Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
100f4611
Commit
100f4611
authored
Jul 07, 2018
by
liyinqiao
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Bug fixed: 1. MatrixMul, Select, Sort, TopK, Loss; 2. Add other tests.
parent
a3a7145f
隐藏空白字符变更
内嵌
并排
正在显示
9 个修改的文件
包含
282 行增加
和
107 行删除
+282
-107
source/core/MatrixMul.cpp
+11
-11
source/core/MatrixMulBatched.cpp
+12
-11
source/core/Select.cpp
+8
-3
source/core/Sort.cu
+0
-9
source/core/TopK.cu
+7
-3
source/function/Loss.cpp
+3
-3
source/test/TMatrixMul.cpp
+225
-67
source/test/Test.cpp
+8
-0
source/test/Test.h
+8
-0
没有找到文件。
source/core/MatrixMul.cpp
查看文件 @
100f4611
...
...
@@ -58,12 +58,12 @@ void MatrixMul(XTensor * a, MATRIX_TRANS_TYPE transposedA,
CheckNTErrors
((
a
->
order
>=
2
&&
b
->
order
>=
2
&&
c
->
order
>=
2
),
"Input tensors must have a order > 2!"
);
int
an
=
transposedA
==
X_TRANS
?
a
->
dimSize
[
1
]
:
a
->
dimSize
[
0
];
int
am
=
transposedA
==
X_TRANS
?
a
->
dimSize
[
0
]
:
a
->
dimSize
[
1
];
int
bn
=
transposedB
==
X_TRANS
?
b
->
dimSize
[
1
]
:
b
->
dimSize
[
0
];
int
bm
=
transposedB
==
X_TRANS
?
b
->
dimSize
[
0
]
:
b
->
dimSize
[
1
];
int
cn
=
c
->
dimSize
[
0
];
int
cm
=
c
->
dimSize
[
1
];
int
an
=
transposedA
==
X_TRANS
?
a
->
dimSize
RDI
[
0
]
:
a
->
dimSizeRDI
[
1
];
int
am
=
transposedA
==
X_TRANS
?
a
->
dimSize
RDI
[
1
]
:
a
->
dimSizeRDI
[
0
];
int
bn
=
transposedB
==
X_TRANS
?
b
->
dimSize
RDI
[
0
]
:
b
->
dimSizeRDI
[
1
];
int
bm
=
transposedB
==
X_TRANS
?
b
->
dimSize
RDI
[
1
]
:
b
->
dimSizeRDI
[
0
];
int
cn
=
c
->
dimSize
RDI
[
1
];
int
cm
=
c
->
dimSize
RDI
[
0
];
CheckNTErrors
((
am
==
bn
&&
an
==
cn
&&
bm
==
cm
),
"Unmatched tensors in multiplication!"
);
...
...
@@ -79,13 +79,13 @@ void MatrixMul(XTensor * a, MATRIX_TRANS_TYPE transposedA,
int
cBlockNum
=
1
;
for
(
int
i
=
2
;
i
<
a
->
order
;
i
++
)
{
CheckNTErrors
((
a
->
dimSizeRDI
[
i
]
==
c
->
dimSizeRDI
[
i
]),
"Incorrect tensor sizes!"
);
CheckNTErrors
((
a
->
dimSizeRDI
[
i
]
==
c
->
dimSizeRDI
[
i
-
2
+
b
->
order
]),
"Incorrect tensor sizes!"
);
aBlockNum
*=
a
->
dimSizeRDI
[
i
];
cBlockNum
*=
a
->
dimSizeRDI
[
i
];
}
for
(
int
i
=
2
;
i
<
b
->
order
;
i
++
)
{
CheckNTErrors
((
b
->
dimSizeRDI
[
i
]
==
c
->
dimSizeRDI
[
i
-
2
+
a
->
order
]),
"Incorrect tensor sizes!"
);
CheckNTErrors
((
b
->
dimSizeRDI
[
i
]
==
c
->
dimSizeRDI
[
i
]),
"Incorrect tensor sizes!"
);
bBlockNum
*=
b
->
dimSizeRDI
[
i
];
cBlockNum
*=
b
->
dimSizeRDI
[
i
];
}
...
...
