Commit 74baf792 by xiaotong

rewrite the code of update and broadcast workers

parent 08bd5aec
......@@ -267,6 +267,11 @@ run the model (for one time). Basically this is a map-reduce process.
bool XLeader::Run(XConfig * config, DataDistributeBase * dataDistributor,
XModel * model, XOptimizer * optimizer)
{
CheckNTErrors(jworkers.count > 0, "No jworkers!");
CheckNTErrors(cworkers.count > 0, "No cworkers!");
CheckNTErrors(uworkers.count > 0, "No uworkers!");
CheckNTErrors(bworkers.count > 0, "No bworkers!");
bool isDataOK = true;
int activeJobCount = 0;
int* active = new int[jworkers.count];
......@@ -306,7 +311,12 @@ bool XLeader::Run(XConfig * config, DataDistributeBase * dataDistributor,
}
}
if (activeJobCount >= 0) {
if (activeJobCount > 0) {
/* workers */
XWorkerCollect * collecter = (XWorkerCollect*)cworkers.GetItem(0);
XWorkerUpdate * updater = (XWorkerUpdate*)uworkers.GetItem(0);
XWorkerBroadcast * broadcaster = (XWorkerBroadcast*)bworkers.GetItem(0);
/* member models that are active in this run */
XList members(jworkers.count);
......@@ -325,36 +335,22 @@ bool XLeader::Run(XConfig * config, DataDistributeBase * dataDistributor,
}
}
collecter->AddJobUpdateAll(&members, &membersAll, &serverModel,
optimizer, updater, broadcaster);
collecter->AddJobCollectOther(&memberRecords, &serverRecord);
/* jobs in queue 2: collect the (gradient) data and other stuff. This
is a reduce process. */
if (cworkers.count > 0) {
XWorkerCollect* collecter = (XWorkerCollect*)cworkers.GetItem(0);
collecter->AddJobCollect(&members, &serverModel);
collecter->AddJobCollectOther(&memberRecords, &serverRecord);
}
else {
ShowNTErrors("No data-collecting workers!");
}
//collecter->AddJobCollect(&members, &serverModel);
//collecter->AddJobCollectOther(&memberRecords, &serverRecord);
/* job in queue 3: update the model */
if (uworkers.count > 0) {
XWorkerUpdate* updater = (XWorkerUpdate*)uworkers.GetItem(0);
updater->AddJobUpdate(&serverModel, optimizer);
}
else {
ShowNTErrors("No model-update workers!");
}
//updater->AddJobUpdate(&serverModel, optimizer);
/* job in queue 4: broadcast the lastest parameters to workers. NOTE that
we would update a worker to the laster model parameters, even if it is
not involved in this run. */
if (bworkers.count > 0) {
XWorkerBroadcast* broadcaster = (XWorkerBroadcast*)bworkers.GetItem(0);
broadcaster->AddJobBroadcast(&serverModel, &membersAll);
}
else {
ShowNTErrors("No data-broadcasting workers!");
}
//broadcaster->AddJobBroadcast(&serverModel, &membersAll);
WaitForFinishing();
}
......
