Commit 93f51095 by liyinqiao

Bug fixed

1. Merge with Huchi branch (replace all requireLink with enableGrad that allows gradient computation for a tensor);
2. Update the global memory size (This may make the memory size a little bit larger than the old version).
parent 4040dde0
......@@ -68,6 +68,9 @@ void BackwardTest()
XTensor a;
XTensor b;
XTensor c;
a.enableGrad = true;
b.enableGrad = false;
c.enableGrad = false;
XTensor mean;
XTensor origin;
InitTensor2D(&a, 2, 3);
......@@ -85,14 +88,15 @@ void BackwardTest()
b.Set1D(2.0F, 0);
b.Set1D(1.0F, 1);
c = DivDim(a, b, 0);
DivDim(a, b, c, 0);
c.Dump(stderr, "c:");
auto loss = CrossEntropy(c, a);
//XLink::ShowNetwork(stderr, &c);
net.Backward(c);
net.Backward(loss);
net.Dump(stderr);
a.grad->Dump(stderr);
}
......
......@@ -297,12 +297,12 @@ void T2TSearch::Generate(T2TStateBundle * beam)
row means a previous state. The column number is size-of-beam \times vocab-size. We,
therefore, divide entries of the top-k index by vocab-size to compute the id of the
previous state for each hypothesis in the top-k list. */
_DescaleMe(preID, sizeVocab);
Descale(preID, sizeVocab);
/* Then, we do something similar to "preID". For the top-k predictions, we need
to know their indices in the vocabulary. We compute the offset of each prediction
in the vocabulary by dividing it with vocab-size and computing the remainder. */
_ModMe(index, sizeVocab);
ModMe(index, sizeVocab);
score.Reshape(order, dims);
......
......@@ -101,7 +101,6 @@ void TensorListBase<T>::Add(T&& item)
maxNum = maxNum * 2 + 1;
}
items[count++] = item;
}
/*
......
......@@ -1562,9 +1562,9 @@ void XMemManager::GetBufferSize(MTYPE freeMem, MTYPE * myBufSize)
if (freeMem >= MILLION * 512){
*myBufSize = MILLION * 128;
if (freeMem >= MILLION * 1024) {
*myBufSize = MILLION * 128;
*myBufSize = MILLION * 256;
if (freeMem >= MILLION * 2048)
*myBufSize = MILLION * 128;
*myBufSize = MILLION * 512;
}
}
}
......
......@@ -101,7 +101,7 @@ XTensor::XTensor(const XTensor * reference)
SetDataPointer();
id = MakeTensorID();
InitTensorV2(this, reference);
InitTensor(this, reference);
}
/*
......@@ -173,7 +173,7 @@ XTensor::XTensor(const XTensor &reference)
else{
devID = reference.devID;
mem = reference.mem;
InitTensorV2(this, &reference);
InitTensor(this, &reference);
_CopyValues(&reference, this);
}
......@@ -279,6 +279,7 @@ void XTensor::Init()
isTmp = false;
isGrad = false;
isVar = false;
enableGrad = false;
visitMark = 0;
grad = NULL;
}
......@@ -309,6 +310,7 @@ void XTensor::ShallowCopy(const XTensor &tensor)
{
strcpy(name, tensor.name);
order = tensor.order;
enableGrad = tensor.enableGrad;
memcpy(dimSize, tensor.dimSize, sizeof(int) * MAX_TENSOR_DIM_NUM);
memcpy(dimSizeRDI, tensor.dimSizeRDI, sizeof(int) * MAX_TENSOR_DIM_NUM);
dataType = tensor.dataType;
......@@ -2445,6 +2447,7 @@ void InitTensor(XTensor * tensor, const XTensor * reference)
if(reference->order < 0)
return;
tensor->enableGrad = reference->enableGrad;
InitTensor(tensor, reference->order, reference->dimSize,
reference->dataType, reference->denseRatio,
reference->devID, reference->mem);
......@@ -2460,6 +2463,7 @@ void InitTensorV2(XTensor * tensor, const XTensor * reference)
if(reference->order < 0)
return;
tensor->enableGrad = reference->enableGrad;
InitTensorV2(tensor, reference->order, reference->dimSize,
reference->dataType, reference->devID);
}
......@@ -2474,6 +2478,7 @@ void InitTensorOnCPU(XTensor * tensor, const XTensor * reference)
if(reference->order < 0)
return;
tensor->enableGrad = reference->enableGrad;
InitTensorV2(tensor, reference->order, reference->dimSize,
reference->dataType, -1);
}
......
