Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
467c2ed7
Commit
467c2ed7
authored
Oct 17, 2019
by
张裕浩
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Add reduceMin operation using #define
parent
c9ef15f8
隐藏空白字符变更
内嵌
并排
正在显示
6 个修改的文件
包含
611 行增加
和
533 行删除
+611
-533
source/tensor/core/reduce/ReduceMax.cpp
+171
-147
source/tensor/core/reduce/ReduceMax.cu
+414
-386
source/tensor/core/reduce/ReduceMax.cuh
+3
-0
source/tensor/core/reduce/ReduceMax.h
+9
-0
source/tensor/core/reduce/VectorBuffer.cpp
+10
-0
source/tensor/core/reduce/VectorBuffer.h
+4
-0
没有找到文件。
source/tensor/core/reduce/ReduceMax.cpp
查看文件 @
467c2ed7
...
@@ -28,6 +28,8 @@
...
@@ -28,6 +28,8 @@
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
/*
/*
get the max value of the items along a dimension of the tensor
get the max value of the items along a dimension of the tensor
...
@@ -35,129 +37,147 @@ get the max value of the items along a dimension of the tensor
...
@@ -35,129 +37,147 @@ get the max value of the items along a dimension of the tensor
>> output - the output tensor
>> output - the output tensor
>> dim - the dimension where the reduction is performed on
>> dim - the dimension where the reduction is performed on
*/
*/
void
_ReduceMax
(
const
XTensor
*
input
,
XTensor
*
output
,
int
dim
)
{
CheckNTErrors
((
input
->
devID
==
output
->
devID
||
(
input
->
devID
<
0
&&
output
->
devID
<
0
)),
"This code must be run on the same device!"
);
CheckNTErrors
((
input
&&
output
),
"Empty input or output tensors!"
);
CheckNTErrors
((
input
->
order
==
output
->
order
+
1
),
"Incorrect tensor sizes!"
);
CheckNTErrors
((
input
->
order
>
dim
&&
dim
>=
0
),
"Illegal dimension to reduce!"
);
CheckNTErrors
((
input
->
dataType
==
output
->
dataType
),
"Unmatched data types!"
);
CheckNTErrors
(
dim
<
input
->
order
,
"Wrong dimension!"
);
for
(
int
i
=
0
;
i
<
input
->
order
;
i
++
){
if
(
i
<
dim
){
CheckNTErrors
((
input
->
dimSize
[
i
]
==
output
->
dimSize
[
i
]),
"Unmatched tensors!"
);
}
else
if
(
i
>
dim
){
CheckNTErrors
((
input
->
dimSize
[
i
]
==
output
->
dimSize
[
i
-
1
]),
"Unmatched tensors!"
);
}
}
if
(
input
->
devID
>=
0
){
#ifdef USE_CUDA
_CudaReduceMax
(
input
,
output
,
dim
);
#endif
}
else
{
CheckNTErrors
((
input
->
dataType
==
DEFAULT_DTYPE
),
"TODO!"
);
int
stride
=
1
;
int
strideNum
=
input
->
dimSize
[
dim
];
int
blockSize
=
1
;
int
blockNum
=
1
;
for
(
int
i
=
0
;
i
<
input
->
order
;
i
++
)
{
if
(
i
>
dim
)
stride
*=
input
->
dimSize
[
i
];
else
if
(
i
<
dim
)
blockNum
*=
input
->
dimSize
[
i
];
}
blockSize
=
stride
*
strideNum
;
#define _REDUCE_CPU_FUNCTION(_funcCPUName, _vectorOp, _reduceOp) \
void _funcCPUName(const XTensor * input, XTensor * output, int dim) \
{ \
CheckNTErrors((input->devID == output->devID || (input->devID < 0 && output->devID < 0)), \
"This code must be run on the same device!"); \
CheckNTErrors((input && output), "Empty input or output tensors!"); \
CheckNTErrors((input->order == output->order + 1), "Incorrect tensor sizes!"); \
CheckNTErrors((input->order > dim && dim >= 0), "Illegal dimension to reduce!"); \
CheckNTErrors((input->dataType == output->dataType), "Unmatched data types!"); \
\
CheckNTErrors(dim < input->order, "Wrong dimension!"); \
\
for (int i = 0; i < input->order; i++) { \
\
if (i < dim) { \
\
CheckNTErrors((input->dimSize[i] == output->dimSize[i]), \
"Unmatched tensors!"); \
} \
else if (i > dim) { \
CheckNTErrors((input->dimSize[i] == output->dimSize[i - 1]), \
"Unmatched tensors!"); \
} \
} \
CheckNTErrors((input->dataType == DEFAULT_DTYPE), "TODO!"); \
int stride = 1; \
int strideNum = input->dimSize[dim]; \
int blockSize = 1; \
int blockNum = 1; \
for (int i = 0; i < input->order; i++) { \
if (i > dim) \
stride *= input->dimSize[i]; \
else if (i < dim) \
blockNum *= input->dimSize[i]; \
} \
blockSize = stride * strideNum; \
\
\
if(input->dimSize[input->order - 1] % (4 * 32 / sizeof(DTYPE)) == 0 && input->dimSize[input->order - 1] >= 32){ \
int vecBufLength = 32 / sizeof(DTYPE); \
\
if (dim == input->order - 1) { \
/*data is contiguous in dim 0 */
\
for (int i = 0; i < blockNum; i++) { \
DTYPE * ip = (DTYPE*)input->data + blockSize * i; \
DTYPE * op = (DTYPE*)output->data + i; \
VectorBuffer vecBuf[4]; \
for (int j = 0; j < 4; j++) { \
vecBuf[j] = VectorBuffer::loadu((DTYPE*)(ip)+j * vecBufLength); \
} \
for (int j = 1; j < strideNum / 32; j++) { \
const DTYPE* ptr = (DTYPE*)(ip + j * vecBufLength); \