......@@ -50,7 +50,32 @@ void XWorkerBroadcast::SetBroadcastMode(DATA_BROADCAST_TYPE myMode)
}
/*
broadcast data
broadcast data for a parameter
>> source - the data (as a model) that we want to broadcast
>> targetList - the target places that we recieve the data
>> pid - the parameter index
*/
void XWorkerBroadcast::BroadcastDataSingle(XModel * source, XList * targetList, int pid)
{
CheckNTErrors(source->flags[pid] == PARAM_STATE_UPDATED,
"The parameter is not ready for broadcasting");
TensorList & sp = source->params;
for (int i = 0; i < targetList->count; i++) {
XModel * target = (XModel*)targetList->GetItem(i);
TensorList & tp = target->params;
/* data transmit */
BroadcastP2P(sp.GetItem(pid), tp.GetItem(pid));
/* update the flag */
target->flags[pid] = PARAM_STATE_UPDATED;
}
}
/*
broadcast data for a model
>> source - the data that we want to broadcast
>> targetList - the target places that we recieve the data
>> sleepTime - the waiting time in broadcasting
......@@ -72,17 +97,12 @@ void XWorkerBroadcast::BroadcastData(XModel * source, XList * targetList, long s
while (1) {
for (int i = 0; i < sp.count; i++) {
if (source->flags[i] == PARAM_STATE_UPDATED && finishedFlag[i] == 0) {
for (int j = 0; j < targetList->count; j++) {
XModel * target = (XModel*)targetList->GetItem(j);
TensorList & tp = target->params;
/* data transmit */
BroadcastP2P(sp.GetItem(i), tp.GetItem(i));
/* broadcasting */
BroadcastDataSingle(source, targetList, i);
/* update the flag */
target->flags[i] = PARAM_STATE_UPDATED;
finished++;
}
/* counting */
finished += targetList->count;
finishedFlag[i] = 1;
}
}
......@@ -97,6 +117,29 @@ void XWorkerBroadcast::BroadcastData(XModel * source, XList * targetList, long s
}
/*
wrapper of BroadcastDataSingle
>> args - the list of arguments
*/
void XWorkerBroadcast::BroadcastSingle(XList * args)
{
XWorkerBroadcast * broadcaster = (XWorkerBroadcast*)args->GetItem(0);
XModel * source = (XModel*)args->GetItem(1);
/* target models */
int targetNum = args->GetItemInt(2);
XList target;
for (int i = 0; i < targetNum; i++) {
XModel * model = (XModel*)args->GetItem(3 + i);
target.Add(model);
}
/* parameter index */
int p = args->GetInt(3 + targetNum);
broadcaster->BroadcastDataSingle(source, &target, p);
}
/*
wrapper of BroadcastData
>> args - the list of arguments
*/
......@@ -129,11 +172,39 @@ void XWorkerBroadcast::BroadcastP2P(XTensor * source, XTensor * target)
CheckNTErrors(target != NULL, "The target tensor should not be NULL!");
CheckNTErrors(IsSameShaped(*source, *target), "The two tensors should be of the same shape!");
CopyValues(*source, *target);
if(source != target)
CopyValues(*source, *target);
}
/*
add a new job of broadcasting data (for a parameter)
>> source - the data that we want to broadcast
>> targetList - the target places that we recieve the data
>> pid - the parameter index
*/
bool XWorkerBroadcast::AddJobBroadcastSingle(XModel * source, XList * targetList, int pid)
{
CheckNTErrors(source != NULL, "no input source tensor!");
CheckNTErrors(targetList != NULL, "no input target tensor list!");
CheckNTErrors(pid >= 0 && pid < source->params.count, "illegal parameter index!");
XList args;
args.Add(this);
args.Add(source);
args.AddInt(targetList->count);
args.AddList(targetList);
args.AddInt(pid);
if (isInstantRun)
XWorkerBroadcast::BroadcastSingle(&args);
else
queue.EnqueueJob((void*)(char*)XWorkerBroadcast::BroadcastSingle, &args);
return true;
}
/*
add a new job of broadcasting data
add a new job of broadcasting data (for a model)
>> source - the data that we want to broadcast
>> targetList - the target places that we recieve the data
*/
......
......@@ -60,9 +60,16 @@ public:
/* set the broadcasting type */
void SetBroadcastMode(DATA_BROADCAST_TYPE myMode);
/* broadcast data */
/* broadcast data for a parameter */
void BroadcastDataSingle(XModel * source, XList * targetList, int pid);
/* broadcast data for a model */
void BroadcastData(XModel * source, XList * targetList, long sleepTime);
/* wrapper of BroadcastDataSingle */
static
void BroadcastSingle(XList * args);
/* wrapper of BroadcastData */
static
void Broadcast(XList * args);
......@@ -70,7 +77,10 @@ public:
/* P2P data broadcasting */
void BroadcastP2P(XTensor * source, XTensor * target);
/* add a new job of broadcasting data */
/* add a new job of broadcasting data (for a parameter) */
bool AddJobBroadcastSingle(XModel * source, XList * targetList, int pid);
/* add a new job of broadcasting data (for a model) */
bool AddJobBroadcast(XModel * source, XList * targetList);
};
......