......@@ -151,6 +151,9 @@ public:
/* indicates whether the tensor keeps the gradient when used as model parameters */
bool isGrad;
/* indicates whether the gradient of the tensor should be computed */
bool enableGrad;
/* indicates whether the tensor is used as paramters (or variables) */
bool isVar;
......
......@@ -143,6 +143,23 @@ void _DivMe(XTensor * a, const XTensor * b, DTYPE alpha, int leadingDim)
}
/*
element-wise division of two tensors (do it on site)
keep the result in the input tensor a and return nothing
a(i) = a(i)*b(i) + \alpha * a(i)
where i is the index of the item
>> a - tensor a (where keep the result)
>> b - tensor b
>> alpha - the coefficient
>> leadingDim - the dimension along which we perform broadcasting
*/
void DivMe(XTensor& a, const XTensor& b, DTYPE alpha, int leadingDim)
{
_Div(&a, &b, &a, alpha, leadingDim);
}
/*
return a dimension if the division is performed as DivDim (in more details in DivDim.h)
>> a - a tensor
>> b - another tensor for division
......@@ -229,9 +246,8 @@ where i is the index of the item
>> c - result tensor
>> alpha - the coefficient
>> leadingDim - the dimension along which we perform broadcasting
>> requireLink - if add operation to network
*/
void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadingDim, bool requireLink)
void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadingDim)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -245,7 +261,7 @@ void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadin
/* call _Div function */
_Div(&a, &b, &c, 0, leadingDim);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_DIV);
XLink::AddParamToHead(&c, alpha);
......@@ -256,7 +272,7 @@ void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadin
/* call _DivDim function */
_DivDim(&a, &b, &c, n, alpha);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_DIVDIM);
XLink::AddParamToHeadInt(&c, n);
......
......@@ -40,6 +40,7 @@ a(i) = a(i)/b(i) + \alpha * a(i)
where i is the index of the element
*/
void _DivMe(XTensor * a, const XTensor * b, DTYPE alpha = 0.0, int leadingDim = 0);
void DivMe(XTensor & a, const XTensor & b, DTYPE alpha = 0.0, int leadingDim = 0);
/*
element-wise division of two tensors (return an XTensor structure)
......@@ -54,7 +55,7 @@ element-wise division of two tensors:
c(i) = a(i)/b(i) + \alpha * c(i)
where i is the index of the element
*/
void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha = 0.0, int leadingDim = 0, bool requireLink = false);
void Div(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha = 0.0, int leadingDim = 0);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -183,9 +183,8 @@ i.e., a is divided with b by broadcasting
>> c - where we put result. we save it in a if c is NULL
>> n - the dimension index
>> alpha - the scaling factor
>> requireLink - if add operation to network
*/
void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha, bool requireLink)
void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -194,7 +193,7 @@ void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha,
/* call _Div function */
_DivDim(&a, &b, &c, n, alpha);
if (requireLink) {
if (c.enableGrad == true) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_DIVDIM);
XLink::AddParamToHeadInt(&c, n);
......
......@@ -59,7 +59,7 @@ c(i) = a/b + \alpha * c
where the size of b is equal to the n-th dimension of a,
i.e., a is divided with b by broadcasting
*/
void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha = (DTYPE)0.0, bool requireLink = false);
void DivDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE alpha = (DTYPE)0.0);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -130,6 +130,17 @@ void _MaskMe(XTensor * a, const XTensor * mask, DTYPE alpha)
}
/*
mask entries of a given tensor (on site):
a(i) = a(i) if mask(i) is non-zero
a(i) = alpha if mask(i) = 0
where i is the index of the element
*/
void MaskMe(XTensor& a, const XTensor& mask, DTYPE alpha)
{
_Mask(&a, &mask, &a, alpha);
}
/*
mask entries of a given tensor (return an XTensor structure):
a(i) = a(i) if mask(i) is non-zero
a(i) = alpha if mask(i) = 0
......