@@ -93,9 +93,9 @@ void MatrixMul(XTensor * a, MATRIX_TRANS_TYPE transposedA,
XList
*
aList
=
new
XList
(
10
);
XList
*
bList
=
new
XList
(
10
);
XList
*
cList
=
new
XList
(
10
);
int
aDimSize
[
2
]
=
{
-
a
->
dimSize
[
0
],
a
->
dimSize
[
1
]
};
int
bDimSize
[
2
]
=
{
-
b
->
dimSize
[
0
],
b
->
dimSize
[
1
]
};
int
cDimSize
[
2
]
=
{
-
c
->
dimSize
[
0
],
c
->
dimSize
[
1
]
};
int
aDimSize
[
2
]
=
{
a
->
dimSizeRDI
[
1
],
a
->
dimSizeRDI
[
0
]
};
int
bDimSize
[
2
]
=
{
b
->
dimSizeRDI
[
1
],
b
->
dimSizeRDI
[
0
]
};
int
cDimSize
[
2
]
=
{
c
->
dimSizeRDI
[
1
],
c
->
dimSizeRDI
[
0
]
};
bool
isSparseMul
=
false
;
...
...
source/core/MatrixMulBatched.cpp
查看文件 @
100f4611
...
...
@@ -52,12 +52,12 @@ void MatrixMulBatched(XTensor * a, MATRIX_TRANS_TYPE transposedA,
CheckNTErrors
((
a
->
order
>=
2
&&
b
->
order
>=
2
&&
c
->
order
>=
2
),
"Input tensors must have a order > 2!"
);
int
an
=
transposedA
==
X_TRANS
?
a
->
dimSize
[
1
]
:
a
->
dimSize
[
0
];
int
am
=
transposedA
==
X_TRANS
?
a
->
dimSize
[
0
]
:
a
->
dimSize
[
1
];
int
bn
=
transposedB
==
X_TRANS
?
b
->
dimSize
[
1
]
:
b
->
dimSize
[
0
];
int
bm
=
transposedB
==
X_TRANS
?
b
->
dimSize
[
0
]
:
b
->
dimSize
[
1
];
int
cn
=
c
->
dimSize
[
0
];
int
cm
=
c
->
dimSize
[
1
];
int
an
=
transposedA
==
X_TRANS
?
a
->
dimSize
RDI
[
0
]
:
a
->
dimSizeRDI
[
1
];
int
am
=
transposedA
==
X_TRANS
?
a
->
dimSize
RDI
[
1
]
:
a
->
dimSizeRDI
[
0
];
int
bn
=
transposedB
==
X_TRANS
?
b
->
dimSize
RDI
[
0
]
:
b
->
dimSizeRDI
[
1
];
int
bm
=
transposedB
==
X_TRANS
?
b
->
dimSize
RDI
[
1
]
:
b
->
dimSizeRDI
[
0
];
int
cn
=
c
->
dimSize
RDI
[
1
];
int
cm
=
c
->
dimSize
RDI
[
0
];
CheckNTErrors
((
am
==
bn
&&
an
==
cn
&&
bm
==
cm
),
"Unmatched tensors in multiplication!"
);
...
...
@@ -79,9 +79,9 @@ void MatrixMulBatched(XTensor * a, MATRIX_TRANS_TYPE transposedA,
XList
*
aList
=
new
XList
(
10
);
XList
*
bList
=
new
XList
(
10
);
XList
*
cList
=
new
XList
(
10
);
int
aDimSize
[
2
]
=
{
-
a
->
dimSizeRDI
[
0
],
a
->
dimSizeRDI
[
1
]
};
int
bDimSize
[
2
]
=
{
-
b
->
dimSizeRDI
[
0
],
b
->
dimSizeRDI
[
1
]
};
int
cDimSize
[
2
]
=
{
-
c
->
dimSizeRDI
[
0
],
c
->
dimSizeRDI
[
1
]
};
int
aDimSize
[
2
]
=
{
-
a
->
dimSizeRDI
[
1
],
a
->
dimSizeRDI
[
0
]
};
int
bDimSize
[
2
]
=
{
-
b
->
dimSizeRDI
[
1
],
b
->
dimSizeRDI
[
0
]
};
int
cDimSize
[
2
]
=
{
-
c
->
dimSizeRDI
[
1
],
c
->
dimSizeRDI
[
0
]
};
for
(
int
p
=
0
;
p
<
blockNum
;
p
++
)
{
void
*
ap
=
(
char
*
)
a
->
data
+
aRealBlockSize
*
p
;
...
...
@@ -106,8 +106,9 @@ void MatrixMulBatched(XTensor * a, MATRIX_TRANS_TYPE transposedA,
int
devIDBackup
;
ProtectCudaDev
(
a
->
devID
,
devIDBackup
);
CudaBLASMatrixMULList
(
a
->
mem
!=
NULL
?
a
->
mem
->
GetCublasHandle
()
:
GDevs
.
GetCudaHandle
(
a
->
devID
),
aList
,
transposedA
,
cublasHandle_t
*
handle
=
a
->
mem
!=
NULL
?
a
->
mem
->
GetCublasHandle
()
:
GDevs
.