vecBuf[0] = vecBuf[0]._vectorOp(VectorBuffer::loadu(ptr + 0 * vecBufLength)); \
vecBuf[1] = vecBuf[1]._vectorOp(VectorBuffer::loadu(ptr + 1 * vecBufLength)); \
vecBuf[2] = vecBuf[2]._vectorOp(VectorBuffer::loadu(ptr + 2 * vecBufLength)); \
vecBuf[3] = vecBuf[3]._vectorOp(VectorBuffer::loadu(ptr + 3 * vecBufLength)); \
} \
vecBuf[0] = vecBuf[0]._vectorOp(vecBuf[1]); \
vecBuf[0] = vecBuf[0]._vectorOp(vecBuf[2]); \
vecBuf[0] = vecBuf[0]._vectorOp(vecBuf[3]); \
DTYPE maxN = vecBuf[0][0]; \
for (int k = 1; k < vecBufLength; k++) { \
maxN = _reduceOp(maxN, vecBuf[0][k]); \
} \
*op = maxN; \
} \
\
} \
else { \
/* data is separated */
\
for(int i = 0; i < blockNum; i++){ \
for(int j = 0; j < input->dimSize[input->order - 1] / 32; j++){ \
DTYPE * ip = (DTYPE*)input->data + blockSize * i; \
DTYPE * op = (DTYPE*)output->data + stride * i; \
VectorBuffer vecBuf[4]; \
for(int k = 0; k < 4; k++){ \
vecBuf[k] = VectorBuffer::loadu((DTYPE*)(ip) + (j * 4 + k) * 32 / sizeof(DTYPE)); \
\
} \
for(int k = 1; k < strideNum; k++){ \
DTYPE * ptr = ip + k * stride + (j * 4) * vecBufLength; \
vecBuf[0] = vecBuf[0]._vectorOp(VectorBuffer::loadu(ptr + 0 * vecBufLength)); \
vecBuf[1] = vecBuf[1]._vectorOp(VectorBuffer::loadu(ptr + 1 * vecBufLength)); \
vecBuf[2] = vecBuf[2]._vectorOp(VectorBuffer::loadu(ptr + 2 * vecBufLength)); \
vecBuf[3] = vecBuf[3]._vectorOp(VectorBuffer::loadu(ptr + 3 * vecBufLength)); \
} \
for(int k = 0; k < 4; k++){ \
for(int l = 0; l < vecBufLength; l++) \
*(op + j * 32 + 8 * k + l) = vecBuf[k][l]; \
} \
} \
} \
} \
}
/* run vector buffer */
\
else{ \
for(int k = 0; k < blockNum; k++){ \
DTYPE * ip = (DTYPE*)input->data + blockSize * k; \
DTYPE * op = (DTYPE*)output->data + stride * k; \
for(int i = 0; i < stride; i++){ \
DTYPE * ipe = ip + blockSize; \
DTYPE tmpData = *(ip + i); \
for(DTYPE * ipb = ip + i + stride; ipb < ipe; ipb += stride){ \
DTYPE v = *ipb; \
tmpData = _reduceOp(tmpData, v); \
} \
*(op + i) = tmpData; \
} \
} \
} \
}
if
(
input
->
dimSize
[
input
->
order
-
1
]
%
(
4
*
32
/
sizeof
(
DTYPE
))
==
0
&&
input
->
dimSize
[
input
->
order
-
1
]
>=
32
){
_REDUCE_CPU_FUNCTION
(
reduceMaxCPU
,
maxData
,
MAX
)
int
vecBufLength
=
32
/
sizeof
(
DTYPE
);
_REDUCE_CPU_FUNCTION
(
reduceMinCPU
,
minData
,
MIN
)
if
(
dim
==
input
->
order
-
1
)
{
#ifdef USE_CUDA
//data is contiguous in dim 0
#define _REDUCE_FUNCTION(_funcName, _cudaFuncName) \
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
void _funcName(const XTensor * input, XTensor * output, int dim) \
DTYPE
*
ip
=
(
DTYPE
*
)
input
->
data
+
blockSize
*
i
;
{ \
DTYPE
*
op
=
(
DTYPE
*
)
output
->
data
+
i
;
if(input->devID >= 0){ \
VectorBuffer
vecBuf
[
4
];
_cudaFuncName(input, output, dim); \
for
(
int
j
=
0
;
j
<
4
;
j
++
)
{
} \
vecBuf
[
j
]
=
VectorBuffer
::
loadu
((
DTYPE
*
)(
ip
)
+
j
*
vecBufLength
);
else{ \
}
reduceMaxCPU(input, output, dim); \
for
(
int
j
=
1
;
j
<
strideNum
/
32
;
j
++
)
{
} \
const
DTYPE
*
ptr
=
(
DTYPE
*
)(
ip
+
j
*
vecBufLength
);
vecBuf
[
0
]
=
vecBuf
[
0
].
maxData
(
VectorBuffer
::
loadu
(
ptr
+
0
*
vecBufLength
));
vecBuf
[
1
]
=
vecBuf
[
1
].
maxData
(
VectorBuffer
::
loadu
(
ptr
+
1
*
vecBufLength
));
vecBuf
[
2
]
=
vecBuf
[
2
].
maxData
(
VectorBuffer
::
loadu
(
ptr
+
2
*
vecBufLength
));
vecBuf
[
3
]
=
vecBuf
[
3
].
maxData
(
VectorBuffer
::
loadu
(
ptr
+
3
*
vecBufLength
));
}
vecBuf
[
0
]
=
vecBuf
[
0
].
maxData
(
vecBuf
[
1
]);
vecBuf
[
0
]
=
vecBuf
[
0
].
maxData
(
vecBuf
[
2
]);
vecBuf
[
0
]
=
vecBuf
[
0
].
maxData
(
vecBuf
[
3
]);
DTYPE
maxN
=
DTYPE_MIN
;
for
(
int
k
=
0
;
k
<
vecBufLength
;
k
++
)
{
maxN
=
MAX
(
maxN
,
vecBuf
[
0
][
k
]);
}
*
op
=
maxN
;
}
}
else
{
//data is separated
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
){
for
(
int
j
=
0
;
j
<
input
->
dimSize
[
input
->
order
-
1
]
/
32
;
j
++
){
DTYPE
*
ip
=
(
DTYPE
*
)
input
->
data
+
blockSize
*
i
;
DTYPE
*
op
=
(
DTYPE
*
)
output
->
data
+
stride
*
i
;
VectorBuffer
vecBuf
[
4
];
for
(
int
k
=
0
;
k
<
4
;
k
++
){
vecBuf
[
k
]
=
VectorBuffer
::
loadu
((
DTYPE
*
)(
ip
)
+
(
j
*
4
+
k
)
*
32
/
sizeof
(
DTYPE
));
}
for
(
int
k
=
1
;
k
<
strideNum
;
k
++
){
DTYPE
*
ptr
=
ip
+
k
*
stride
+
(
j
*
4
)
*
vecBufLength
;
vecBuf
[
0
]
=
vecBuf
[
0
].
maxData
(
VectorBuffer
::
loadu
(
ptr
+
0
*
vecBufLength
));
vecBuf
[
1
]
=
vecBuf
[
1
].
maxData
(
VectorBuffer
::
loadu
(
ptr
+
1
*
vecBufLength
));
vecBuf
[
2
]
=
vecBuf
[
2
].
maxData
(
VectorBuffer
::
loadu
(
ptr
+
2
*
vecBufLength
));
vecBuf
[
3
]
=
vecBuf
[
3
].