......@@ -43,6 +43,7 @@ a(i) = alpha if mask(i) = 0
where i is the index of the element
*/
void _MaskMe(XTensor * a, const XTensor * mask, DTYPE alpha);
void MaskMe(XTensor & a, const XTensor & mask, DTYPE alpha);
/*
mask entries of a given tensor (return an XTensor structure):
......
......@@ -304,7 +304,7 @@ XTensor MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA,
void MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA,
const XTensor &b, MATRIX_TRANS_TYPE transposedB, XTensor &c,
DTYPE alpha, XPRunner * parallelRunner, bool requireLink)
DTYPE alpha, XPRunner * parallelRunner)
{
CheckNTErrors(a.dataType == b.dataType, "Input tensors should have the same data type!");
CheckNTErrors(a.order >= 2 && b.order >= 2, "Input tensors must have a order >= 2!");
......@@ -339,7 +339,7 @@ void MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA,
/* call _MatrixMul function */
_MatrixMul(&a, transposedA, &b, transposedB, &c, alpha, 0, parallelRunner);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_MATRIXMUL);
XLink::AddParamToHeadTrans(&c, transposedA);
......@@ -400,7 +400,7 @@ XTensor MatrixMul(const XTensor &a, const XTensor &b,
}
void MatrixMul(const XTensor &a, const XTensor &b, XTensor &c,
DTYPE alpha, XPRunner * parallelRunner, bool requireLink)
DTYPE alpha, XPRunner * parallelRunner)
{
CheckNTErrors(a.dataType == b.dataType, "Input tensors should have the same data type!");
CheckNTErrors(a.order >= 2 && b.order >= 2, "Input tensors must have a order >= 2!");
......@@ -435,7 +435,7 @@ void MatrixMul(const XTensor &a, const XTensor &b, XTensor &c,
/* call _MatrixMul function */
_MatrixMul(&a, X_NOTRANS, &b, X_NOTRANS, &c, alpha, 0, parallelRunner);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_MATRIXMUL);
XLink::AddParamToHeadTrans(&c, X_NOTRANS);
......
......@@ -60,14 +60,14 @@ XTensor MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA, const XTensor
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
void MatrixMul(const XTensor &a, MATRIX_TRANS_TYPE transposedA, const XTensor &b, MATRIX_TRANS_TYPE transposedB,
XTensor &c, DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL, bool requireLink = false);
XTensor &c, DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
/* matrix multiplication with no transposition c = a * b * alpha*/
XTensor MatrixMul(const XTensor &a, const XTensor &b,
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
void MatrixMul(const XTensor &a, const XTensor &b, XTensor &c,
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL, bool requireLink = false);
DTYPE alpha = (DTYPE)1.0, XPRunner * parallelRunner = NULL);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -144,6 +144,23 @@ void _MultiplyMe(XTensor * a, const XTensor * b, DTYPE alpha, int leadingDim)
}
/*
element-wise product of two tensors (do it on site)
keep the result in the input tensor a and return nothing
a(i) = a(i)*b(i) + \alpha * a(i)
where i is the index of the item
>> a - tensor a (where keep the result)
>> b - tensor b
>> alpha - the coefficient
>> leadingDim - the dimension along which we perform broadcasting
*/
void MultiplyMe(XTensor& a, const XTensor& b, DTYPE alpha, int leadingDim)
{
_Multiply(&a, &b, &a, alpha, leadingDim);
}
/*
return a dimension if the multiplication is performed as MultiplyDim (in more details in MultiplyDim.h)
>> a - a tensor
>> b - another tensor for multiplication
......@@ -230,9 +247,8 @@ where i is the index of the item
>> c - result tensor
>> alpha - the coefficient
>> leadingDim - the dimension along which we perform broadcasting
>> requireLink - if add operation to network
*/
void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadingDim, bool requireLink)
void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int leadingDim)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -246,7 +262,7 @@ void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int l
/* call _Multiply function */
_Multiply(&a, &b, &c, 0, leadingDim);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_MULTIPLY);
XLink::AddParamToHead(&c, alpha);
......@@ -257,7 +273,7 @@ void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha, int l
/* call _MultiplyDim function */
_MultiplyDim(&a, &b, &c, n, alpha);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_MULTIPLYDIM);
XLink::AddParamToHeadInt(&c, n);
......