GetCudaHandle
(
a
->
devID
);
CudaBLASMatrixMULList
(
handle
,
aList
,
transposedA
,
bList
,
transposedB
,
cList
,
aList
->
count
,
alpha
,
beta
);
...
...
source/core/Select.cpp
查看文件 @
100f4611
...
...
@@ -47,23 +47,28 @@ void SelectRange(XTensor * a, int dim, int low, int high, XTensor * c)
for
(
int
i
=
0
;
i
<
a
->
order
;
i
++
){
if
(
i
==
dim
){
CheckNTErrors
(
low
>
0
&&
low
<
a
->
dimSize
[
dim
],
"Illegal range specified!"
);
CheckNTErrors
(
high
>
0
&&
high
<
a
->
dimSize
[
dim
],
"Illegal range specified!"
);
CheckNTErrors
(
high
>
0
&&
high
<
=
a
->
dimSize
[
dim
],
"Illegal range specified!"
);
}
else
{
CheckNTErrors
(
a
->
dimSize
[
i
]
==
c
->
dimSize
[
i
],
"The size of the dimensions should be same!"
);
}
}
int
dimRDI
=
a
->
order
-
dim
-
1
;
int
stride
=
1
;
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
for
(
int
i
=
0
;
i
<
dim
RDI
;
i
++
)
stride
*=
a
->
dimSizeRDI
[
i
];
int
copyTimes
=
1
;
for
(
int
i
=
dimRDI
+
1
;
i
<
a
->
order
;
i
++
)
copyTimes
*=
a
->
dimSizeRDI
[
i
];
int
blockSize
=
stride
*
(
high
-
low
)
*
a
->
unitSize
;
int
stepSizeS
=
stride
*
a
->
dimSize
[
dim
]
*
a
->
unitSize
;
int
stepSizeT
=
stride
*
c
->
dimSize
[
dim
]
*
a
->
unitSize
;
char
*
s
=
(
char
*
)
a
->
data
+
stride
*
low
*
a
->
unitSize
;
char
*
t
=
(
char
*
)
c
->
data
;
for
(
int
i
=
0
;
i
<
high
-
low
;
i
++
){
for
(
int
i
=
0
;
i
<
copyTimes
;
i
++
){
XMemCopy
(
t
,
c
->
devID
,
s
,
a
->
devID
,
blockSize
);
s
+=
stepSizeS
;
t
+=
stepSizeT
;
...
...
source/core/Sort.cu
查看文件 @
100f4611
...
...
@@ -235,10 +235,6 @@ void CudaSortBig(XTensor * a, XTensor * b, XTensor * indexA, XTensor * indexB, i
int m = GetNextPower2(strideNum);
int n = stride * blockNum;
/* recheck */
/*void * buf = mem->AllocBuf(mem->devID, n * m * a->unitSize);
void * bufIndex = (indexA != NULL && indexB != NULL) ? mem->AllocBuf(mem->devID, n * m * sizeof(int)) : NULL;*/
/* change by liyinqiao */
void * buf = mem != NULL ? mem->AllocBuf(a->devID, n * m * a->unitSize) : XMemAlloc(a->devID, n * m * a->unitSize);
void * bufIndex = NULL;
if (indexA != NULL && indexB != NULL) {
...
...
@@ -294,11 +290,6 @@ void CudaSortBig(XTensor * a, XTensor * b, XTensor * indexA, XTensor * indexB, i
KernelReorganizeBack<int> << <dim3(cudaGrids[1], cudaGrids[0]), dim3(cudaBlocks[1], cudaBlocks[0]) >> >
(bufIndex, indexB->data, m, n, stride, k, blockNum);
/* recheck */
/*mem->ReleaseBuf(mem->devID, n * m * a->unitSize);
if (indexA != NULL && indexB != NULL)
mem->ReleaseBuf(mem->devID, n * m * sizeof(int));*/
/* change by liyinqiao */
if (mem != NULL)
mem->ReleaseBuf(a->devID, n * m * a->unitSize);
else
...
...
source/core/TopK.cu
查看文件 @
100f4611
...
...
@@ -20,6 +20,7 @@
*/
#include "../XDevice.h"
#include "../XUtility.h"
#include "../XTensor.h"
#include "TopK.h"
#include "TopK.cuh"
...
...
@@ -393,7 +394,7 @@ void CudaTopK(XTensor * a, XTensor * b, XTensor * index, int dim, int k)
int cudaGrids[3];
int cudaBlocks[3];
GDevs.GetCudaThread2D(a->
mem->
devID,
GDevs.GetCudaThread2D(a->devID,
workerNum, stride * blockNum, MAX_INT,
cudaGrids, cudaBlocks);
...