maxData
(
VectorBuffer
::
loadu
(
ptr
+
3
*
vecBufLength
));
}
for
(
int
k
=
0
;
k
<
4
;
k
++
){
for
(
int
l
=
0
;
l
<
vecBufLength
;
l
++
)
*
(
op
+
j
*
32
+
8
*
k
+
l
)
=
vecBuf
[
k
][
l
];
}
}
}
}
}
//run vector buffer
else
{
for
(
int
k
=
0
;
k
<
blockNum
;
k
++
){
DTYPE
*
ip
=
(
DTYPE
*
)
input
->
data
+
blockSize
*
k
;
DTYPE
*
op
=
(
DTYPE
*
)
output
->
data
+
stride
*
k
;
for
(
int
i
=
0
;
i
<
stride
;
i
++
){
//#if defined(USE_BLAS)
// *(op + i) = *(ip + i + (int)(stride * IAMAX(strideNum, ip + i, stride)));
//#else
DTYPE
max
=
DTYPE_MIN
;
DTYPE
*
ipe
=
ip
+
blockSize
;
for
(
DTYPE
*
ipb
=
ip
+
i
;
ipb
<
ipe
;
ipb
+=
stride
){
DTYPE
v
=
*
ipb
;
if
(
max
<
v
)
max
=
v
;
}
*
(
op
+
i
)
=
max
;
//#endif
}
}
}
}
}
}
_REDUCE_FUNCTION
(
_ReduceMax
,
_CudaReduceMax
)
_REDUCE_FUNCTION
(
_ReduceMin
,
_CudaReduceMin
)
#else
#define _REDUCE_FUNCTION(_funcName, reduceNameCPU) \
void _funcName(const XTensor * input, XTensor * output, int dim) \
{ \
CheckNTErrors((input->devID < 0), "This code must be run on the CPU!"); \
reduceNameCPU(input, output, dim); \
}
_REDUCE_FUNCTION
(
_ReduceMax
,
reduceMaxCPU
)
_REDUCE_FUNCTION
(
_ReduceMin
,
reduceMinCPU
)
#endif
/*
/*
get the max value of the items along a dimension of the tensor (return an XTensor structure).
get the max value of the items along a dimension of the tensor (return an XTensor structure).
make a new tensor to keep the result and return it
make a new tensor to keep the result and return it
...
@@ -165,34 +185,38 @@ make a new tensor to keep the result and return it
...
@@ -165,34 +185,38 @@ make a new tensor to keep the result and return it
>> dim - the dimension where the reduction is performed on
>> dim - the dimension where the reduction is performed on
<< return - the max value of the items along a dimension of the tensor
<< return - the max value of the items along a dimension of the tensor
*/
*/
XTensor
ReduceMax
(
const
XTensor
&
input
,
int
dim
)
#define REDUCE_FUNCTION(funcName, funcOp) \
{
XTensor funcName(const XTensor & input, int dim) \
CheckNTErrors
(
dim
>=
0
&&
dim
<
input
.
order
,
"Illegal dimension to reduce!"
);
{ \
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!"); \
int
order
=
input
.
order
-
1
;
\
int
*
dimSize
=
new
int
[
order
];
int order = input.order - 1; \
for
(
int
i
=
0
;
i
<
order
;
i
++
){
int * dimSize = new int[order]; \
if
(
i
<
dim
)
for(int i = 0; i < order; i++){ \
dimSize
[
i
]
=
input
.
dimSize
[
i
];
if(i < dim) \
else
if
(
i
>=
dim
)
dimSize[i] = input.dimSize[i]; \
dimSize
[
i
]
=
input
.
dimSize
[
i
+
1
];
else if(i >= dim) \
}
dimSize[i] = input.dimSize[i + 1]; \
} \
float
dr
=
(
!
input
.
isSparse
)
?
1.0
F
:
input
.
denseRatio
;
\
XTensor
output
(
order
,
dimSize
,
input
.
dataType
,
dr
,
input
.
devID
,
input
.
mem
);
float dr = (!input.isSparse) ? 1.0F : input.denseRatio; \
output
.
SetTMPFlag
();
XTensor output(order, dimSize, input.dataType, dr, input.devID, input.mem); \
output.SetTMPFlag(); \
/* call _ReduceMax function */
\
_ReduceMax
(
&
input
,
&
output
,
dim
);
/* call _ReduceMax function */
\
funcOp(&input, &output, dim); \
/* tensor connection */
\
XLink
::
MakeLink
(
&
input
,
NULL
,
&
output
,
REDUCE_REDUCEMAX
);
/* tensor connection */
\
XLink
::
AddParamToHeadInt
(
&
output
,
dim
);
XLink::MakeLink(&input, NULL, &output, REDUCE_REDUCEMAX); \
XLink::AddParamToHeadInt(&output, dim); \
/* destroy variables */
\
delete
[]
dimSize
;
/* destroy variables */
\
delete[] dimSize; \
return
output
;
\
return output; \
}
}
REDUCE_FUNCTION
(
ReduceMax
,
_ReduceMax
)
REDUCE_FUNCTION
(
ReduceMin
,
_ReduceMin
)
}
// namespace nts(NiuTrans.Tensor)
}
// namespace nts(NiuTrans.Tensor)
source/tensor/core/reduce/ReduceMax.cu
查看文件 @
467c2ed7
...
@@ -33,67 +33,75 @@ namespace nts{ // namespace nts(NiuTrans.Tensor)
...
@@ -33,67 +33,75 @@ namespace nts{ // namespace nts(NiuTrans.Tensor)
/*
/*
use PTX code to reduce float data
use PTX code to reduce float data
*/
*/
__device__ __forceinline__
#define SHLFUNCFLOAT(funcName, reducePTXOp) \
float shflDownReduceMax(float input)
__device__ __forceinline__ \
{
float funcName(float input) \
float output;
{ \
asm volatile(
float output; \
"{"
asm volatile( \
".reg .f32 r0;"
"{" \
".reg .pred p;"
".reg .f32 r0;" \
"shfl.sync.down.b32 r0, %1, 0x10, 0x1f,0xffffffff;"
".reg .pred p;" \
"setp.lt.f32 p,%1,r0;"
"shfl.sync.down.b32 r0, %1, 0x10, 0x1f,0xffffffff;" \
"@p mov.f32 %1,r0;"
"setp."#reducePTXOp".f32 p,%1,r0;" \
"shfl.sync.down.b32 r0, %1, 0x8, 0xf,0xffffffff;"
"@p mov.f32 %1,r0;" \
"setp.lt.f32 p,%1,r0;"
"shfl.sync.down.b32 r0, %1, 0x8, 0xf,0xffffffff;" \
"@p mov.f32 %1,r0;"
"setp."#reducePTXOp".f32 p,%1,r0;" \
"shfl.sync.down.b32 r0, %1, 0x4, 0x7,0xffffffff;"
"@p mov.f32 %1,r0;" \
"setp.lt.f32 p,%1,r0;"
"shfl.sync.down.b32 r0, %1, 0x4, 0x7,0xffffffff;" \
"@p mov.f32 %1,r0;"
"setp."#reducePTXOp".f32 p,%1,r0;" \
"shfl.sync.down.b32 r0, %1, 0x2, 0x3,0xffffffff;"
"@p mov.f32 %1,r0;" \
"setp.lt.f32 p,%1,r0;"
"shfl.sync.down.b32 r0, %1, 0x2, 0x3,0xffffffff;" \
"@p mov.f32 %1,r0;"
"setp."#reducePTXOp".f32 p,%1,r0;" \
"shfl.sync.down.b32 r0, %1, 0x1, 0x1,0xffffffff;"
"@p mov.f32 %1,r0;" \
"setp.lt.f32 p, %1, r0; "
"shfl.sync.down.b32 r0, %1, 0x1, 0x1,0xffffffff;" \
"@p mov.f32 %1,r0;"
"setp."#reducePTXOp".f32 p, %1, r0; " \
"mov.f32 %0,%1;"
"@p mov.f32 %1,r0;" \