......@@ -49,6 +49,165 @@ void XWorkerCollect::SetCollectMode(DATA_COLLECT_TYPE myMode)
}
/*
collect the gradient data, update the parameters, and broadcast the
new parameters to all models. NOTE that this method just collect graident
from member models. Then it calls an XWorkerUpdate to update the parameters.
The XWorkerUpdate also calls an XWorkerBroadcast to broadcast the new parameter
to member models back.
>> memberActive - member models that are active, i.e., have generated gradients
>> memberAll - all member models
>> server - the server model
>> optimizer - the optimizer
>> updater - the worker that updates the parameters
>> broadcaster - the worker that broadcasts the new parameters to all member
models
>> sleepTime - waiting time in collecting
*/
void XWorkerCollect::UpdateDataAll(XList * memberActive, XList * memberAll, XModel * server,
XOptimizer * optimizer, XWorkerUpdate * updater,
XWorkerBroadcast * broadcaster, long sleepTime)
{
TensorList & tp = server->params;
int finished = 0;
for (int j = 0; j < tp.count; j++)
server->flags[j] = PARAM_STATE_NOT_READY;
/* check */
for (int i = 0; i < memberAll->count; i++) {
TensorList & sp = ((XModel*)memberAll->GetItem(i))->params;
CheckNTErrors(sp.count == tp.count, "Incompatiable models!");
}
for (int i = 0; i < memberActive->count; i++) {
TensorList & sp = ((XModel*)memberActive->GetItem(i))->params;
CheckNTErrors(sp.count == tp.count, "Incompatiable models!");
}
/* counts how many member models are collect for each parameters */
int * finishedCount = new int[tp.count];
memset(finishedCount, 0, sizeof(int) * tp.count);
/* This is a simple implementation of the wait-and-collect process. But
there is a risk that some models are not available, that is, the
loop would never stop. A solution might be that we force the loop
to break after waiting for a short time. */
while (1) {
if (collectMode == DATA_COLLECT_P2P) {
for (int j = 0; j < tp.count; j++) {
/* tp[j]->isGradFinished is true only if the model finishes the computation
(in another process) */
if (server->flags[j] != PARAM_STATE_NOT_READY || !tp[j]->isGradFinished)
continue;
/* check if all the models (or part of them) are ready */
for (int i = 0; i < memberActive->count; i++) {
XModel * source = (XModel*)memberActive->GetItem(i);
TensorList & sp = source->params;
/* sp[j]->isGradFinished is true only if the model finishes the computation
(in another process) */
if (source->flags[j] == PARAM_STATE_NOT_READY && sp[j]->isGradFinished) {
/* data transmit */
CollectP2P(sp[j]->grad, tp[j]->grad);
/* reset the flag */
source->flags[j] = PARAM_STATE_COLLECTED;
finished++;
finishedCount[j]++;
/* we call model update (in another thread) and then
broadcast the new parameters to member models
(in another thread) */
if (finishedCount[j] == memberActive->count) {
server->flags[j] = PARAM_STATE_COLLECTED;
if(updater != NULL)
updater->AddJobUpdateSingle(server, memberAll, j, optimizer, broadcaster);
}
else if (finishedCount[j] > memberActive->count) {
ShowNTErrors("Something is wrong with finishedCount!");
}
}
}
}
}
else if (collectMode == DATA_COLLECT_REDUCESUM) {
for (int j = 0; j < tp.count; j++) {
bool ready = true;
/* tp[j]->isGradFinished is true only if the model finishes the computation