...
@@ -434,14 +435,17 @@ void CudaTopK(XTensor * a, XTensor * b, XTensor * index, int dim, int k)
memcpy(dimSize, a->dimSize, sizeof(int) * a->order);
dimSize[0] = -dimSize[0];
XTensor * indexA = new XTensor(a->order, dimSize, X_INT, 1.0F, a->mem);
indexA->data = a->mem
->AllocBuf
(a->devID, a->unitNum * sizeof(int));
indexA->data = a->mem
!= NULL ? a->mem->AllocBuf(a->devID, a->unitNum * sizeof(int)) : XMemAlloc
(a->devID, a->unitNum * sizeof(int));
/* make the index tensor */
indexA->SetAscendingOrder(dim);
CudaSortBig(a, b, indexA, index, dim, k);
a->mem->ReleaseBuf(a->devID, a->unitNum * sizeof(int));
if (a->mem != NULL)
a->mem->ReleaseBuf(a->devID, a->unitNum * sizeof(int));
else
XMemFree(a->devID, indexA->data);
delete indexA;
}
...
...
source/function/Loss.cpp
查看文件 @
100f4611
...
...
@@ -374,15 +374,15 @@ void LossBackward(XTensor * dedy, XTensor * t, XTensor * y,
LOSS_FUNCTION_NAME
LFName
,
int
leadDim
,
int
tBeg
,
int
tLen
,
int
yBeg
)
{
CheckNTErrors
((
tLen
>=
0
&&
tLen
<
y
->
unitNum
),
"Illegal input length!"
);
CheckNTErrors
((
tLen
<
y
->
unitNum
),
"Illegal input length!"
);
CheckNTErrors
((
XTensor
::
IsIdentical
(
t
,
y
)
&&
XTensor
::
IsIdentical
(
dedy
,
y
)),
"The input tensors must be of the same size!"
);
CheckNTErrors
((
t
->
dimSizeRDI
[
0
]
==
1
&&
y
->
dimSizeRDI
[
0
]
==
1
&&
dedy
->
dimSizeRDI
[
1
]
==
1
),
"TODO!"
);
//CheckNTErrors((t->dimSizeRDI[0] == 1 && y->dimSizeRDI[0] == 1 && dedy->dimSizeRDI[0
] == 1), "TODO!");
CheckNTErrors
((
t
->
order
>
leadDim
&&
leadDim
>=
0
),
"Illegal leading dimension!"
);
CheckNTErrors
((
t
->
dataType
==
DEFAULT_DTYPE
&&
y
->
dataType
==
DEFAULT_DTYPE
),
"TODO!"
);
int
leadDimRDI
=
y
->
order
-
leadDim
-
1
;
int
leadDimRDI
=
leadDim
>=
0
?
y
->
order
-
leadDim
-
1
:
-
1
;
if
(
leadDimRDI
<
0
){
leadDimRDI
=
y
->
dimSizeRDI
[
y
->
order
-
1
];
tBeg
=
0
;
...
...
source/test/TMatrixMul.cpp
查看文件 @
100f4611
...
...
@@ -24,8 +24,8 @@
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
/* case 1: matrix multiplication.
* In this case, a=(2, 3), b=(3, 2) -> c=(2, 2),
transposedA=X_NOTRANS,
transposedB=X_NOTRANS.
* In this case, a=(2, 3), b=(3, 2) -> c=(2, 2),
* transposedA=X_NOTRANS,
transposedB=X_NOTRANS.
*/
bool
TestMatrixMul1
()
{
...
...
@@ -59,13 +59,13 @@ bool TestMatrixMul1()
for
(
int
i
=
0
;
i
<
tOrder
;
i
++
)
tUnitNum
*=
tDimSize
[
i
];
DTYPE
sData1
[
2
][
3
]
=
{
{
1.0
,
2.0
,
3.0
},
{
-
4.0
,
5.0
,
6.0
}
};
DTYPE
sData2
[
3
][
2
]
=
{
{
0.0
,
-
1.0
},
{
1.0
,
2.0
},
{
2.0
,
1.0
}
};
DTYPE
answer
[
2
][
2
]
=
{
{
8.0
,
6.0
},
{
17.0
,
20.0
}
};
DTYPE
sData1
[
2
][
3
]
=
{
{
1.0
F
,
2.0
F
,
3.0
F
},
{
-
4.0
F
,
5.0
F
,
6.0
F
}
};
DTYPE
sData2
[
3
][
2
]
=
{
{
0.0
F
,
-
1.0
F
},
{
1.0
F
,
2.0
F
},
{
2.0
F
,
1.0
F
}
};
DTYPE
answer
[
2
][
2
]
=
{
{
8.0
F
,
6.0
F
},
{
17.0
F
,
20.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
...
