Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
7375289d
Commit
7375289d
authored
Jul 07, 2019
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix the bug of generating path-probs
parent
ace64052
显示空白字符变更
内嵌
并排
正在显示
4 个修改的文件
包含
74 行增加
和
19 行删除
+74
-19
source/sample/transformer/T2TPredictor.cpp
+22
-15
source/sample/transformer/T2TPredictor.h
+6
-0
source/sample/transformer/T2TSearch.cpp
+43
-4
source/sample/transformer/T2TSearch.h
+3
-0
没有找到文件。
source/sample/transformer/T2TPredictor.cpp
查看文件 @
7375289d
...
@@ -72,6 +72,7 @@ void T2TStateBundle::MakeStates(int num)
...
@@ -72,6 +72,7 @@ void T2TStateBundle::MakeStates(int num)
/* constructor */
/* constructor */
T2TPredictor
::
T2TPredictor
()
T2TPredictor
::
T2TPredictor
()
{
{
startSymbol
=
-
1
;
}
}
/* de-constructor */
/* de-constructor */
...
@@ -115,6 +116,15 @@ void T2TPredictor::Create(T2TModel * model, XTensor * top, const XTensor * input
...
@@ -115,6 +116,15 @@ void T2TPredictor::Create(T2TModel * model, XTensor * top, const XTensor * input
}
}
/*
/*
set start symbol
>> symbol - the symbol (in integer)
*/
void
T2TPredictor
::
SetStartSymbol
(
int
symbol
)
{
startSymbol
=
symbol
;
}
/*
read a state
read a state
>> model - the t2t model that keeps the network created so far
>> model - the t2t model that keeps the network created so far
>> state - a set of states. It keeps
>> state - a set of states. It keeps
...
@@ -150,28 +160,24 @@ void T2TPredictor::Predict(T2TStateBundle * next, XTensor * encoding, XTensor *
...
@@ -150,28 +160,24 @@ void T2TPredictor::Predict(T2TStateBundle * next, XTensor * encoding, XTensor *
/* word indices of positions up to next state */
/* word indices of positions up to next state */
XTensor
&
inputDec
=
*
NewTensor
();
XTensor
&
inputDec
=
*
NewTensor
();
/*
a dummy word that used to as a placeholder when we process the next work
*/
/*
the first token
*/
XTensor
dummy
;
XTensor
first
;
for
(
int
i
=
0
;
i
<
inputEnc
->
order
-
1
;
i
++
)
for
(
int
i
=
0
;
i
<
inputEnc
->
order
-
1
;
i
++
)
dims
[
i
]
=
inputEnc
->
GetDim
(
i
);
dims
[
i
]
=
inputEnc
->
GetDim
(
i
);
dims
[
inputEnc
->
order
-
1
]
=
1
;
dims
[
inputEnc
->
order
-
1
]
=
1
;
InitTensor
(
&
dummy
,
inputEnc
->
order
,
dims
,
X_INT
,
1.0
F
,
inputEnc
->
devID
,
inputEnc
->
mem
);
InitTensor
(
&
first
,
inputEnc
->
order
,
dims
,
X_INT
,
1.0
F
,
inputEnc
->
devID
,
inputEnc
->
mem
);
dummy
.
SetZeroAll
(
);
_SetDataFixedInt
(
&
first
,
startSymbol
);
/* add a new word into the input sequence of the decoder side */
/* add a new word into the input sequence of the decoder side */
if
(
inputLast
==
NULL
)
if
(
inputLast
==
NULL
){
inputDec
=
Identity
(
dummy
);
inputDec
=
Identity
(
first
);
}
else
{
else
{
inputDec
=
GeneratePaths
(
s
);
inputDec
=
GeneratePaths
(
s
);
for
(
int
i
=
0
;
i
<
inputEnc
->
order
-
1
;
i
++
)
dims
[
i
]
=
inputEnc
->
GetDim
(
i
);
dims
[
inputEnc
->
order
-
1
]
=
inputDec
.
GetDim
(
-
1
);
inputDec
.
Resize
(
inputEnc
->
order
,
dims
,
X_INT
);
inputDec
.