(in another process) */
if (server->flags[j] != PARAM_STATE_NOT_READY || !tp[j]->isGradFinished)
continue;
/* check if all the models (or part of them) are ready */
for (int i = 0; i < memberActive->count; i++) {
XModel * source = (XModel*)memberActive->GetItem(i);
TensorList & sp = source->params;
/* sp[j]->isGradFinished is true only if the model finishes the computation
(in another process) */
if (source->flags[j] == PARAM_STATE_COLLECTED ||
source->flags[j] == PARAM_STATE_UPDATED ||
!sp[j]->isGradFinished)
{
ready = false;
break;
}
else if (source->flags[j] == PARAM_STATE_NOT_READY) {
source->flags[j] = PARAM_STATE_READY;
}
}
if (ready) {
XList tensorList(memberActive->count);
for (int i = 0; i < memberActive->count; i++) {
XModel * source = (XModel*)memberActive->GetItem(i);
TensorList & sp = source->params;
tensorList.Add(sp.GetItem(j)->grad);
}
/* data transmit */
CollectReduceSum(&tensorList, tp.GetItem(j)->grad);
/* reset the flags */
for (int i = 0; i < memberActive->count; i++) {
XModel * source = (XModel*)memberActive->GetItem(i);
source->flags[j] = PARAM_STATE_COLLECTED;
}
server->flags[j] = PARAM_STATE_COLLECTED;
finished += memberActive->count;
/* we call model update (in another thread) and then
broadcast the new parameters to member models
(in another thread) */
updater->AddJobUpdateSingle(server, memberAll, j, optimizer, broadcaster);
}
}
}
else {
ShowNTErrors("Unsupported data collection mode!");
}
/* the collection finishes if all data tensors are processed */
if (finished == tp.count * memberActive->count)
break;
XSleep(sleepTime);
}
/* reset the flags */
//for (int j = 0; j < tp.count; j++)
// server->flags[j] = PARAM_STATE_COLLECTED;
delete[] finishedCount;
}
/*
collect data
>> sourceList - the list of data tensors we collect data from
>> target - the target tensor we place the result, that is
......@@ -68,6 +227,10 @@ void XWorkerCollect::CollectData(XList * sourceList, XModel * target, long sleep
CheckNTErrors(sp.count == tp.count, "Incompatiable models!");
}
/* counts how many member models are collect for each parameters */
int * finishedCount = new int[tp.count];
memset(finishedCount, 0, sizeof(int) * tp.count);
//fprintf(stderr, "collect data in 0\n");
/* This is a simple implementation of the wait-and-collect process. But
......@@ -80,7 +243,7 @@ void XWorkerCollect::CollectData(XList * sourceList, XModel * target, long sleep
for (int j = 0; j < tp.count; j++) {
/* tp[j]->isGradFinished is true only if the model finishes theA computation
(in another process) */
if (target->flags[j] == PARAM_STATE_COLLECTED || !tp[j]->isGradFinished)
if (target->flags[j] != PARAM_STATE_NOT_READY || !tp[j]->isGradFinished)
continue;
/* check if all the models (or part of them) are ready */
......@@ -90,7 +253,7 @@ void XWorkerCollect::CollectData(XList * sourceList, XModel * target, long sleep
/* sp[j]->isGradFinished is true only if the model finishes the computation
(in another process) */
if (source->flags[j] != PARAM_STATE_COLLECTED && sp[j]->isGradFinished) {
if (source->flags[j] == PARAM_STATE_NOT_READY && sp[j]->isGradFinished) {
/* data transmit */
CollectP2P(sp[j]->grad, tp[j]->grad);
