Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
81483f00
Commit
81483f00
authored
Mar 25, 2021
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
bug fixes
parent
149b3380
显示空白字符变更
内嵌
并排
正在显示
2 个修改的文件
包含
67 行增加
和
47 行删除
+67
-47
source/train/XLeader.cpp
+66
-47
source/train/XWorkerJob.cpp
+1
-0
没有找到文件。
source/train/XLeader.cpp
查看文件 @
81483f00
...
@@ -379,51 +379,13 @@ void XLeader::AddJobParamterWorker(int n)
...
@@ -379,51 +379,13 @@ void XLeader::AddJobParamterWorker(int n)
}
}
}
}
/*
run the model (for one time). Basically this is a map-reduce process.
>> config - the configuration
>> dataDistributor - data distributor
>> optimizer - the optimization method
<< return - if we can fetch the new data
*/
bool
XLeader
::
Run
(
XConfig
*
config
,
DataDistributeBase
*
dataDistributor
,
XOptimizer
*
optimizer
)
{
CheckNTErrors
(
jworkers
.
count
>
0
,
"No jworkers!"
);
CheckNTErrors
(
cworkers
.
count
>
0
,
"No cworkers!"
);
CheckNTErrors
(
uworkers
.
count
>
0
,
"No uworkers!"
);
CheckNTErrors
(
bworkers
.
count
>
0
,
"No bworkers!"
);
CheckNTErrors
(
pworkers
.
count
>
0
,
"No pworkers!"
);
bool
isToUpdate
=
(
optimizer
!=
NULL
);
int
activeJobCount
=
0
;
int
*
active
=
new
int
[
jworkers
.
count
];
InitForRun
();
/* run models on job workers */
activeJobCount
=
RunModel
(
config
,
dataDistributor
,
active
);
/* update the model on the server side */
if
(
activeJobCount
>
0
&&
isToUpdate
)
RunUpdate
(
config
,
optimizer
,
active
);
WaitForFinishing
(
active
,
isToUpdate
);
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
i
];
worker
->
Clear
();
}
delete
[]
active
;
return
activeJobCount
>
0
;
}
/* destroy the parameter map (and gradient map) */
/* destroy the parameter map (and gradient map) */
void
XLeader
::
DestroyParamMap
()
void
XLeader
::
DestroyParamMap
()
{
{
for
(
int
i
=
0
;
i
<
modelNum
;
i
++
){
for
(
int
i
=
0
;
i
<
serverModel
.
paramNum
;
i
++
){
if
(
paramMap
!=
NULL
)
delete
[]
paramMap
[
i
];
delete
[]
paramMap
[
i
];
if
(
gradMap
!=
NULL
)
delete
[]
gradMap
[
i
];
delete
[]
gradMap
[
i
];
}
}
delete
[]
paramMap
;
delete
[]
paramMap
;
...
@@ -434,13 +396,11 @@ void XLeader::DestroyParamMap()
...
@@ -434,13 +396,11 @@ void XLeader::DestroyParamMap()
/* generate the map of parameters */
/* generate the map of parameters */
void
XLeader
::
MakeParamMap
()
void
XLeader
::
MakeParamMap
()
{
{
DestroyParamMap
();
int
modelCount
=
0
;
modelNum
=
0
;
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
jworkers
[
i
];
XWorker
*
worker
=
(
XWorker
*
)
jworkers
[
i
];
if
(
worker
->
GetWorkerType
()
==
XWORKER_TYPE_JOB
)
{
if
(
worker
->
GetWorkerType
()
==
XWORKER_TYPE_JOB
)
{
model
Num
+=
worker
->
GetModelNum
();
model
Count
+=
worker
->
GetModelNum
();
CheckNTErrors
(
worker
->
GetModelNum
()
==
1
,
"Wrong model number!"
);
CheckNTErrors
(
worker
->
GetModelNum
()
==
1
,
"Wrong model number!"
);
}
}
else
{
else
{
...
@@ -448,19 +408,28 @@ void XLeader::MakeParamMap()
...
@@ -448,19 +408,28 @@ void XLeader::MakeParamMap()
}
}
}
}
if
(
modelCount
!=
modelNum
){
DestroyParamMap
();
paramMap
=
new
XTensorKeeper
*
[
serverModel
.
paramNum
];
paramMap
=
new
XTensorKeeper
*
[
serverModel
.
paramNum
];
gradMap
=
new
XTensorKeeper
*
[
serverModel
.
paramNum
];
gradMap
=
new
XTensorKeeper
*
[
serverModel
.
paramNum
];
}
for
(
int
i
=
0
;
i
<
serverModel
.
paramNum
;
i
++
){
for
(
int
i
=
0
;
i
<
serverModel
.
paramNum
;
i
++
){
paramMap
[
i
]
=
new
XTensorKeeper
[
modelNum
];
if
(
modelCount
!=
modelNum
){
gradMap
[
i
]
=
new
XTensorKeeper
[
modelNum
];
paramMap
[
i
]
=
new
XTensorKeeper
[
modelCount
];
gradMap
[
i
]
=
new
XTensorKeeper
[
modelCount
];
}
for
(
int
j
=
0
,
c
=
0
;
j
<
jworkers
.
count
;
j
++
)
{
for
(
int
j
=
0
,
c
=
0
;
j
<
jworkers
.