SetDevice
(
inputEnc
->
devID
,
inputEnc
->
mem
);
inputDec
.
SetDevice
(
inputEnc
->
devID
,
inputEnc
->
mem
);
inputDec
=
Concatenate
(
inputDec
,
first
,
inputDec
.
order
-
1
);
inputDec
=
Concatenate
(
inputDec
,
dummy
,
inputDec
.
order
-
1
);
}
}
/* prediction probabilities */
/* prediction probabilities */
...
@@ -193,10 +199,11 @@ void T2TPredictor::Predict(T2TStateBundle * next, XTensor * encoding, XTensor *
...
@@ -193,10 +199,11 @@ void T2TPredictor::Predict(T2TStateBundle * next, XTensor * encoding, XTensor *
/* decoder mask */
/* decoder mask */
m
->
MakeMTMaskDec
(
*
inputEnc
,
inputDec
,
*
paddingEnc
,
paddingDec
,
maskDec
,
maskEncDec
);
m
->
MakeMTMaskDec
(
*
inputEnc
,
inputDec
,
*
paddingEnc
,
paddingDec
,
maskDec
,
maskEncDec
);
//inputEnc->Dump(stderr, "inputenc:");
//paddingEnc->Dump(stderr, "paddingenc:");
inputDec
.
Dump
(
stderr
,
"inputdec: "
);
inputDec
.
Dump
(
stderr
,
"inputdec: "
);
//encoding->Dump(stderr, "encoding: ");
//maskDec.Dump(stderr, "maskdec: ");
maskDec
.
Dump
(
stderr
,
"maskdec: "
);
//maskEncDec.Dump(stderr, "mask-enc-dec: ");
maskEncDec
.
Dump
(
stderr
,
"mask-enc-dec: "
);
/* make the decoding network */
/* make the decoding network */
decoding
=
decoder
.
Make
(
inputDec
,
*
encoding
,
maskDec
,
maskEncDec
,
false
);
decoding
=
decoder
.
Make
(
inputDec
,
*
encoding
,
maskDec
,
maskEncDec
,
false
);
...
...
source/sample/transformer/T2TPredictor.h
查看文件 @
7375289d
...
@@ -132,6 +132,9 @@ private:
...
@@ -132,6 +132,9 @@ private:
/* current state */
/* current state */
T2TStateBundle
*
s
;
T2TStateBundle
*
s
;
/* start symbol */
int
startSymbol
;
public
:
public
:
/* constructor */
/* constructor */
T2TPredictor
();
T2TPredictor
();
...
@@ -142,6 +145,9 @@ public:
...
@@ -142,6 +145,9 @@ public:
/* create an initial state */
/* create an initial state */
void
Create
(
T2TModel
*
model
,
XTensor
*
top
,
const
XTensor
*
input
,
int
beamSize
,
T2TStateBundle
*
state
);
void
Create
(
T2TModel
*
model
,
XTensor
*
top
,
const
XTensor
*
input
,
int
beamSize
,
T2TStateBundle
*
state
);
/* set the start symbol */
void
SetStartSymbol
(
int
symbol
);
/* read a state */
/* read a state */
void
Read
(
T2TModel
*
model
,
T2TStateBundle
*
state
);
void
Read
(
T2TModel
*
model
,
T2TStateBundle
*
state
);
...
...
source/sample/transformer/T2TSearch.cpp
查看文件 @
7375289d
...
@@ -38,6 +38,7 @@ T2TSearch::T2TSearch()
...
@@ -38,6 +38,7 @@ T2TSearch::T2TSearch()
endSymbolNum
=
0
;
endSymbolNum
=
0
;
fullHypos
=
NULL
;
fullHypos
=
NULL
;
endSymbols
=
new
int
[
32
];
endSymbols
=
new
int
[
32
];
startSymbol
=
-
1
;
}
}
/* de-constructor */
/* de-constructor */
...
@@ -60,6 +61,7 @@ void T2TSearch::Init(int argc, char ** argv)
...