......@@ -98,6 +261,11 @@ void XWorkerCollect::CollectData(XList * sourceList, XModel * target, long sleep
/* reset the flag */
source->flags[j] = PARAM_STATE_COLLECTED;
finished++;
finishedCount[j]++;
if (finishedCount[j] == sourceList->count) {
target->flags[j] = PARAM_STATE_COLLECTED;
}
}
}
}
......@@ -109,7 +277,7 @@ void XWorkerCollect::CollectData(XList * sourceList, XModel * target, long sleep
/* tp[j]->isGradFinished is true only if the model finishes the computation
(in another process) */
if (target->flags[j] == PARAM_STATE_COLLECTED || !tp[j]->isGradFinished)
if (target->flags[j] != PARAM_STATE_NOT_READY || !tp[j]->isGradFinished)
continue;
/* check if all the models (or part of them) are ready */
......@@ -119,7 +287,10 @@ void XWorkerCollect::CollectData(XList * sourceList, XModel * target, long sleep
/* sp[j]->isGradFinished is true only if the model finishes the computation
(in another process) */
if (source->flags[j] == PARAM_STATE_COLLECTED || !sp[j]->isGradFinished) {
if (source->flags[j] == PARAM_STATE_COLLECTED ||
source->flags[j] == PARAM_STATE_UPDATED ||
!sp[j]->isGradFinished)
{
ready = false;
break;
}
......@@ -163,9 +334,43 @@ void XWorkerCollect::CollectData(XList * sourceList, XModel * target, long sleep
XSleep(sleepTime);
}
//fprintf(stderr, "collect data in 1\n");
/* reset the flags */
for (int j = 0; j < tp.count; j++)
target->flags[j] = PARAM_STATE_COLLECTED;
//for (int j = 0; j < tp.count; j++)
// target->flags[j] = PARAM_STATE_COLLECTED;
delete[] finishedCount;
}
/* wrapper of UpdateDataAll */
void XWorkerCollect::UpdateAll(XList * args)
{
XWorkerCollect * collecter = (XWorkerCollect*)args->GetItem(0);
int activeNum = args->GetInt(1);
XList memberActive;
for (int i = 0; i < activeNum; i++) {
XModel * member = (XModel*)args->GetItem(2 + i);
memberActive.Add(member);
}
int allNum = args->GetInt(2 + activeNum);
XList memberAll;
for (int i = 0; i < allNum; i++) {
XModel * member = (XModel*)args->GetItem(2 + activeNum + 1 + i);
memberAll.Add(member);
}
XModel * server = (XModel*)args->GetItem(2 + activeNum + 1 + allNum);
XOptimizer * optimizer = (XOptimizer*)args->GetItem(2 + activeNum + 1 + allNum + 1);
XWorkerUpdate * updater = (XWorkerUpdate*)args->GetItem(2 + activeNum + 1 + allNum + 2);
XWorkerBroadcast * broadcaster = (XWorkerBroadcast*)args->GetItem(2 + activeNum + 1 + allNum + 3);
collecter->UpdateDataAll(&memberActive, &memberAll, server,
optimizer, updater, broadcaster,
SLEEP_TIME_IN_COLLECTING);
}
/* wrapper of CollectData */
......@@ -240,16 +445,58 @@ void XWorkerCollect::CollectAllReduce(XList * all)
}
/*
add a new job of collecting data, update the parameter and
broadcast the new parameter
>> memberActive - member models that are active, i.e., have generated gradients
>> memberAll - all member models
>> server - the server model
>> optimizer - the optimizer
>> updater - the worker that updates the parameters
>> broadcaster - the worker that broadcasts the new parameters to all member
models
<< return - successful or not
*/
bool XWorkerCollect::AddJobUpdateAll(XList * memberActive, XList * memberAll, XModel * server,
XOptimizer * optimizer, XWorkerUpdate * updater, XWorkerBroadcast * broadcaster)
{
CheckNTErrors(memberActive != NULL, "No input (active) member list!");