"}"
"mov.f32 %0,%1;" \
: "=f"(output) : "f"(input));
"}" \
return output;
: "=f"(output) : "f"(input)); \
return output; \
}
}
SHLFUNCFLOAT(shflDownReduceMax, lt)
SHLFUNCFLOAT(shflDownReduceMin, gt)
/*
/*
use PTX code to reduce int data
use PTX code to reduce int data
*/
*/
__device__ __forceinline__
#define SHLFUNCINT(funcName, reducePTXOp) \
int shflDownReduceMax(int input)
__device__ __forceinline__ \
{
int funcName(int input) \
int output;
{ \
asm volatile(
int output; \
"{"
asm volatile( \
".reg .s32 r0;"
"{" \
".reg .pred p;"
".reg .s32 r0;" \
"shfl.sync.down.b32 r0, %1, 0x10, 0x1f,0xffffffff;"
".reg .pred p;" \
"setp.lt.s32 p,%1,r0;"
"shfl.sync.down.b32 r0, %1, 0x10, 0x1f,0xffffffff;" \
"@p mov.s32 %1,r0;"
"setp."#reducePTXOp".s32 p,%1,r0;" \
"shfl.sync.down.b32 r0, %1, 0x8, 0xf,0xffffffff;"
"@p mov.s32 %1,r0;" \
"setp.lt.s32 p,%1,r0;"
"shfl.sync.down.b32 r0, %1, 0x8, 0xf,0xffffffff;" \
"@p mov.s32 %1,r0;"
"setp."#reducePTXOp".s32 p,%1,r0;" \
"shfl.sync.down.b32 r0, %1, 0x4, 0x7,0xffffffff;"
"@p mov.s32 %1,r0;" \
"setp.lt.s32 p,%1,r0;"
"shfl.sync.down.b32 r0, %1, 0x4, 0x7,0xffffffff;" \
"@p mov.s32 %1,r0;"
"setp."#reducePTXOp".s32 p,%1,r0;" \
"shfl.sync.down.b32 r0, %1, 0x2, 0x3,0xffffffff;"
"@p mov.s32 %1,r0;" \
"setp.lt.s32 p,%1,r0;"
"shfl.sync.down.b32 r0, %1, 0x2, 0x3,0xffffffff;" \
"@p mov.s32 %1,r0;"
"setp."#reducePTXOp".s32 p,%1,r0;" \
"shfl.sync.down.b32 r0, %1, 0x1, 0x1,0xffffffff;"
"@p mov.s32 %1,r0;" \
"setp.lt.s32 p, %1, r0; "
"shfl.sync.down.b32 r0, %1, 0x1, 0x1,0xffffffff;" \
"@p mov.s32 %1,r0;"
"setp."#reducePTXOp".s32 p, %1, r0; " \
"mov.s32 %0,%1;"
"@p mov.s32 %1,r0;" \
"}"
"mov.s32 %0,%1;" \
: "=r"(output) : "r"(input));
"}" \
return output;
: "=r"(output) : "r"(input)); \
return output; \
}
}
SHLFUNCINT(shflDownReduceMax, lt)
SHLFUNCINT(shflDownReduceMin, gt)
/*
/*
reduce a tensor to another that keeps the max value along a dimension - slow version
reduce a tensor to another that keeps the max value along a dimension - slow version
Given a block of data, we go over each dimension i in the stride and we have
Given a block of data, we go over each dimension i in the stride and we have
...
@@ -108,48 +116,52 @@ crossing of the i-th columne and the j-th row.
...
@@ -108,48 +116,52 @@ crossing of the i-th columne and the j-th row.
>> blockSize - size of the block (i.e., stride * strideNum)
>> blockSize - size of the block (i.e., stride * strideNum)
>> blockNum - how many blocks
>> blockNum - how many blocks
*/
*/
__global__
#define KERNELREDUCEFUN3(funName, opName, initData) \
void KernelReduceMax(DTYPE * input, DTYPE * output,
__global__ \
int stride, int strideNum, int reducedStrideNum,
void funName(DTYPE * input, DTYPE * output, \
int blockSize, int blockNum)
int stride, int strideNum, int reducedStrideNum, \
{
int blockSize, int blockNum) \
__shared__ DTYPE iData[MAX_CUDA_THREAD_NUM_PER_BLOCK * MIN_CUDA_SHARED_MEM_COL_SIZE/2];
{ \
__shared__ DTYPE iData[MAX_CUDA_THREAD_NUM_PER_BLOCK * MIN_CUDA_SHARED_MEM_COL_SIZE/2]; \
int idx = threadIdx.x * blockDim.y + threadIdx.y;
\
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
int idx = threadIdx.x * blockDim.y + threadIdx.y; \
unsigned int j = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x; \
unsigned int j = blockIdx.y*blockDim.y + threadIdx.y; \
if(i >= stride * blockNum)
\
return;
if(i >= stride * blockNum) \
return; \
__syncthreads();
\
__syncthreads(); \
int k = i / stride;
\
int iOffset = i % stride;
int k = i / stride; \
int iOffset = i % stride; \
DTYPE value = (i < stride * blockNum && j < strideNum) ?
\
input[blockSize * k + stride * j + iOffset] : FLOAT_MIN;
DTYPE value = (i < stride * blockNum && j < strideNum) ? \
input[blockSize * k + stride * j + iOffset] : initData; \
/* load data into the shared mem */
\
iData[threadIdx.x * blockDim.y + threadIdx.y] = value;
/* load data into the shared mem */ \
iData[threadIdx.x * blockDim.y + threadIdx.y] = value; \
__syncthreads();
\
__syncthreads(); \
/* do reduction in shared mem */
\
for (unsigned int s = blockDim.y/2; s > 0; s >>= 1){
/* do reduction in shared mem */ \
if(threadIdx.y < s && iData[idx] < iData[idx + s]){
for (unsigned int s = blockDim.y/2; s > 0; s >>= 1){ \
iData[idx] = iData[idx + s];
if(threadIdx.y < s){ \
}
iData[idx] = opName(iData[idx + s], iData[idx]); \
} \
__syncthreads();
\
}
__syncthreads(); \
} \
/* write result for this block to the output array */
\
if (threadIdx.y == 0 && blockIdx.y < reducedStrideNum)
/* write result for this block to the output array */ \
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = iData[threadIdx.x * blockDim.y];
if (threadIdx.y == 0 && blockIdx.y < reducedStrideNum) \
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = iData[threadIdx.x * blockDim.y]; \
\
}
}
KERNELREDUCEFUN3(KernelReduceMax, MAX, FLOAT_MIN)
KERNELREDUCEFUN3(KernelReduceMin, MIN, MAX_FLOAT)
/*
/*
reduce a tensor to another that keeps the max value along a dimension - slow version
reduce a tensor to another that keeps the max value along a dimension - slow version
Given a block of data, we go over each dimension i in the stride and we have
Given a block of data, we go over each dimension i in the stride and we have
...
@@ -231,48 +243,52 @@ reduce a tensor to another that keeps the max value along a dimension - fast ve
...