......@@ -40,6 +40,7 @@ a(i) = a(i)*b(i) + \alpha * a(i)
where i is the index of the element
*/
void _MultiplyMe(XTensor * a, const XTensor * b, DTYPE alpha = 0.0, int leadingDim = 0);
void MultiplyMe(XTensor & a, const XTensor & b, DTYPE alpha = 0.0, int leadingDim = 0);
/*
element-wise product of two tensors (return an XTensor structure)
......@@ -54,7 +55,7 @@ element-wise product of two tensors:
c(i) = a(i)*b(i) + \alpha * c(i)
where i is the index of the element
*/
void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha = 0.0, int leadingDim = 0, bool requireLink = false);
void Multiply(const XTensor &a, const XTensor &b, XTensor &c, DTYPE alpha = 0.0, int leadingDim = 0);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -139,6 +139,24 @@ void _MultiplyDimMe(XTensor * a, const XTensor * b, int n, DTYPE alpha)
}
/*
tensor multiplication(do it on site)
make a new tensor to keep the result and return it
c = a * b + \alpha * c
where the size of b is equal to the n-th dimension of a,
i.e., a is multiplied with b by broadcasting
>> a - a tensor
>> b - another tensor whose size is equal to that of dimension n of a
>> n - the dimension index
>> alpha - the scaling factor
*/
void MultiplyDimMe(XTensor& a, const XTensor& b, int n, DTYPE alpha)
{
_MultiplyDim(&a, &b, &a, n, alpha);
}
/*
tensor multiplication (return an XTensor structure and make tensor connections)
make a new tensor to keep the result and return it
......@@ -180,9 +198,8 @@ i.e., a is multiplied with b by broadcasting
>> b - another tensor whose size is equal to that of dimension n of a
>> c - where we put a * b + \alpha * c. we save it in a if c is NULL
>> n - the dimension index
>> requireLink - if add operation to network
*/
void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n, bool requireLink)
void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -191,7 +208,7 @@ void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n, bool req
/* call _Multiply function */
_MultiplyDim(&a, &b, &c, n, 0);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_MULTIPLYDIM);
XLink::AddParamToHeadInt(&c, n);
......@@ -347,9 +364,8 @@ where some of dimensions of b can be of size 1
>> a - a tensor
>> b - another tensor that would be broadcasted
>> c - the resulting tensor
>> requireLink - if add operation to network
*/
void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c, bool requireLink)
void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -358,7 +374,7 @@ void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c, bool requ
/* call _SumBroadcast function */
_MultiplyBroadcast(&a, &b, &c, 0);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_MULTIPLYBROADCAST);
XLink::AddParamToHead(&c, 0);
......
......@@ -33,6 +33,7 @@ void _MultiplyDim(const XTensor * a, const XTensor * b, XTensor * c, int n, DTYP
/* tensor multiplication a = a * b + \alpha * c where the size of b is equal to the n-th dimension of a,
i.e., a is multiplied with b by broadcasting. we keep the result in the input tensor a and return nothing */
void _MultiplyDimMe(XTensor * a, const XTensor * b, int n, DTYPE alpha = 0.0);
void MultiplyDimMe(XTensor & a, const XTensor & b, int n, DTYPE alpha = 0.0);
/* tensor multiplication c = a * b where the size of b is equal to the n-th dimension of a,
i.e., a is multiplied with b by broadcasting. We make a new tensor c to keep the result and return it */
......@@ -40,7 +41,7 @@ XTensor MultiplyDim(const XTensor &a, const XTensor &b, int n);
/* tensor multiplication c = a * b + \alpha * c where the size of b is equal to the n-th dimension of a,
i.e., a is multiplied with b by broadcasting */
void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n, bool requireLink = false);
void MultiplyDim(const XTensor &a, const XTensor &b, XTensor &c, int n);
/* tensor multiplication summation c = a * b + c * \beta where some of dimensions of b can be of size 1 */
void _MultiplyBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta = (DTYPE)1.0);
......@@ -50,7 +51,7 @@ void _MultiplyBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE
XTensor MultiplyBroadcast(const XTensor &a, const XTensor &b);
/* tensor multiplication summation c = a * b + c * \beta where some of dimensions of b can be of size 1 */
void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c, bool requireLink = false);
void MultiplyBroadcast(const XTensor &a, const XTensor &b, XTensor &c);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -60,6 +60,16 @@ void _NegateMe(XTensor * a)
}
/*