CheckNTErrors(memberAll != NULL, "No input (all) member list!");
CheckNTErrors(server != NULL, "No input server model!");
CheckNTErrors(optimizer != NULL, "No input optimizer!");
CheckNTErrors(updater != NULL, "No input updater!");
CheckNTErrors(broadcaster != NULL, "No input broadcaster!");
XList args;
args.Add(this);
args.AddInt(memberActive->count);
args.AddList(memberActive);
args.AddInt(memberAll->count);
args.AddList(memberAll);
args.Add(server);
args.Add(optimizer);
args.Add(updater);
args.Add(broadcaster);
if (isInstantRun)
XWorkerCollect::UpdateAll(&args);
else
queue.EnqueueJob((void*)(char*)XWorkerCollect::UpdateAll, &args);
return true;
}
/*
add a new job of collecting data
>> sourceList - the list of models that we want collect data from
>> target - the destination of the collection
<< return - successful or not
*/
bool XWorkerCollect::AddJobCollect(XList * sourceList, XModel * target)
{
CheckNTErrors(sourceList != NULL, "no input source model list!");
CheckNTErrors(target != NULL, "no input target model!");
XList args;
/*XList args;
args.Add(this);
args.AddInt(sourceList->count);
args.AddList(sourceList);
......@@ -258,7 +505,22 @@ bool XWorkerCollect::AddJobCollect(XList * sourceList, XModel * target)
if (isInstantRun)
XWorkerCollect::Collect(&args);
else
queue.EnqueueJob((void*)(char*)XWorkerCollect::Collect, &args);
queue.EnqueueJob((void*)(char*)XWorkerCollect::Collect, &args);*/
XList args;
args.Add(this);
args.AddInt(sourceList->count);
args.AddList(sourceList);
args.AddInt(0);
args.Add(target);
args.Add(NULL);
args.Add(NULL);
args.Add(NULL);
if (isInstantRun)
XWorkerCollect::UpdateAll(&args);
else
queue.EnqueueJob((void*)(char*)XWorkerCollect::UpdateAll, &args);
return true;
}
......
......@@ -32,6 +32,8 @@
#include "XWorker.h"
#include "XModel.h"
#include "XWorkerJob.h"
#include "XWorkerUpdate.h"
#include "XWorkerBroadcast.h"
namespace nts { // namespace nts(NiuTrans.Tensor)
......@@ -63,9 +65,22 @@ public:
/* set the collection type */
void SetCollectMode(DATA_COLLECT_TYPE myMode);
/* collect the gradient data, update the parameters, and broadcast the
new parameters to all models. NOTE that this method just collect graident
from member models. Then it calls an XWorkerUpdate to update the parameters.
The XWorkerUpdate also calls an XWorkerBroadcast to broadcast the new parameter
to member models back. */
void UpdateDataAll(XList * memberActive, XList * memberAll, XModel * server,
XOptimizer * optimizer, XWorkerUpdate * updater, XWorkerBroadcast * broadcaster,
long sleepTime);
/* collect the gradient data (i.e., a reducer) */
void CollectData(XList * sourceList, XModel * target, long sleepTime);
/* wrapper of UpdateDataAll */
static
void UpdateAll(XList * args);
/* wrapper of CollectData */
static
void Collect(XList * args);
......@@ -79,6 +94,10 @@ public:
/* all-reduce */
void CollectAllReduce(XList * all);
/* add a new job of collecting data, update the parameter and broadcast the new parameter */
bool AddJobUpdateAll(XList * memberActive, XList * memberAll, XModel * server,
XOptimizer * optimizer, XWorkerUpdate * updater, XWorkerBroadcast * broadcaster);
/* add a new job of collecting data */
bool AddJobCollect(XList * sourceList, XModel * target);
......