@@ -60,6 +61,7 @@ void T2TSearch::Init(int argc, char ** argv)
LoadParamInt
(
argc
,
argv
,
"batchsize"
,
&
batchSize
,
1
);
LoadParamInt
(
argc
,
argv
,
"batchsize"
,
&
batchSize
,
1
);
LoadParamFloat
(
argc
,
argv
,
"lenalpha"
,
&
alpha
,
0.2
F
);
LoadParamFloat
(
argc
,
argv
,
"lenalpha"
,
&
alpha
,
0.2
F
);
LoadParamInt
(
argc
,
argv
,
"endid"
,
endSymbols
,
-
1
);
LoadParamInt
(
argc
,
argv
,
"endid"
,
endSymbols
,
-
1
);
LoadParamInt
(
argc
,
argv
,
"startid"
,
&
startSymbol
,
-
1
);
if
(
endSymbols
[
0
]
>=
0
)
if
(
endSymbols
[
0
]
>=
0
)
endSymbolNum
=
1
;
endSymbolNum
=
1
;
...
@@ -79,12 +81,16 @@ void T2TSearch::Search(T2TModel * model, XTensor * input, XTensor * padding, XTe
...
@@ -79,12 +81,16 @@ void T2TSearch::Search(T2TModel * model, XTensor * input, XTensor * padding, XTe
T2TPredictor
predictor
;
T2TPredictor
predictor
;
CheckNTErrors
(
endSymbolNum
>
0
,
"The search class is not initialized!"
);
CheckNTErrors
(
endSymbolNum
>
0
,
"The search class is not initialized!"
);
CheckNTErrors
(
startSymbol
>=
0
,
"The search class is not initialized!"
);
Prepare
(
input
->
unitNum
/
input
->
GetDim
(
-
1
),
beamSize
);
Prepare
(
input
->
unitNum
/
input
->
GetDim
(
-
1
),
beamSize
);
/* encoder mask */
/* encoder mask */
model
->
MakeMTMaskEnc
(
*
input
,
*
padding
,
maskEnc
);
model
->
MakeMTMaskEnc
(
*
input
,
*
padding
,
maskEnc
);
//input->Dump(stderr, "input:");
//maskEnc.Dump(stderr, "maskenc:");
/* make the encoding network */
/* make the encoding network */
encoding
=
model
->
MakeEncoder
(
*
input
,
maskEnc
,
false
);
encoding
=
model
->
MakeEncoder
(
*
input
,
maskEnc
,
false
);
encoding
.
SetName
(
ENCODING_NAME
);
encoding
.
SetName
(
ENCODING_NAME
);
...
@@ -98,6 +104,7 @@ void T2TSearch::Search(T2TModel * model, XTensor * input, XTensor * padding, XTe
...
@@ -98,6 +104,7 @@ void T2TSearch::Search(T2TModel * model, XTensor * input, XTensor * padding, XTe
/* create the first state */
/* create the first state */
predictor
.
Create
(
model
,
&
encoding
,
input
,
beamSize
,
first
);
predictor
.
Create
(
model
,
&
encoding
,
input
,
beamSize
,
first
);
predictor
.
SetStartSymbol
(
startSymbol
);
first
->
isStart
=
true
;
first
->
isStart
=
true
;
...
@@ -161,6 +168,7 @@ void T2TSearch::Score(T2TStateBundle * prev, T2TStateBundle * beam)
...
@@ -161,6 +168,7 @@ void T2TSearch::Score(T2TStateBundle * prev, T2TStateBundle * beam)
{
{
XTensor
&
score
=
beam
->
modelScore
;
XTensor
&
score
=
beam
->
modelScore
;
XTensor
&
prob
=
beam
->
prob
;
XTensor
&
prob
=
beam
->
prob
;
XTensor
&
probPath
=
beam
->
probPath
;
XTensor
&
probPathPrev
=
prev
->
probPath
;
XTensor
&
probPathPrev
=
prev
->
probPath
;
XTensor
&
lenPrev
=
prev
->
nstep
;
XTensor
&
lenPrev
=
prev
->
nstep
;
XTensor
&
len
=
beam
->
nstep
;
XTensor
&
len
=
beam
->
nstep
;
...