...
@@ -107,22 +107,33 @@ bool TestMatrixMul1()
gpuTest
=
tGPU
->
CheckData
(
answer
,
tUnitNum
);
/* destroy variables */
delete
s1
,
s2
,
t
,
sGPU1
,
sGPU2
,
tGPU
;
delete
[]
sDimSize1
,
sDimSize2
,
tDimSize
;
delete
s1
;
delete
s2
;
delete
t
;
delete
sGPU1
;
delete
sGPU2
;
delete
tGPU
;
delete
[]
sDimSize1
;
delete
[]
sDimSize2
;
delete
[]
tDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
s1
,
s2
,
t
;
delete
[]
sDimSize1
,
sDimSize2
,
tDimSize
;
delete
s1
;
delete
s2
;
delete
t
;
delete
[]
sDimSize1
;
delete
[]
sDimSize2
;
delete
[]
tDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* case 2: matrix multiplication.
* In this case, a=(3, 2), b=(3, 2) -> c=(2, 2),
transposedA=X_TRANS,
transposedB=X_NOTRANS.
* In this case, a=(3, 2), b=(3, 2) -> c=(2, 2),
* transposedA=X_TRANS,
transposedB=X_NOTRANS.
*/
bool
TestMatrixMul2
()
{
...
...
@@ -136,7 +147,7 @@ bool TestMatrixMul2()
for
(
int
i
=
0
;
i
<
sOrder1
;
i
++
)
sUnitNum1
*=
sDimSize1
[
i
];
/* a source tensor of size (
2, 3
) */
/* a source tensor of size (
3, 2
) */
int
sOrder2
=
2
;
int
*
sDimSize2
=
new
int
[
sOrder2
];
sDimSize2
[
0
]
=
3
;
...
...
@@ -156,14 +167,14 @@ bool TestMatrixMul2()
for
(
int
i
=
0
;
i
<
tOrder
;
i
++
)
tUnitNum
*=
tDimSize
[
i
];
DTYPE
sData1
[
3
][
2
]
=
{
{
1.0
,
-
4.0
},
{
2.0
,
5.0
},
{
3.0
,
6.0
}
};
DTYPE
sData2
[
3
][
2
]
=
{
{
0.0
,
-
1.0
},
{
1.0
,
2.0
},
{
2.0
,
1.0
}
};
DTYPE
answer
[
2
][
2
]
=
{
{
8.0
,
6.0
},
{
17.0
,
20.0
}
};
DTYPE
sData1
[
3
][
2
]
=
{
{
1.0
F
,
-
4.0
F
},
{
2.0
F
,
5.0
F
},
{
3.0
F
,
6.0
F
}
};
DTYPE
sData2
[
3
][
2
]
=
{
{
0.0
F
,
-
1.0
F
},
{
1.0
F
,
2.0
F
},
{
2.0
F
,
1.0
F
}
};
DTYPE
answer
[
2
][
2
]
=
{
{
8.0
F
,
6.0
F
},
{
17.0
F
,
20.0
F
}
};
/* CPU test */
bool
cpuTest
=
true
;
...
...
@@ -205,22 +216,33 @@ bool TestMatrixMul2()
gpuTest
=
tGPU
->
CheckData
(
answer
,
tUnitNum
);
/* destroy variables */
delete
s1
,
s2
,
t
,
sGPU1
,
sGPU2
,
tGPU
;
delete
[]
sDimSize1
,
sDimSize2
,
tDimSize
;
delete
s1
;
delete
s2
;
delete
t
;
delete
sGPU1
;
delete
sGPU2
;
delete
tGPU
;
delete
[]
sDimSize1
;
delete
[]
sDimSize2
;
delete
[]
tDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
s1
,
s2
,
t
;
delete
[]
sDimSize1
,
sDimSize2
,
tDimSize
;
delete
s1
;
delete
s2
;
delete
t
;
delete
[]
sDimSize1
;
delete
[]
sDimSize2
;
delete
[]
tDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* case 3: matrix multiplication.
* In this case, a=(3, 2, 3), b=(2, 3, 2) -> c=(3, 2, 2, 2),
transposedA=X_NOTRANS,
transposedB=X_NOTRANS.
* In this case, a=(3, 2, 3), b=(2, 3, 2) -> c=(3, 2, 2, 2),
* transposedA=X_NOTRANS,
transposedB=X_NOTRANS.
