensor &x, XTensor &y)
{ {
if (!y.isInit || !XTensor::IsSameShaped(&y, &x)) { if (!y.isInit || !XTensor::IsSameShaped(&y, &x)) {
InitTensor(&y, &x); InitTensor(&y, &x);
......
...@@ -33,7 +33,7 @@ void _Sigmoid(const XTensor * x, XTensor * y); ...@@ -33,7 +33,7 @@ void _Sigmoid(const XTensor * x, XTensor * y);
/* sigmoid function y = 1/(1+exp(-x)) (return an XTensor structure) */ /* sigmoid function y = 1/(1+exp(-x)) (return an XTensor structure) */
XTensor Sigmoid(const XTensor &x); XTensor Sigmoid(const XTensor &x);
void Sigmoid(const XTensor &x, XTensor &y, bool requireLink = false); void Sigmoid(const XTensor &x, XTensor &y);
/* de/dx */ /* de/dx */
void _SigmoidBackward(XTensor * gold, XTensor * y, XTensor * x, void _SigmoidBackward(XTensor * gold, XTensor * y, XTensor * x,
......
...@@ -148,7 +148,7 @@ XTensor Softmax(const XTensor &x, int leadDim) ...@@ -148,7 +148,7 @@ XTensor Softmax(const XTensor &x, int leadDim)
return y; return y;
} }
void Softmax(const XTensor &x, XTensor &y, int leadDim, bool requireLink) void Softmax(const XTensor &x, XTensor &y, int leadDim)
{ {
int ld = leadDim; int ld = leadDim;
if (ld < 0) if (ld < 0)
......
...@@ -33,7 +33,7 @@ void _Softmax(const XTensor * x, XTensor * y, int leadDim); ...@@ -33,7 +33,7 @@ void _Softmax(const XTensor * x, XTensor * y, int leadDim);
/* softmax y = e^x / \sum_{i} e^{x_i} (return an XTensor structure) */ /* softmax y = e^x / \sum_{i} e^{x_i} (return an XTensor structure) */
XTensor Softmax(const XTensor &x, int leadDim); XTensor Softmax(const XTensor &x, int leadDim);
void Softmax(const XTensor &x, XTensor &y, int leadDim, bool requireLink = false); void Softmax(const XTensor &x, XTensor &y, int leadDim);
/* de/dx */ /* de/dx */
void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x, void _SoftmaxBackward(XTensor * gold, XTensor * y, XTensor * x,
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论