set every entry to its minus value (do it on site)
keep the result in the input tensor a and return nothing
>> a - the tensor we are processing
*/
void NegateMe(XTensor& a)
{
_Negate(&a, &a);
}
/*
set every entry to its minus value (return an XTensor structure)
make a new tensor to keep the result and return it
>> a - input tensor we are processing
......@@ -83,9 +93,8 @@ XTensor Negate(const XTensor & a)
set every entry to its minus value
>> a - input tensor we are processing
>> b - output tensor we are processing
>> requireLink - if add operation to network
*/
void Negate(const XTensor & a, XTensor & b, bool requireLink)
void Negate(const XTensor & a, XTensor & b)
{
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) {
InitTensor(&b, &a);
......@@ -94,7 +103,7 @@ void Negate(const XTensor & a, XTensor & b, bool requireLink)
/* call _Negate function */
_Negate(&a, &b);
if (requireLink) {
if (b.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, NULL, &b, MATH_NEGATE);
}
......
......@@ -34,6 +34,7 @@ set every entry to its minus value (do it on site)
keep the result in the input tensor a and return nothing
*/
void _NegateMe(XTensor * a);
void NegateMe(XTensor & a);
/*
set every entry to its minus value (return an XTensor structure)
......@@ -42,7 +43,7 @@ make a new tensor to keep the result and return it
XTensor Negate(const XTensor & a);
/* set every entry to its minus value */
void Negate(const XTensor & a, XTensor & b, bool requireLink = false);
void Negate(const XTensor & a, XTensor & b);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -66,6 +66,16 @@ void _SignMe(XTensor * a)
}
/*
set every entry to its sign value (do it on site)
keep the result in the input tensor a and return nothing
>> a - the tensor we are processing
*/
void SignMe(XTensor& a)
{
_Sign(&a, &a);
}
/*
set every entry to its sign value (return an XTensor structure)
make a new tensor to keep the result and return it
>> a - input tensor we are processing
......@@ -89,9 +99,8 @@ XTensor Sign(const XTensor & a)
set every entry to its sign value
>> a - input tensor we are processing
>> b - output tensor we are processing
>> requireLink - if add operation to network
*/
void Sign(const XTensor & a, XTensor & b, bool requireLink)
void Sign(const XTensor & a, XTensor & b)
{
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) {
InitTensor(&b, &a);
......@@ -100,7 +109,7 @@ void Sign(const XTensor & a, XTensor & b, bool requireLink)
/* call _Sign function */
_Sign(&a, &b);
if (requireLink) {
if (b.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, NULL, &b, MATH_SIGN);
}
......
......@@ -36,13 +36,19 @@ keep the result in the input tensor a and return nothing
void _SignMe(XTensor * a);
/*
set every entry to its sign value (do it on site)
keep the result in the input tensor a and return nothing
*/
void SignMe(XTensor & a);
/*
set every entry to its sign value (return an XTensor structure)
make a new tensor to keep the result and return it
*/
XTensor Sign(const XTensor & a);
/* set every entry to its sign value */
void Sign(const XTensor & a, XTensor & b, bool requireLink = false);
void Sign(const XTensor & a, XTensor & b);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -128,6 +128,19 @@ void _SubMe(XTensor * a, const XTensor * b, DTYPE beta)
}
/*
tensor subtraction a = a - b * \beta (do it on site)
keep the result in the tensor a and return nothing
>> a - a tensor
>> b - another tensor
>> beta - the scaling factor
*/
void SubMe(XTensor& a, const XTensor& b, DTYPE beta)
{
_Sub(&a, &b, &a, beta);
}
/*
return a dimension if the subtraction is performed as SubDim (in more details in SubDim.h)
>> a - a tensor
>> b - another tensor for subtraction
......@@ -203,9 +216,8 @@ tensor subtraction c = a - b * \beta
>> b - another tensor
>> c - where we put a-b*\beta. we save it in a if c is NULL
>> beta - the scaling factor
>> requireLink - if add operation to network
*/
void Sub(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta, bool requireLink)
void Sub(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -217,7 +229,7 @@ void Sub(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta, bool requir
/* call _Sub function */
_Sub(&a, &b, &c, beta);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_SUB);
XLink::AddParamToHead(&c, beta);
......@@ -227,7 +239,7 @@ void Sub(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta, bool requir
/* call _SubDim function */
_SubDim(&a, &b, &c, n, beta);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_SUBDIM);
XLink::AddParamToHeadInt(&c, n);
......