count
;
j
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
jworkers
[
i
];
XWorker
*
worker
=
(
XWorker
*
)
jworkers
[
i
];
if
(
worker
->
GetWorkerType
()
==
XWORKER_TYPE_JOB
)
{
if
(
worker
->
GetWorkerType
()
==
XWORKER_TYPE_JOB
)
{
XModel
*
model
=
((
XWorkerJob
*
)
jworkers
[
j
])
->
GetModel
();
XModel
*
model
=
((
XWorkerJob
*
)
jworkers
[
j
])
->
GetModel
();
paramMap
[
i
][
c
].
tensor
=
model
->
params
[
i
].
tensor
;
paramMap
[
i
][
c
].
tensor
=
model
->
params
[
i
].
tensor
;
paramMap
[
i
][
c
].
flag
=
PARAM_STATE_NOT_READY
;
paramMap
[
i
][
c
].
trainFlag
=
PARAM_STATE_NOT_READY
;
gradMap
[
i
][
c
].
tensor
=
model
->
params
[
i
].
tensor
->
grad
;
gradMap
[
i
][
c
].
tensor
=
model
->
params
[
i
].
tensor
->
grad
;
gradMap
[
i
][
c
].
flag
=
PARAM_STATE_NOT_READY
;
gradMap
[
i
][
c
].
trainFlag
=
PARAM_STATE_NOT_READY
;
c
++
;
c
++
;
}
}
else
{
else
{
...
@@ -468,6 +437,48 @@ void XLeader::MakeParamMap()
...
@@ -468,6 +437,48 @@ void XLeader::MakeParamMap()
}
}
}
}
}
}
modelNum
=
modelCount
;
}
/*
run the model (for one time). Basically this is a map-reduce process.
>> config - the configuration
>> dataDistributor - data distributor
>> optimizer - the optimization method
<< return - if we can fetch the new data
*/
bool
XLeader
::
Run
(
XConfig
*
config
,
DataDistributeBase
*
dataDistributor
,
XOptimizer
*
optimizer
)
{
CheckNTErrors
(
jworkers
.
count
>
0
,
"No jworkers!"
);
CheckNTErrors
(
cworkers
.
count
>
0
,
"No cworkers!"
);
CheckNTErrors
(
uworkers
.
count
>
0
,
"No uworkers!"
);
CheckNTErrors
(
bworkers
.
count
>
0
,
"No bworkers!"
);
CheckNTErrors
(
pworkers
.
count
>
0
,
"No pworkers!"
);
bool
isToUpdate
=
(
optimizer
!=
NULL
);
int
activeJobCount
=
0
;
int
*
active
=
new
int
[
jworkers
.
count
];
InitForRun
();
/* run models on job workers */
activeJobCount
=
RunModel
(
config
,
dataDistributor
,
active
);
/* update the model on the server side */
if
(
activeJobCount
>
0
&&
isToUpdate
)
RunUpdate
(
config
,
optimizer
,
active
);
WaitForFinishing
(
active
,
isToUpdate
);
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
i
];
worker
->
Clear
();
}
delete
[]
active
;
return
activeJobCount
>
0
;
}
}
/*
/*
...
@@ -531,6 +542,9 @@ void XLeader::RunUpdate(XConfig * config, XOptimizer * optimizer, const int * ac
...
@@ -531,6 +542,9 @@ void XLeader::RunUpdate(XConfig * config, XOptimizer * optimizer, const int * ac
XWorkerUpdate
*
updater
=
(
XWorkerUpdate
*
)
uworkers
.
GetItem
(
0
);
XWorkerUpdate
*
updater
=
(
XWorkerUpdate
*
)
uworkers
.
GetItem
(
0
);
XWorkerBroadcast
*
broadcaster
=
(
XWorkerBroadcast
*
)
bworkers
.
GetItem
(
0
);
XWorkerBroadcast
*
broadcaster
=
(
XWorkerBroadcast
*
)
bworkers
.
GetItem
(
0
);
/* parameter map */
MakeParamMap
();
/* all member models */
/* all member models */
XList
membersAll
(
jworkers
.
count
);
XList
membersAll
(
jworkers
.
count
);
...
@@ -600,6 +614,11 @@ void XLeader::RunUpdate(XConfig * config, XOptimizer * optimizer, const int * ac
...
@@ -600,6 +614,11 @@ void XLeader::RunUpdate(XConfig * config, XOptimizer * optimizer, const int * ac
/* isGradFinished is true only if the model finishes the computation
/* isGradFinished is true only if the model finishes the computation
(in another process) */
(in another process) */
if
(
paramSource
.
flag
==
PARAM_STATE_NOT_READY
&&
paramSource
.
tensor
->
isGradFinished
)
{
if
(
paramSource
.
flag
==
PARAM_STATE_NOT_READY
&&
paramSource
.
tensor
->
isGradFinished
)
{
/* get the gradient */
gradSource
.
tensor
=
paramSource
.
tensor
->
grad
;
/* the job queue of updating parameter j */
XQueue
*
jobQueue
=
(
XQueue
*
)
jobQueues
.
GetItem
(
j
);
XQueue
*
jobQueue
=
(
XQueue
*
)
jobQueues
.
GetItem
(
j
);
/* data transmit */
/* data transmit */
...
...
source/train/XWorkerJob.cpp
查看文件 @
81483f00
...
@@ -35,6 +35,7 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
...
@@ -35,6 +35,7 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
XWorkerJob
::
XWorkerJob
()
XWorkerJob
::
XWorkerJob
()
{
{
type
=
XWORKER_TYPE_JOB
;
type
=
XWORKER_TYPE_JOB
;
model
=
NULL
;
Clear
();
Clear
();
}
}
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论