@@ -231,48 +243,52 @@ reduce a tensor to another that keeps the max value along a dimension - fast ve
>> blockSize - size of the block (i.e., stride * strideNum)
>> blockSize - size of the block (i.e., stride * strideNum)
>> blockNum - how many blocks
>> blockNum - how many blocks
*/
*/
template <unsigned int goodSize> __global__
#define KERNELREDUCEFUN4(funName, opName, opFuncName, initData) \
void KernelReduceMaxFast(DTYPE * input, DTYPE * output,
template <unsigned int goodSize> __global__ \
int stride, int strideNum, int reducedStrideNum,
void funName(DTYPE * input, DTYPE * output, \
int blockSize, int blockNum)
int stride, int strideNum, int reducedStrideNum, \
{
int blockSize, int blockNum) \
__shared__ DTYPE iData[MAX_CUDA_THREAD_NUM_PER_BLOCK];
{ \
__shared__ DTYPE iData[MAX_CUDA_THREAD_NUM_PER_BLOCK]; \
unsigned int tid = threadIdx.y;
\
unsigned int j = blockIdx.y * (blockDim.y * 2) + threadIdx.y;
unsigned int tid = threadIdx.y; \
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int j = blockIdx.y * (blockDim.y * 2) + threadIdx.y; \
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; \
if(i >= stride * blockNum)
\
return;
if(i >= stride * blockNum) \
return; \
__syncthreads();
\
__syncthreads(); \
/* first level reduction */
\
int k = i / stride;
/* first level reduction */ \
int iOffset = i % stride;
int k = i / stride; \
int iOffset = i % stride; \
DTYPE * data = iData + threadIdx.x * blockDim.y;
\
DTYPE * inputData = input + k * blockSize;
DTYPE * data = iData + threadIdx.x * blockDim.y; \
DTYPE value = j < strideNum ? inputData[j * stride + iOffset] : FLOAT_MIN;
DTYPE * inputData = input + k * blockSize; \
DTYPE value2 = j + blockDim.y < strideNum ? inputData[(j + blockDim.y) * stride + iOffset]: FLOAT_MIN;
DTYPE value = j < strideNum ? inputData[j * stride + iOffset] : initData; \
DTYPE value2 = j + blockDim.y < strideNum ? inputData[(j + blockDim.y) * stride + iOffset]: initData; \
value = MAX(value, value2);
\
value = shflDownReduceMax(value);
value = opName(value, value2); \
if ((tid & 0x1f) == 0)
value = opFuncName(value); \
data[tid / 32] = value;
if ((tid & 0x1f) == 0) \
__syncthreads();
data[tid / 32] = value; \
__syncthreads(); \
if (tid < 32) {
\
if (tid < blockDim.y / 32)
if (tid < 32) { \
value = data[tid];
if (tid < blockDim.y / 32) \
else
value = data[tid]; \
value = FLOAT_MIN;
else \
value = shflDownReduceMax(value);
value = initData; \
if (tid == 0 && blockIdx.y < reducedStrideNum)
value = opFuncName(value); \
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = value;
if (tid == 0 && blockIdx.y < reducedStrideNum) \
}
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = value; \
} \
}
}
KERNELREDUCEFUN4(KernelReduceMaxFast, MAX, shflDownReduceMax, FLOAT_MIN)
KERNELREDUCEFUN4(KernelReduceMinFast, MIN, shflDownReduceMin, MAX_FLOAT)
/*
/*
reduce a tensor to another that keeps the max value along a dimension - fast version
reduce a tensor to another that keeps the max value along a dimension - fast version
>> input - the input array (representing a tensor)
>> input - the input array (representing a tensor)
...
@@ -372,14 +388,12 @@ void KernelReduceMaxSimpleFast(DTYPE * input, DTYPE * output,
...
@@ -372,14 +388,12 @@ void KernelReduceMaxSimpleFast(DTYPE * input, DTYPE * output,
int stride4 = stride3 + stride;
int stride4 = stride3 + stride;
for(int k = 0; k < blockSize; k += stride4){
for(int k = 0; k < blockSize; k += stride4){
DTYPE m = MAX(MAX(ip[k], ip[k + stride]), MAX(ip[k + stride2], ip[k + stride3]));
DTYPE m = MAX(MAX(ip[k], ip[k + stride]), MAX(ip[k + stride2], ip[k + stride3]));
if(max < m)
max = MAX(max, m);
max = m;
}
}
}
}
else{
else{
for(int k = 0; k < blockSize; k += stride)
for (int k = 0; k < blockSize; k += stride)
if(max < ip[k])
max = MAX(max, ip[k]);
max = ip[k];
}
}
__syncthreads();
__syncthreads();
...
@@ -429,66 +443,75 @@ inline void adjustThreadForUseWarpOptimization(dim3& blocks, dim3& threads)
...
@@ -429,66 +443,75 @@ inline void adjustThreadForUseWarpOptimization(dim3& blocks, dim3& threads)
/*
/*
In some case,we use less block to imporve efficiency
In some case,we use less block to imporve efficiency
*/
*/
__global__
#define KERNELREDUCEFUN2(funName, opName, opFuncName, initData) \
void KernelReduceMaxOpLessBlocks(DTYPE * input, DTYPE * output, int strideNum, int blockNum)
__global__ \
{
void funName(DTYPE * input, DTYPE * output, int strideNum, int blockNum) \
int idx = threadIdx.x % 32;
{ \
int idy = (blockIdx.x * blockDim.x + threadIdx.x) / 32;
int idx = threadIdx.x % 32; \
int idy = (blockIdx.x * blockDim.x + threadIdx.x) / 32; \
int startIndex = idy * strideNum;
\
DTYPE threadMax = FLOAT_MIN;
int startIndex = idy * strideNum; \
for (int i = idx; i < strideNum; i += 32) {
DTYPE threadMax = initData; \
threadMax = max(input[startIndex + i], threadMax);
for (int i = idx; i < strideNum; i += 32) { \
}
threadMax = opName(input[startIndex + i], threadMax); \
threadMax = shflDownReduceMax(threadMax);
} \
if (idx == 0)
threadMax = opFuncName(threadMax); \
output[idy] = threadMax;
if (idx == 0) \
output[idy] = threadMax; \
}
}
KERNELREDUCEFUN2(KernelReduceMaxOpLessBlocks, MAX, shflDownReduceMax, FLOAT_MIN)
KERNELREDUCEFUN2(KernelReduceMinOpLessBlocks, MIN, shflDownReduceMin, MAX_FLOAT)
/*
/*
we use PTX code reduce
we use PTX code reduce
*/
*/
__global__
#define KERNELREDUCEFUN1(funName, opName, opFuncName, initData) \
void KernelReduceMaxOp(DTYPE * input, DTYPE * output,int stride, int strideNum,
__global__ \
int reducedStrideNum,int blockSize, int blockNum)
void funName(DTYPE * input, DTYPE * output,int stride, int strideNum, \
{
int reducedStrideNum,int blockSize, int blockNum) \
__shared__ DTYPE iData[MAX_CUDA_THREAD_NUM_PER_BLOCK / 32];
{ \
__shared__ DTYPE iData[MAX_CUDA_THREAD_NUM_PER_BLOCK / 32]; \
unsigned int tid = threadIdx.y;
\
unsigned int j = blockIdx.y * blockDim.y + threadIdx.y;
unsigned int tid = threadIdx.y; \
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int j = blockIdx.y * blockDim.y + threadIdx.y; \
if (i >= stride * blockNum)
unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; \
return;
if (i >= stride * blockNum) \
return; \
/* first level reduction */
\
int k = i / stride;
/* first level reduction */ \
int iOffset = i % stride;
int k = i / stride; \
int iOffset = i % stride; \
DTYPE threadMax = FLOAT_MIN;
\
DTYPE threadMax = initData; \
DTYPE * data = iData + threadIdx.x * blockDim.y;
\
DTYPE * inputData = input + k * blockSize;
DTYPE * data = iData + threadIdx.x * blockDim.y; \
for (int it = j; it < strideNum; it += blockDim.y){
DTYPE * inputData = input + k * blockSize; \
threadMax = max(inputData[it * stride + iOffset], threadMax);
for (int it = j; it < strideNum; it += blockDim.y){ \
}
threadMax = opName(inputData[it * stride + iOffset], threadMax); \
} \
__syncthreads();
\
threadMax = shflDownReduceMax(threadMax);
__syncthreads(); \
if ((tid & 0x1f) == 0)
threadMax = opFuncName(threadMax); \
data[tid / 32] = threadMax;
if ((tid & 0x1f) == 0) \
data[tid / 32] = threadMax; \
__syncthreads();
\
/* use one warp to reduce remaining data */
__syncthreads(); \
if (tid < 32){
/* use one warp to reduce remaining data */ \
if (tid < blockDim.y / 32)
if (tid < 32){ \
threadMax = data[tid];
if (tid < blockDim.y / 32) \
else threadMax = FLOAT_MIN;
threadMax = data[tid]; \
threadMax = shflDownReduceMax(threadMax);
else threadMax = initData; \
if (tid == 0 && blockIdx.y < reducedStrideNum)
threadMax = opFuncName(threadMax); \
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = threadMax;
if (tid == 0 && blockIdx.y < reducedStrideNum) \
}
output[(k * reducedStrideNum + blockIdx.y) * stride + iOffset] = threadMax; \
} \
}
}
KERNELREDUCEFUN1(KernelReduceMaxOp, MAX, shflDownReduceMax, FLOAT_MIN)
KERNELREDUCEFUN1(KernelReduceMinOp, MIN, shflDownReduceMin, MAX_FLOAT)
/*
/*
get the max-valued items along a dimension of the tensor (cuda version).