......@@ -35,6 +35,7 @@ tensor subtraction a = a - b * \beta
keep the result in the input tensor a and return nothing
*/
void _SubMe(XTensor * a, const XTensor * b, DTYPE beta = (DTYPE)1.0);
void SubMe(XTensor & a, const XTensor & b, DTYPE beta = (DTYPE)1.0);
/*
tensor subtraction c = a - b * \beta
......@@ -43,7 +44,7 @@ make a new tensor c to keep the result and return it
XTensor Sub(const XTensor &a, const XTensor &b, DTYPE beta = (DTYPE)1.0);
/* tensor subtraction c = a - b * \beta */
void Sub(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta = (DTYPE)1.0, bool requireLink = false);
void Sub(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta = (DTYPE)1.0);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -183,9 +183,8 @@ i.e., a is subtracted with b by broadcasting
>> c - where we put a-b*\beta. we save it in a if c is NULL
>> n - the dimension index
>> beta - the scaling factor
>> requireLink - if add operation to network
*/
void SubDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta, bool requireLink)
void SubDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -194,7 +193,7 @@ void SubDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta, b
/* call _Sub function */
_SubDim(&a, &b, &c, n, beta);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_SUBDIM);
XLink::AddParamToHeadInt(&c, n);
......
......@@ -40,7 +40,7 @@ XTensor SubDim(const XTensor &a, const XTensor &b, int n, DTYPE beta = (DTYPE)1.
/* tensor subtraction c = a - b * \beta where the size of b is equal to the n-th dimension of a,
i.e., a is subtracted with b by broadcasting*/
void SubDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta = (DTYPE)1.0, bool requireLink = false);
void SubDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta = (DTYPE)1.0);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -133,6 +133,19 @@ void _SumMe(XTensor * a, const XTensor * b, DTYPE beta)
}
/*
tensor summation a = a + b * \beta (do it on site)
keep the result in the tensor a and return nothing
>> a - a tensor
>> b - another tensor
>> beta - the scaling factor
*/
void SumMe(XTensor& a, const XTensor& b, DTYPE beta)
{
_Sum(&a, &b, &a, beta);
}
/*
return a dimension if the sum is performed as SumDim (in more details in SumDim.h)
>> a - a tensor
>> b - another tensor for sum
......@@ -207,9 +220,8 @@ tensor summation c = a + b * \beta
>> a - a tensor
>> b - another tensor
>> beta - the scaling factor
>> requireLink - if add operation to network
*/
void Sum(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta, bool requireLink)
void Sum(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -221,7 +233,7 @@ void Sum(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta, bool requir
/* call _Sum function */
_Sum(&a, &b, &c, beta);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_SUM);
XLink::AddParamToHead(&c, beta);
......@@ -231,7 +243,7 @@ void Sum(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta, bool requir
/* call _SumDim function */
_SumDim(&a, &b, &c, n, beta);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_SUMDIM);
XLink::AddParamToHeadInt(&c, n);
......