......@@ -53,6 +53,37 @@ XOptimizer * XWorkerUpdate::GetOptimizer()
}
/*
update a parameter of a model
>> model - the model that we want to update (on the server side)
>> members - models that would share the updated parameters
>> pid - the parameter index
>> optimizer - the optimizer
>> broadcaster - the worker that would broadcast the new parameter to members
*/
void XWorkerUpdate::UpdateParameter(XModel * server, XList * members, int pid,
XOptimizer * optimizer, XWorkerBroadcast * broadcaster)
{
TensorList & params = server->params;
PARAM_STATE * flags = server->flags;
CheckNTErrors(flags[pid] == PARAM_STATE_COLLECTED, "The state of the parameter is wrong!");
XTensor * param = params.GetItem(pid);
XTensor * grad = param->grad;
CheckNTErrors(grad != NULL, "No gradient!");
/* update the parameter */
optimizer->UpdateParam(param, grad, pid);
/* set the flag */
flags[pid] = PARAM_STATE_UPDATED;
/* broadcast the new parameter to other models (in anotehr worker/thread) */
broadcaster->AddJobBroadcastSingle(server, members, pid);
}
/*
update the model
>> model - the model that we want to update
>> optimizer - the optimizer
......@@ -93,6 +124,31 @@ void XWorkerUpdate::UpdateModel(XModel * model, XOptimizer * optimizer, long sle
}
/*
wrapper of UpdateParameter
>> args - arguments of the update
*/
void XWorkerUpdate::UpdateSingle(XList * args)
{
CheckNTErrors(args != NULL && args->count >= 6, "Illegal argument list!");
XWorkerUpdate * updater = (XWorkerUpdate*)args->GetItem(0);
XModel * server = (XModel*)args->GetItem(1);
int memNum = args->GetInt(2);
XList members;
for (int i = 0; i < memNum; i++) {
XModel * member = (XModel*)args->GetItem(3 + i);
members.Add(member);
}
int pid = args->GetInt(3 + memNum);
XOptimizer * optimizer = (XOptimizer*)args->GetItem(3 + memNum + 1);
XWorkerBroadcast * broadcaster = (XWorkerBroadcast*)args->GetItem(3 + memNum + 2);
updater->UpdateParameter(server, &members, pid, optimizer, broadcaster);
}
/*
wrapper of UpdateModel
>> args - arguments of the update
*/
......@@ -112,6 +168,40 @@ void XWorkerUpdate::Update(XList * args)
}
/*
add a new job of model update (for a parameter)
>> model - the model that we want to update (on the server side)
>> members - models that would share the updated parameters
>> pid - the parameter index
>> optimizer - the optimizer
>> broadcaster - the worker that would broadcast the new parameter to members
*/
bool XWorkerUpdate::AddJobUpdateSingle(XModel * model, XList * members, int pid,
XOptimizer * optimizer, XWorkerBroadcast * broadcaster)
{
CheckNTErrors(model != NULL, "No input model!");
CheckNTErrors(members != NULL, "No member model list!");
CheckNTErrors(optimizer != NULL, "No optimizer!");
CheckNTErrors(broadcaster != NULL, "No broadcaster!");
CheckNTErrors(pid >= 0 && pid < model->params.count, "Illegal parameter index!");
XList args;
args.Add(this);
args.Add(model);
args.AddInt(members->count);
args.AddList(members);
args.AddInt(pid);
args.Add(optimizer);
args.Add(broadcaster);
if (isInstantRun)
XWorkerUpdate::UpdateSingle(&args);
else
queue.EnqueueJob((void*)(char*)XWorkerUpdate::UpdateSingle, &args);
return true;
}
/*
add a new job of model update
>> model - the model that we want to update
>> optimizer - the optimizer
......
......@@ -30,6 +30,7 @@
#include "XWorker.h"
#include "XOptimizer.h"
#include "XWorkerBroadcast.h"
namespace nts { // namespace nts(NiuTrans.Tensor)
......@@ -55,13 +56,25 @@ public:
/* get the optimizer */
XOptimizer * GetOptimizer();
/* update the parameter */
void UpdateParameter(XModel * server, XList * members, int pid,
XOptimizer * optimizer, XWorkerBroadcast * broadcaster);
/* update the model */
void UpdateModel(XModel * model, XOptimizer * optimizer, long sleepTime);
/* wrapper of UpdateParameter */
static
void UpdateSingle(XList * args);
/* wrapper of UpdateModel */
static
void Update(XList * args);
/* add a new job of model update (for a parameter) */
bool AddJobUpdateSingle(XModel * model, XList * members, int pid,
XOptimizer * optimizer, XWorkerBroadcast * broadcaster);
/* add a new job of model update */
bool AddJobUpdate(XModel * model, XOptimizer * optimizer);
};
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论