get the max-valued items along a dimension of the tensor (cuda version).
For a 1-dimensional data array a,
For a 1-dimensional data array a,
...
@@ -497,202 +520,207 @@ sum_i = max_{0<=j<strideNum} input_{i,j}
...
@@ -497,202 +520,207 @@ sum_i = max_{0<=j<strideNum} input_{i,j}
>> output - the output tensor
>> output - the output tensor
>> dim - which dimension to reduce
>> dim - which dimension to reduce
*/
*/
void _CudaReduceMax(const XTensor * input, XTensor * output, int dim)
#define _CUDAREDUCE(_funcName, _reduceFunc1, _reduceFunc2, _reduceFunc3, _reduceFun4) \
{
void _funcName(const XTensor * input, XTensor * output, int dim) \
CheckNTErrors(input && output, "Empty input or output tensors!");
{ \
CheckNTErrors(input->order == output->order + 1, "Incorrect tensor sizes!");
CheckNTErrors(input && output, "Empty input or output tensors!"); \
CheckNTErrors(input->order > dim && dim >=0, "Illegal dimension to reduce!");
CheckNTErrors(input->order == output->order + 1, "Incorrect tensor sizes!"); \
CheckNTErrors(input->dataType == output->dataType, "Unmatched data types!");
CheckNTErrors(input->order > dim && dim >=0, "Illegal dimension to reduce!"); \
CheckNTErrors(input->dataType == output->dataType, "Unmatched data types!"); \
for(int i = 0; i < input->order; i++){
\
if(i < dim){
for(int i = 0; i < input->order; i++){ \
CheckNTErrors(input->dimSize[i] == output->dimSize[i], "Unmatched tensors!");
if(i < dim){ \
}
CheckNTErrors(input->dimSize[i] == output->dimSize[i], "Unmatched tensors!"); \
else if(i > dim){
} \
CheckNTErrors(input->dimSize[i] == output->dimSize[i - 1], "Unmatched tensors!");
else if(i > dim){ \
}
CheckNTErrors(input->dimSize[i] == output->dimSize[i - 1], "Unmatched tensors!"); \
}
} \
} \
int cudaGridSize[3];
\
int cudaBlockSize[3];
int cudaGridSize[3]; \
int iter = 0;
int cudaBlockSize[3]; \
int stride = 1;
int iter = 0; \
int strideNum = input->dimSize[dim];
int stride = 1; \
int blockSize = 1;
int strideNum = input->dimSize[dim]; \
int blockNum = 1;
int blockSize = 1; \
int blockNum = 1; \
for (int i = 0; i < input->order; i++) {
\
if (i < dim)
for (int i = 0; i < input->order; i++) { \
blockNum *= input->dimSize[i];
if (i < dim) \
else if (i > dim)
blockNum *= input->dimSize[i]; \
stride *= input->dimSize[i];
else if (i > dim) \
}
stride *= input->dimSize[i]; \
blockSize = stride * strideNum;
} \
blockSize = stride * strideNum; \
int devID = input->devID;
\
XMem * mem = input->mem;
int devID = input->devID; \
XMem * mem = input->mem; \
GDevs.GetCudaThread2D(devID, strideNum, stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
\
GDevs.GetCudaThread2D(devID, strideNum, stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize); \
int bufSize = sizeof(DTYPE) * cudaGridSize[0] * stride * blockNum * 2;
\
DTYPE * buf = mem != NULL ? (DTYPE*)mem->AllocBuf(mem->devID, bufSize) : (DTYPE*)XMemAlloc(input->devID, bufSize);
int bufSize = sizeof(DTYPE) * cudaGridSize[0] * stride * blockNum * 2; \
DTYPE * buf1 = buf;
DTYPE * buf = mem != NULL ? (DTYPE*)mem->AllocBuf(mem->devID, bufSize) : (DTYPE*)XMemAlloc(input->devID, bufSize); \
DTYPE * buf2 = buf + cudaGridSize[0] * stride * blockNum;
DTYPE * buf1 = buf; \
DTYPE * buf2 = buf + cudaGridSize[0] * stride * blockNum; \
int devIDBackup;
\
ProtectCudaDev(input->devID, devIDBackup);
int devIDBackup; \
ProtectCudaDev(input->devID, devIDBackup); \
if (stride == 1 && blockNum >= 10) {
\
dim3 grids;
if (stride == 1 && blockNum >= 10) { \
dim3 blocks;
dim3 grids; \
continuousStorageThreadAllocation(grids, blocks, (long long)blockNum, strideNum);
dim3 blocks; \
if (blocks.y >= 128) {
continuousStorageThreadAllocation(grids, blocks, (long long)blockNum, strideNum); \
KernelReduceMaxOp <<<grids, blocks >>> ((DTYPE *)input->data, (DTYPE*)output->data, stride, strideNum, grids.y, blockSize, blockNum);
if (blocks.y >= 128) { \
}
_reduceFunc1 <<<grids, blocks >>> ((DTYPE *)input->data, (DTYPE*)output->data, stride, strideNum, grids.y, blockSize, blockNum); \
else {
} \
if (blockNum % 4 != 0) blockNum = (int)(blockNum / 4) + 1;
else { \
else blockNum = blockNum / 4;
if (blockNum % 4 != 0) blockNum = (int)(blockNum / 4) + 1; \
KernelReduceMaxOpLessBlocks <<<blockNum, 128 >>> ((DTYPE *)input->data, (DTYPE*)output->data, strideNum, blockNum);
else blockNum = blockNum / 4; \
}
_reduceFunc2 <<<blockNum, 128 >>> ((DTYPE *)input->data, (DTYPE*)output->data, strideNum, blockNum); \
}
} \
else {
} \
do {
else { \
if (input->dataType == DEFAULT_DTYPE) {
do { \
DTYPE * iData = NULL;
if (input->dataType == DEFAULT_DTYPE) { \
DTYPE * oData = NULL;
DTYPE * iData = NULL; \
if (iter == 0) {
DTYPE * oData = NULL; \
iData = (DTYPE*)input->data;
if (iter == 0) { \
oData = buf1;
iData = (DTYPE*)input->data; \
}
oData = buf1; \
else if (iter % 2 == 1) {
} \
iData = buf1;
else if (iter % 2 == 1) { \
oData = buf2;
iData = buf1; \
}
oData = buf2; \
else {
} \
iData = buf2;
else { \
oData = buf1;
iData = buf2; \
}
oData = buf1; \
} \
/* unroll the reduction procedure. The code is messy but it is faster. */
\
if (strideNum < 32) {
/* unroll the reduction procedure. The code is messy but it is faster. */ \
GDevs.GetCudaThread2D(devID, strideNum, stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
if (strideNum < 32) { \
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
GDevs.GetCudaThread2D(devID, strideNum, stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize); \
if (cudaGridSize[0] == 1)
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]); \
oData = (DTYPE*)output->data;
if (cudaGridSize[0] == 1) \
KernelReduceMax <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
oData = (DTYPE*)output->data; \
}
_reduceFunc3 <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum); \
else if (strideNum < 128) {
} \
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 64), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else if (strideNum < 128) { \
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 64), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize); \
if (cudaGridSize[0] == 1)
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]); \