......@@ -34,6 +34,7 @@ tensor summation a = a + b * \beta
keep the result in the input tensor a and return nothing
*/
void _SumMe(XTensor * a, const XTensor * b, DTYPE beta = (DTYPE)1.0);
void SumMe(XTensor & a, const XTensor & b, DTYPE beta = (DTYPE)1.0);
/*
tensor summation c = a + b * \beta
......@@ -42,7 +43,7 @@ make a new tensor c to keep the result and return it
XTensor Sum(const XTensor &a, const XTensor &b, DTYPE beta = (DTYPE)1.0);
/* tensor summation c = a + b * \beta */
void Sum(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta = (DTYPE)1.0, bool requireLink = false);
void Sum(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta = (DTYPE)1.0);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -200,9 +200,8 @@ i.e., a is summed with b by broadcasting
>> c - where we put a+b*\beta. we save it in a if c is NULL
>> n - the dimension index
>> beta - the scaling factor
>> requireLink - if add operation to network
*/
void SumDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta, bool requireLink)
void SumDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -211,7 +210,7 @@ void SumDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta, b
/* call _SumDim function */
_SumDim(&a, &b, &c, n, beta);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_SUMDIM);
XLink::AddParamToHeadInt(&c, n);
......@@ -368,9 +367,8 @@ c = a + b * \beta
>> b - another tensor that would be broadcasted
>> c - the resulting tensor
>> beta - the scaling factor
>> requireLink - if add operation to network
*/
void SumBroadcast(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta, bool requireLink)
void SumBroadcast(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta)
{
if (!c.isInit || !XTensor::IsSameShaped(&a, &c)) {
InitTensor(&c, &a);
......@@ -379,7 +377,7 @@ void SumBroadcast(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta, bo
/* call _SumBroadcast function */
_SumBroadcast(&a, &b, &c, beta);
if (requireLink) {
if (c.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, &b, &c, MATH_SUMBROADCAST);
XLink::AddParamToHead(&c, beta);
......
......@@ -44,7 +44,7 @@ XTensor SumDim(const XTensor &a, const XTensor &b, int n, DTYPE beta = (DTYPE)1.
/* tensor summation c = a + b * \beta where the size of b is equal to the n-th dimension of a,
i.e., a is summed with b by broadcasting */
void SumDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta = (DTYPE)1.0, bool requireLink = false);
void SumDim(const XTensor &a, const XTensor &b, XTensor &c, int n, DTYPE beta = (DTYPE)1.0);
/* tensor broadcast summation c = a + b * \beta where some of dimensions of b can be of size 1 */
void _SumBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta = (DTYPE)1.0);
......@@ -54,7 +54,7 @@ void _SumBroadcast(const XTensor * a, const XTensor * b, XTensor * c, DTYPE beta
XTensor SumBroadcast(const XTensor &a, const XTensor &b, DTYPE beta = (DTYPE)1.0);
/* tensor broadcast summation c = a + b * \beta where some of dimensions of b can be of size 1 */
void SumBroadcast(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta = (DTYPE)1.0, bool requireLink = false);
void SumBroadcast(const XTensor &a, const XTensor &b, XTensor &c, DTYPE beta = (DTYPE)1.0);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -126,13 +126,13 @@ XTensor funcName(const XTensor &a, float num) \
} \
#define SIMPLE_BINARY_FUNCTION_VOID(funcName, _funcName, operationId) \
void funcName(const XTensor &a, XTensor &b, float num, bool requireLink) \
void funcName(const XTensor &a, XTensor &b, float num) \
{ \
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { \
InitTensor(&b, &a); \
} \
_funcName(&a, &b, num); \
if (requireLink) { \
if (b.enableGrad) { \
XLink::MakeLink(&a, NULL, &b, operationId); \
} \
} \
......@@ -165,7 +165,7 @@ SIMPLE_BINARY_FUNCTION(Shift, _Shift, MATH_SHIFT)
SIMPLE_BINARY_FUNCTION_VOID(Shift, _Shift, MATH_SHIFT)
_SIMPLE_BINARY_FUNCTION_INT(_Mod, _CudaMod, mod)
SIMPLE_BINARY_FUNCTION_ME_INT(_ModMe, _Mod)
SIMPLE_BINARY_FUNCTION_ME_INT(ModMe, _Mod)
SIMPLE_BINARY_FUNCTION_INT(Mod, _Mod)
#else
......