@@ -174,13 +182,15 @@ void T2TSearch::Score(T2TStateBundle * prev, T2TStateBundle * beam)
...
@@ -174,13 +182,15 @@ void T2TSearch::Score(T2TStateBundle * prev, T2TStateBundle * beam)
dims
[
i
]
=
prob
.
GetDim
(
i
);
dims
[
i
]
=
prob
.
GetDim
(
i
);
InitTensor
(
&
score
,
&
prob
);
InitTensor
(
&
score
,
&
prob
);
InitTensor
(
&
probPath
,
&
prob
);
prob
.
Reshape
(
prob
.
unitNum
/
outputSize
,
outputSize
);
prob
.
Reshape
(
prob
.
unitNum
/
outputSize
,
outputSize
);
score
.
Reshape
(
score
.
unitNum
/
outputSize
,
outputSize
);
score
.
Reshape
(
score
.
unitNum
/
outputSize
,
outputSize
);
probPath
.
Reshape
(
score
.
unitNum
/
outputSize
,
outputSize
);
probPathPrev
.
Reshape
(
probPathPrev
.
unitNum
);
probPathPrev
.
Reshape
(
probPathPrev
.
unitNum
);
/* the log-scale probability of the entire sequence */
/* the log-scale probability of the entire sequence */
_SumDim
(
&
prob
,
&
probPathPrev
,
&
score
,
0
);
_SumDim
(
&
prob
,
&
probPathPrev
,
&
probPath
,
0
);
InitTensor
(
&
len
,
&
lenPrev
);
InitTensor
(
&
len
,
&
lenPrev
);
InitTensor
(
&
lp
,
&
lenPrev
);
InitTensor
(
&
lp
,
&
lenPrev
);
...
@@ -192,8 +202,10 @@ void T2TSearch::Score(T2TStateBundle * prev, T2TStateBundle * beam)
...
@@ -192,8 +202,10 @@ void T2TSearch::Score(T2TStateBundle * prev, T2TStateBundle * beam)
lp
.
Reshape
(
lp
.
unitNum
);
lp
.
Reshape
(
lp
.
unitNum
);
lp
.
Dump
(
stderr
,
"lp:"
);
/* score = log-prob/lp */
/* score = log-prob/lp */
_DivDim
(
&
score
,
&
lp
,
&
score
,
0
);
_DivDim
(
&
probPath
,
&
lp
,
&
score
,
0
);
InitTensor
(
&
mask
,
InitTensor
(
&
mask
,
prev
->
endMark
.
order
,
prev
->
endMark
.
dimSize
,
X_FLOAT
,
1.0
F
,
prev
->
endMark
.
order
,
prev
->
endMark
.
dimSize
,
X_FLOAT
,
1.0
F
,
...
@@ -208,6 +220,7 @@ void T2TSearch::Score(T2TStateBundle * prev, T2TStateBundle * beam)
...
@@ -208,6 +220,7 @@ void T2TSearch::Score(T2TStateBundle * prev, T2TStateBundle * beam)
prob
.
Reshape
(
order
,
dims
);
prob
.
Reshape
(
order
,
dims
);
score
.
Reshape
(
order
,
dims
);
score
.
Reshape
(
order
,
dims
);
probPath
.
Reshape
(
order
,
dims
);
probPathPrev
.
Reshape
(
order
-
1
,
dims
);
probPathPrev
.
Reshape
(
order
-
1
,
dims
);
lp
.
Reshape
(
order
-
1
,
dims
);
lp
.
Reshape
(
order
-
1
,
dims
);
mask
.
Reshape
(
order
-
1
,
dims
);
mask
.
Reshape
(
order
-
1
,
dims
);
...
@@ -263,6 +276,7 @@ void T2TSearch::Generate(T2TStateBundle * beam)
...
@@ -263,6 +276,7 @@ void T2TSearch::Generate(T2TStateBundle * beam)
CopyValues
(
index
,
preID
);
CopyValues
(
index
,
preID
);
int
sizeVocab
=
score
.
GetDim
(
-
1
);
int
sizeVocab
=
score
.
GetDim
(
-
1
);
int
stride
=
score
.