*/
bool
TestMatrixMul3
()
{
...
...
@@ -258,20 +280,30 @@ bool TestMatrixMul3()
for
(
int
i
=
0
;
i
<
tOrder
;
i
++
)
tUnitNum
*=
tDimSize
[
i
];
DTYPE
sData1
[
3
][
2
][
3
]
=
{
{
{
0.0
,
-
1.0
,
2.0
},
{
2.0
,
1.0
,
3.0
}
},
{
{
1.0
,
2.0
,
4.0
},
{
3.0
,
1.0
,
2.0
}},
{
{
-
1.0
,
3.0
,
2.0
},
{
1.0
,
-
1.0
,
0.0
}
}
};
DTYPE
sData2
[
2
][
3
][
2
]
=
{
{
{
1.0
,
2.0
},
{
-
4.0
,
3.0
},
{
2.0
,
6.0
}
},
{
{
1.0
,
2.0
},
{
-
4.0
,
3.0
},
{
2.0
,
6.0
}
}
};
DTYPE
answer
[
2
][
2
]
=
{
{
8.0
,
6.0
},
{
17.0
,
20.0
}
};
DTYPE
sData1
[
3
][
2
][
3
]
=
{
{
{
0.0
F
,
-
1.0
F
,
2.0
},
{
2.0
F
,
1.0
F
,
3.0
}
},
{
{
1.0
F
,
2.0
F
,
4.0
},
{
3.0
F
,
1.0
F
,
2.0
}},
{
{
-
1.0
F
,
3.0
F
,
2.0
},
{
1.0
F
,
-
1.0
F
,
0.0
}
}
};
DTYPE
sData2
[
2
][
3
][
2
]
=
{
{
{
1.0
F
,
2.0
F
},
{
-
4.0
F
,
3.0
F
},
{
2.0
F
,
6.0
F
}
},
{
{
1.0
F
,
2.0
F
},
{
3.0
F
,
4.0
F
},
{
5.0
F
,
6.0
F
}
}
};
DTYPE
answer
[
3
][
2
][
2
][
2
]
=
{
{
{
{
8.0
F
,
9.0
F
},
{
4.0
F
,
25.0
F
}
},
{
{
7.0
F
,
8.0
F
},
{
20.0
F
,
26.0
F
}
}
},
{
{
{
1.0
F
,
32.0
F
},
{
3.0
F
,
21.0
F
}
},
{
{
27.0
F
,
34.0
F
},
{
16.0
F
,
22.0
F
}
}
},
{
{
{
-
9.0
F
,
19.0
F
},
{
5.0
F
,
-
1.0
F
}
},
{
{
18.0
F
,
22.0
F
},
{
-
2.0
F
,
-
2.0
F
}
}
}
};
/* CPU test */
bool
cpuTest
=
true
;
...
...
@@ -289,17 +321,123 @@ bool TestMatrixMul3()
/* call MatrixMul function */
MatrixMul
(
s1
,
X_NOTRANS
,
s2
,
X_NOTRANS
,
t
);
XPRINT
(
0
,
stdout
,
"
\n
target data
\n
["
);
DTYPE
*
check_data
=
(
DTYPE
*
)
t
->
data
;
for
(
int
i
=
0
;
i
<
tUnitNum
;
i
++
)
printf
(
"%f "
,
*
check_data
++
);
printf
(
"]
\n
"
);
/* check results */
cpuTest
=
t
->
CheckData
(
answer
,
tUnitNum
);
int
*
size
=
new
int
(
tOrder
);
size
=
t
->
dimSize
;
for
(
int
i
=
0
;
i
<
tOrder
;
i
++
)
{
printf
(
"size %d: %d
\n
"
,
i
,
*
size
++
);
}
#ifdef USE_CUDA
/* GPU test */
bool
gpuTest
=
true
;
/* create tensor */
XTensor
*
sGPU1
=
NewTensor
(
sOrder1
,
sDimSize1
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
sGPU2
=
NewTensor
(
sOrder2
,
sDimSize2
,
X_FLOAT
,
1.0
F
,
0
);
XTensor
*
tGPU
=
NewTensor
(
tOrder
,
tDimSize
,
X_FLOAT
,
1.0
F
,
0
);
/* Initialize variables */
sGPU1
->
SetData
(
sData1
,
sUnitNum1
);
sGPU2
->
SetData
(
sData2
,
sUnitNum2
);
tGPU
->
SetZeroAll
();
/* call MatrixMul function */
MatrixMul
(
sGPU1
,
X_NOTRANS
,
sGPU2
,
X_NOTRANS
,
tGPU
);
/* check results */
gpuTest
=
tGPU
->
CheckData
(
answer
,
tUnitNum
);
/* destroy variables */
delete
s1
;
delete
s2
;
delete
t
;
delete
sGPU1
;
delete
sGPU2
;
delete
tGPU
;
delete
[]
sDimSize1
;
delete
[]
sDimSize2
;
delete
[]
tDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
s1
;
delete
s2
;
delete
t
;
delete
[]
sDimSize1
;
delete
[]
sDimSize2
;
delete
[]
tDimSize
;
return
cpuTest
;
#endif // USE_CUDA
}
/* case 4: matrix multiplication.