oData = (DTYPE*)output->data;
if (cudaGridSize[0] == 1) \
CheckNTErrors(cudaBlockSize[0] >= 64, "Incorrect thread number when calling the cuda kernel!");
oData = (DTYPE*)output->data; \
adjustThreadForUseWarpOptimization(blocks, threads);
CheckNTErrors(cudaBlockSize[0] >= 64, "Incorrect thread number when calling the cuda kernel!"); \
KernelReduceMaxFast<64> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
adjustThreadForUseWarpOptimization(blocks, threads); \
}
_reduceFun4<64> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum); \
else if (strideNum < 256) {
} \
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 128), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else if (strideNum < 256) { \
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 128), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize); \
if (cudaGridSize[0] == 1)
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]); \
oData = (DTYPE*)output->data;
if (cudaGridSize[0] == 1) \
CheckNTErrors(cudaBlockSize[0] >= 128, "Incorrect thread number when calling the cuda kernel!");
oData = (DTYPE*)output->data; \
adjustThreadForUseWarpOptimization(blocks, threads);
CheckNTErrors(cudaBlockSize[0] >= 128, "Incorrect thread number when calling the cuda kernel!"); \
KernelReduceMaxFast<128> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
adjustThreadForUseWarpOptimization(blocks, threads); \
}
_reduceFun4<128> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum); \
else if (strideNum < 512) {
} \
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 256), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else if (strideNum < 512) { \
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 256), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize); \
if (cudaGridSize[0] == 1)
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]); \
oData = (DTYPE*)output->data;
if (cudaGridSize[0] == 1) \
CheckNTErrors(cudaBlockSize[0] >= 256, "Incorrect thread number when calling the cuda kernel!");
oData = (DTYPE*)output->data; \
adjustThreadForUseWarpOptimization(blocks, threads);
CheckNTErrors(cudaBlockSize[0] >= 256, "Incorrect thread number when calling the cuda kernel!"); \
KernelReduceMaxFast<256> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
adjustThreadForUseWarpOptimization(blocks, threads); \
}
_reduceFun4<256> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum); \
else {
} \
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 512), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else { \
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 512), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize); \
if (cudaGridSize[0] == 1)
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]); \
oData = (DTYPE*)output->data;
if (cudaGridSize[0] == 1) \
CheckNTErrors(cudaBlockSize[0] >= 512, "Incorrect thread number when calling the cuda kernel!");
oData = (DTYPE*)output->data; \
adjustThreadForUseWarpOptimization(blocks, threads);
CheckNTErrors(cudaBlockSize[0] >= 512, "Incorrect thread number when calling the cuda kernel!"); \
KernelReduceMaxFast<512> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
adjustThreadForUseWarpOptimization(blocks, threads); \
}
_reduceFun4<512> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum); \
}
} \
else if (input->dataType == X_FLOAT16) {
} \
__half * buf1ft16 = (__half *)buf1;
else if (input->dataType == X_FLOAT16) { \
__half * buf2ft16 = (__half *)buf2;
__half * buf1ft16 = (__half *)buf1; \
__half * iData = NULL;
__half * buf2ft16 = (__half *)buf2; \
__half * oData = NULL;
__half * iData = NULL; \
if (iter == 0) {
__half * oData = NULL; \
iData = (__half*)input->data;
if (iter == 0) { \
oData = buf1ft16;
iData = (__half*)input->data; \
}
oData = buf1ft16; \
else if (iter % 2 == 1) {
} \
iData = buf1ft16;
else if (iter % 2 == 1) { \
oData = buf2ft16;
iData = buf1ft16; \
}
oData = buf2ft16; \
else {
} \
iData = buf2ft16;
else { \
oData = buf1ft16;
iData = buf2ft16; \
}
oData = buf1ft16; \
} \
/* unroll the reduction procedure. The code is messy but it is faster. */
\
if (strideNum < 32) {
/* unroll the reduction procedure. The code is messy but it is faster. */ \
GDevs.GetCudaThread2D(devID, strideNum, stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
if (strideNum < 32) { \
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
GDevs.GetCudaThread2D(devID, strideNum, stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize); \
if (cudaGridSize[0] == 1)
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]); \
oData = (__half*)output->data;
if (cudaGridSize[0] == 1) \
KernelReduceMax <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
oData = (__half*)output->data; \
}
KernelReduceMax <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum); \
else if (strideNum < 128) {
} \
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 64), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else if (strideNum < 128) { \
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 64), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize); \
if (cudaGridSize[0] == 1)
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]); \
oData = (__half*)output->data;
if (cudaGridSize[0] == 1) \
CheckNTErrors(cudaBlockSize[0] >= 64, "Incorrect thread number when calling the cuda kernel!");
oData = (__half*)output->data; \
KernelReduceMaxFast<64> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
CheckNTErrors(cudaBlockSize[0] >= 64, "Incorrect thread number when calling the cuda kernel!"); \
}
KernelReduceMaxFast<64> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum); \
else if (strideNum < 256) {
} \
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 128), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else if (strideNum < 256) { \
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 128), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize); \
if (cudaGridSize[0] == 1)
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]); \
oData = (__half*)output->data;
if (cudaGridSize[0] == 1) \
CheckNTErrors(cudaBlockSize[0] >= 128, "Incorrect thread number when calling the cuda kernel!");