GetDim
(
-
1
);
/* "preID" represents the id (or the offset) of previous state used to make the current
/* "preID" represents the id (or the offset) of previous state used to make the current
hypothesis. Note that we reshape the "score" tensor into a matrix where each
hypothesis. Note that we reshape the "score" tensor into a matrix where each
...
@@ -287,9 +301,32 @@ void T2TSearch::Generate(T2TStateBundle * beam)
...
@@ -287,9 +301,32 @@ void T2TSearch::Generate(T2TStateBundle * beam)
InitTensor
(
&
indexCPU
,
index
.
order
,
index
.
dimSize
,
index
.
dataType
,
index
.
denseRatio
,
-
1
);
InitTensor
(
&
indexCPU
,
index
.
order
,
index
.
dimSize
,
index
.
dataType
,
index
.
denseRatio
,
-
1
);
CopyValues
(
index
,
indexCPU
);
CopyValues
(
index
,
indexCPU
);
for
(
int
i
=
0
;
i
<
indexCPU
.
unitNum
;
i
++
)
indexCPU
.
SetInt
(
i
*
stride
+
indexCPU
.
GetInt
(
i
),
i
);
/* sequence probability of top-k candidates */
/* sequence probability of top-k candidates */
InitTensor
(
&
probPath
,
&
scoreTopK
);
XTensor
probPathTopK
;
_Gather
(
&
beam
->
prob
,
&
probPath
,
probPath
.
order
-
1
,
(
int
*
)
indexCPU
.
data
,
indexCPU
.
unitNum
);
InitTensor
(
&
probPathTopK
,
&
scoreTopK
);
for
(
int
i
=
0
;
i
<
probPath
.
order
;
i
++
){
dims
[
i
]
=
probPath
.
GetDim
(
i
);
dimsTopK
[
i
]
=
probPathTopK
.
GetDim
(
i
);
}
order
=
probPath
.
order
;
probPath
.
Reshape
(
1
,
probPath
.
unitNum
);
probPathTopK
.
Reshape
(
1
,
probPathTopK
.
unitNum
);
_Gather
(
&
probPath
,
&
probPathTopK
,
probPathTopK
.
order
-
1
,
(
int
*
)
indexCPU
.
data
,
indexCPU
.
unitNum
);
probPath
.
Reshape
(
order
,
dims
);
probPathTopK
.
Reshape
(
order
,
dimsTopK
);
indexCPU
.
Dump
(
stderr
,
"indexcpu:"
);
scoreTopK
.
Dump
(
stderr
,
"scoretopk:"
);
probPathTopK
.
Dump
(
stderr
,
"probpathtopk:"
);
probPath
=
probPathTopK
;
}
}
/*
/*
...
@@ -350,10 +387,12 @@ void T2TSearch::Expand(T2TStateBundle * prev, T2TStateBundle * beam)
...
@@ -350,10 +387,12 @@ void T2TSearch::Expand(T2TStateBundle * prev, T2TStateBundle * beam)
if
(
prev
->
isStart
)
{
if
(
prev
->
isStart
)
{
state
.
last
=
NULL
;
state
.
last
=
NULL
;
state
.
pid
=
i
;
state
.
pid
=
i
;
state
.
nstep
=
0
;
}
}
else
{
else
{
state
.
last
=
last
;
state
.
last
=
last
;
state
.
pid
=
state
.
last
->
pid
;
state
.
pid
=
state
.
last
->
pid
;
state
.
nstep
=
last
->
nstep
+
1
;
CheckNTErrors
(
offset
<
prev
->
stateNum
,
"Wrong state index!"
);
CheckNTErrors
(
offset
<
prev
->
stateNum
,
"Wrong state index!"
);
}
}
...
...
source/sample/transformer/T2TSearch.h
查看文件 @
7375289d
...
@@ -59,6 +59,9 @@ private:
...
@@ -59,6 +59,9 @@ private:
/* number of the end symbols */
/* number of the end symbols */
int
endSymbolNum
;
int
endSymbolNum
;
/* start symbol */
int
startSymbol
;
public
:
public
:
/* constructor */
/* constructor */
T2TSearch
();
T2TSearch
();
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论