* In this case, a=(3, 2, 3), b=(3, 2) -> c=(3, 2, 2),
* transposedA=X_NOTRANS, transposedB=X_NOTRANS.
*/
bool
TestMatrixMul4
()
{
/* a source tensor of size (3, 2, 3) */
int
sOrder1
=
3
;
int
*
sDimSize1
=
new
int
[
sOrder1
];
sDimSize1
[
0
]
=
3
;
sDimSize1
[
1
]
=
2
;
sDimSize1
[
2
]
=
3
;
int
sUnitNum1
=
1
;
for
(
int
i
=
0
;
i
<
sOrder1
;
i
++
)
sUnitNum1
*=
sDimSize1
[
i
];
/* a source tensor of size (3, 2) */
int
sOrder2
=
2
;
int
*
sDimSize2
=
new
int
[
sOrder2
];
sDimSize2
[
0
]
=
3
;
sDimSize2
[
1
]
=
2
;
int
sUnitNum2
=
1
;
for
(
int
i
=
0
;
i
<
sOrder2
;
i
++
)
sUnitNum2
*=
sDimSize2
[
i
];
/* a target tensor of size (3, 2, 2) */
int
tOrder
=
3
;
int
*
tDimSize
=
new
int
[
tOrder
];
tDimSize
[
0
]
=
3
;
tDimSize
[
1
]
=
2
;
tDimSize
[
2
]
=
2
;
int
tUnitNum
=
1
;
for
(
int
i
=
0
;
i
<
tOrder
;
i
++
)
tUnitNum
*=
tDimSize
[
i
];
DTYPE
sData1
[
3
][
2
][
3
]
=
{
{
{
0.0
F
,
-
1.0
F
,
2.0
F
},
{
2.0
F
,
1.0
F
,
3.0
F
}
},
{
{
1.0
F
,
2.0
F
,
4.0
F
},
{
3.0
F
,
1.0
F
,
2.0
F
}},
{
{
-
1.0
F
,
3.0
F
,
2.0
F
},
{
1.0
F
,
-
1.0
F
,
0.0
F
}
}
};
DTYPE
sData2
[
3
][
2
]
=
{
{
1.0
F
,
2.0
F
},
{
3.0
F
,
4.0
F
},
{
5.0
F
,
6.0
F
}
};
DTYPE
answer
[
3
][
2
][
2
]
=
{
{
{
7.0
F
,
8.0
F
},
{
20.0
F
,
26.0
F
}
},
{
{
27.0
F
,
34.0
F
},
{
16.0
F
,
22.0
F
}
},
{
{
18.0
F
,
22.0
F
},
{
-
2.0
F
,
-
2.0
F
}
}
};
/* CPU test */
bool
cpuTest
=
true
;
/* create tensors */
XTensor
*
s1
=
NewTensor
(
sOrder1
,
sDimSize1
);
XTensor
*
s2
=
NewTensor
(
sOrder2
,
sDimSize2
);
XTensor
*
t
=
NewTensor
(
tOrder
,
tDimSize
);
/* initialize variables */
s1
->
SetData
(
sData1
,
sUnitNum1
);
s2
->
SetData
(
sData2
,
sUnitNum2
);
t
->
SetZeroAll
();
/* call MatrixMul function */
MatrixMul
(
s1
,
X_NOTRANS
,
s2
,
X_NOTRANS
,
t
);
/* check results */
cpuTest
=
t
->
CheckData
(
answer
,
tUnitNum
);
...
...