oData = (__half*)output->data; \
KernelReduceMaxFast<128> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
CheckNTErrors(cudaBlockSize[0] >= 128, "Incorrect thread number when calling the cuda kernel!"); \
}
KernelReduceMaxFast<128> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum); \
else if (strideNum < 512) {
} \
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 256), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else if (strideNum < 512) { \
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 256), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize); \
if (cudaGridSize[0] == 1)
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]); \
oData = (__half*)output->data;
if (cudaGridSize[0] == 1) \
CheckNTErrors(cudaBlockSize[0] >= 256, "Incorrect thread number when calling the cuda kernel!");
oData = (__half*)output->data; \
KernelReduceMaxFast<256> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
CheckNTErrors(cudaBlockSize[0] >= 256, "Incorrect thread number when calling the cuda kernel!"); \
}
KernelReduceMaxFast<256> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum); \
else {
} \
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 512), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize);
else { \
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]);
GDevs.GetCudaThread2D(devID, MAX(strideNum / 2 + 1, 512), stride * blockNum, MAX_INT, cudaGridSize, cudaBlockSize); \
if (cudaGridSize[0] == 1)
dim3 blocks(cudaGridSize[1], cudaGridSize[0]), threads(cudaBlockSize[1], cudaBlockSize[0]); \
oData = (__half*)output->data;
if (cudaGridSize[0] == 1) \
CheckNTErrors(cudaBlockSize[0] >= 512, "Incorrect thread number when calling the cuda kernel!");
oData = (__half*)output->data; \
KernelReduceMaxFast<512> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum);
CheckNTErrors(cudaBlockSize[0] >= 512, "Incorrect thread number when calling the cuda kernel!"); \
}
KernelReduceMaxFast<512> <<<blocks, threads>>> (iData, oData, stride, strideNum, blocks.y, blockSize, blockNum); \
}
} \
} \
strideNum = cudaGridSize[0];
\
blockSize = cudaGridSize[0];
strideNum = cudaGridSize[0]; \
blockSize = cudaGridSize[0]; \
iter++;
\
iter++; \
} while (strideNum > 1);
\
}
} while (strideNum > 1); \
} \
\
BacktoCudaDev(input->devID, devIDBackup); \
\
if (mem != NULL) \
mem->ReleaseBuf(mem->devID, bufSize); \
else \
XMemFree(input->devID, buf); \
}
BacktoCudaDev(input->devID, devIDBackup);
_CUDAREDUCE(_CudaReduceMax, KernelReduceMaxOp, KernelReduceMaxOpLessBlocks, KernelReduceMax, KernelReduceMaxFast)
_CUDAREDUCE(_CudaReduceMin, KernelReduceMinOp, KernelReduceMinOpLessBlocks, KernelReduceMin, KernelReduceMinFast)
if (mem != NULL)
mem->ReleaseBuf(mem->devID, bufSize);
else
XMemFree(input->devID, buf);
}
#endif // USE_CUDA
#endif // USE_CUDA
...
...
source/tensor/core/reduce/ReduceMax.cuh
查看文件 @
467c2ed7
...
@@ -31,6 +31,9 @@ namespace nts{ // namespace nts(NiuTrans.Tensor)
...
@@ -31,6 +31,9 @@ namespace nts{ // namespace nts(NiuTrans.Tensor)
/* get the max-valued items along a dimension of the tensor (cuda version) */
/* get the max-valued items along a dimension of the tensor (cuda version) */
void _CudaReduceMax(const XTensor * input, XTensor * output, int dim);
void _CudaReduceMax(const XTensor * input, XTensor * output, int dim);
/* get the min-valued items along a dimension of the tensor (cuda version) */
void _CudaReduceMin(const XTensor * input, XTensor * output, int dim);
#endif // USE_CUDA
#endif // USE_CUDA
} // namespace nts(NiuTrans.Tensor)
} // namespace nts(NiuTrans.Tensor)
...
...
source/tensor/core/reduce/ReduceMax.h
查看文件 @
467c2ed7
...
@@ -29,12 +29,21 @@ namespace nts{ // namespace nts(NiuTrans.Tensor)
...
@@ -29,12 +29,21 @@ namespace nts{ // namespace nts(NiuTrans.Tensor)
/* get the max value of the items along a dimension of the tensor. */
/* get the max value of the items along a dimension of the tensor. */
void
_ReduceMax
(
const
XTensor
*
input
,
XTensor
*
output
,
int
dim
);
void
_ReduceMax
(
const
XTensor
*
input
,
XTensor
*
output
,
int
dim
);
/* get the min value of the items along a dimension of the tensor. */
void
_ReduceMin
(
const
XTensor
*
input
,
XTensor
*
output
,
int
dim
);
/*
/*
get the max value of the items along a dimension of the tensor (return an XTensor structure)
get the max value of the items along a dimension of the tensor (return an XTensor structure)
make a new tensor to keep the result and return it
make a new tensor to keep the result and return it
*/
*/
XTensor
ReduceMax
(
const
XTensor
&
input
,
int
dim
);
XTensor
ReduceMax
(
const
XTensor
&
input
,
int
dim
);
/*
get the min value of the items along a dimension of the tensor (return an XTensor structure)
make a new tensor to keep the result and return it
*/
XTensor
ReduceMin
(
const
XTensor
&
input
,
int
dim
);
}
// namespace nts(NiuTrans.Tensor)
}
// namespace nts(NiuTrans.Tensor)
#endif // __REDUCEMAX_H__
#endif // __REDUCEMAX_H__
source/tensor/core/reduce/VectorBuffer.cpp
查看文件 @
467c2ed7
...
@@ -168,4 +168,13 @@ VectorBuffer VectorBuffer::maxData(const VectorBuffer &a) {
...
@@ -168,4 +168,13 @@ VectorBuffer VectorBuffer::maxData(const VectorBuffer &a) {
return
*
this
;
return
*
this
;
}
}
/* conculte the max of two buffer */
VectorBuffer
VectorBuffer
::
minData
(
const
VectorBuffer
&
a
)
{
for
(
int
i
=
0
;
i
!=
a
.
size
();
i
++
)
{
this
->
values
[
i
]
=
MIN
(
a
[
i
],
this
->
values
[
i
]);
printf
(
"runhere"
);
}
return
*
this
;
}
}
/* end of the nts (NiuTrans.Tensor) namespace */
}
/* end of the nts (NiuTrans.Tensor) namespace */
\ No newline at end of file
source/tensor/core/reduce/VectorBuffer.h
查看文件 @
467c2ed7
...
@@ -48,5 +48,8 @@ public:
...
@@ -48,5 +48,8 @@ public:
/* conculte the max of two buffer */
/* conculte the max of two buffer */
VectorBuffer
maxData
(
const
VectorBuffer
&
a
);
VectorBuffer
maxData
(
const
VectorBuffer
&
a
);
/* conculte the max of two buffer */
VectorBuffer
minData
(
const
VectorBuffer
&
a
);
};
};
}
}
\ No newline at end of file
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论