@@ -325,14 +463,25 @@ bool TestMatrixMul3()
gpuTest
=
tGPU
->
CheckData
(
answer
,
tUnitNum
);
/* destroy variables */
delete
s1
,
s2
,
t
,
sGPU1
,
sGPU2
,
tGPU
;
delete
[]
sDimSize1
,
sDimSize2
,
tDimSize
;
delete
s1
;
delete
s2
;
delete
t
;
delete
sGPU1
;
delete
sGPU2
;
delete
tGPU
;
delete
[]
sDimSize1
;
delete
[]
sDimSize2
;
delete
[]
tDimSize
;
return
cpuTest
&&
gpuTest
;
#else
/* destroy variables */
delete
s1
,
s2
,
t
;
delete
[]
sDimSize1
,
sDimSize2
,
tDimSize
;
delete
s1
;
delete
s2
;
delete
t
;
delete
[]
sDimSize1
;
delete
[]
sDimSize2
;
delete
[]
tDimSize
;
return
cpuTest
;
#endif // USE_CUDA
...
...
@@ -348,7 +497,7 @@ bool TestMatrixMul3()
extern
"C"
bool
TestMatrixMul
()
{
XPRINT
(
0
,
stdout
,
"[TEST MATRIXMUL]
-------------
\n
"
);
XPRINT
(
0
,
stdout
,
"[TEST MATRIXMUL]
matrix multiplication
\n
"
);
bool
returnFlag
=
true
,
caseFlag
=
true
;
/* case 1 test */
...
...
@@ -370,14 +519,23 @@ bool TestMatrixMul()
else
XPRINT
(
0
,
stdout
,
">> case 2 passed!
\n
"
);
///* case 3 test */
//caseFlag = TestMatrixMul3();
//if (!caseFlag) {
// returnFlag = false;
// XPRINT(0, stdout, ">> case 3 failed!\n");
//}
//else
// XPRINT(0, stdout, ">> case 3 passed!\n");
/* case 3 test */
caseFlag
=
TestMatrixMul3
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 3 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 3 passed!
\n
"
);
/* case 4 test */
caseFlag
=
TestMatrixMul4
();
if
(
!
caseFlag
)
{
returnFlag
=
false
;
XPRINT
(
0
,
stdout
,
">> case 4 failed!
\n
"
);
}
else
XPRINT
(
0
,
stdout
,
">> case 4 passed!
\n
"
);
/* other cases test */
/*
...
...
source/test/Test.cpp
查看文件 @
100f4611
...
...
@@ -31,6 +31,7 @@ bool Test()
wrong
=
!
TestConcatenate
()
||
wrong
;
wrong
=
!
TestConcatenateSolely
()
||
wrong
;
wrong
=
!
TestCopyValues
()
||
wrong
;
wrong
=
!
TestMatrixMul
()
||
wrong
;
wrong
=
!
TestMatrixMul2D
()
||
wrong
;
wrong
=
!
TestMatrixMulBatchedCPU
()
||
wrong
;
...
...
@@ -42,12 +43,19 @@ bool Test()
wrong
=
!
TestReduceMax
()
||
wrong
;
wrong
=
!
TestReduceMean
()
||
wrong
;
wrong
=
!
TestReduceSum
()
||
wrong
;
wrong
=
!
TestReduceSumSquared
()
||
wrong
;
wrong
=
!
TestReduceVariance
()
||
wrong
;
wrong
=
!
TestScaleAndShift
()
||
wrong
;
wrong
=
!
TestSelect
()
||
wrong
;
wrong
=
!
TestSort
()
||
wrong
;
wrong
=
!
TestSplit
()
||
wrong
;
wrong
=
!
TestSum
()
||
wrong
;
wrong
=
!
TestTopK
()
||
wrong
;
wrong
=
!
TestUnsqueeze
()
||
wrong
;
wrong
=
!
TestXMem
()
||
wrong
;
//wrong = !TestHardTanH() || wrong;
wrong
=
!
TestIdentity
||
wrong
;
//wrong = !TestLoss() || wrong;
//wrong = !TestRectify() || wrong;
wrong
=
!
TestSigmoid
()
||
wrong
;
...
...
source/test/Test.h
查看文件 @
100f4611
...
...
@@ -24,6 +24,7 @@
#include "TConcatenate.h"
#include "TConcatenateSolely.h"
#include "TCopyValues.h"
#include "TMatrixMul.h"
#include "TMatrixMul2D.h"
#include "TMatrixMULBatchedCPU.h"
...
...
@@ -35,12 +36,19 @@
#include "TReduceMax.h"
#include "TReduceMean.h"
#include "TReduceSum.h"
#include "TReduceSumSquared.h"
#include "TReduceVariance.h"
#include "TScaleAndShift.h"
#include "TSelect.h"
#include "TSort.h"
#include "TSplit.h"
#include "TSum.h"
#include "TTopK.h"
#include "TUnsqueeze.h"
#include "TXMem.h"
#include "THardTanH.h"
#include "TIdentity.h"
#include "TLoss.h"
#include "TRectify.h"
#include "TSigmoid.h"
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论