......@@ -37,15 +37,22 @@ void _Scale(const XTensor * a, XTensor * b, float scale);
scale up tensor entires (on site)
b = a * scale
*/
void _ScaleMe(XTensor & a, int scale);
void _ScaleMe(XTensor & a, float scale);
void _ScaleMe(XTensor * a, int scale);
void _ScaleMe(XTensor * a, float scale);
/*
scale up tensor entires (on site)
b = a * scale
*/
void ScaleMe(XTensor & a, int scale);
void ScaleMe(XTensor & a, float scale);
/*
scale up tensor entires
b = a * scale
*/
void Scale(const XTensor & a, XTensor &b, int scale);
void Scale(const XTensor & a, XTensor &b, float scale, bool requireLink = false);
void Scale(const XTensor & a, XTensor &b, float scale);
/*
scale up tensor entires (return an XTensor structure)
......@@ -64,15 +71,22 @@ void _Descale(const XTensor * a, XTensor * b, float scale);
descale tensor entires (on site)
b = a / scale
*/
void _DescaleMe(XTensor & a, int scale);
void _DescaleMe(XTensor & a, float scale);
void _DescaleMe(XTensor * a, int scale);
void _DescaleMe(XTensor * a, float scale);
/*
descale tensor entires (on site)
b = a / scale
*/
void DescaleMe(XTensor & a, int scale);
void DescaleMe(XTensor & a, float scale);
/*
descale tensor entires
b = a / scale
*/
void Descale(const XTensor & a, XTensor & b, int scale);
void Descale(const XTensor & a, XTensor & b, float scale, bool requireLink = false);
void Descale(const XTensor & a, XTensor & b, float scale);
/*
descale tensor entires (return an XTensor structure)
......@@ -91,15 +105,22 @@ void _Shift(const XTensor * a, XTensor * b, float shift);
shift tensor entires (on site)
b = a + shift
*/
void _ShiftMe(XTensor & a, int shift);
void _ShiftMe(XTensor & a, float shift);
void _ShiftMe(XTensor * a, int shift);
void _ShiftMe(XTensor * a, float shift);
/*
shift tensor entires (on site)
b = a + shift
*/
void ShiftMe(XTensor & a, int shift);
void ShiftMe(XTensor & a, float shift);
/*
shift tensor entires
b = a + shift
*/
void Shift(const XTensor & a, XTensor & b, int shift);
void Shift(const XTensor & a, XTensor & b, float shift, bool requireLink = false);
void Shift(const XTensor & a, XTensor & b, float shift);
/*
shift tensor entires (return an XTensor structure)
......@@ -118,7 +139,13 @@ void _Mod(const XTensor * a, XTensor * b, int base);
mod tensor entires (on site)
b = a % mod
*/
void _ModMe(XTensor & a, int base);
void _ModMe(XTensor * a, int base);
/*
mod tensor entires (on site)
b = a % mod
*/
void ModMe(XTensor & a, int base);
/*
mod tensor entires
......
......@@ -71,6 +71,18 @@ void _ClipMe(XTensor * a, DTYPE lower, DTYPE upper)
}
/*
set every entry to its clip value (do it on site)
keep the result in the input tensor a and return nothing
>> a - the tensor we are processing
>> lower - the lower border
>> upper - the upper border
*/
void ClipMe(XTensor& a, DTYPE lower, DTYPE upper)
{
_Clip(&a, &a, lower, upper);
}
/*
set every entry to its clip value (return an XTensor structure)
make a new tensor to keep the result and return it
>> a - input tensor we are processing
......@@ -94,7 +106,7 @@ XTensor Clip(const XTensor & a, DTYPE lower, DTYPE upper)
return b;
}
void Clip(const XTensor & a, XTensor & b, DTYPE lower, DTYPE upper, bool requireLink)
void Clip(const XTensor & a, XTensor & b, DTYPE lower, DTYPE upper)
{
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) {
InitTensor(&b, &a);
......@@ -103,7 +115,7 @@ void Clip(const XTensor & a, XTensor & b, DTYPE lower, DTYPE upper, bool require
/* call _Clip function */
_Clip(&a, &b, lower, upper);
if (requireLink) {
if (b.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, NULL, &b, MATH_CLIP);
XLink::AddParamToHead(&b, lower);
......
......@@ -33,11 +33,15 @@ void _Clip(const XTensor * a, XTensor * b, DTYPE lower, DTYPE upper);
keep the result in the input tensor a and return nothing */
void _ClipMe(XTensor * a, DTYPE lower, DTYPE upper);
/* set every entry to its clip value (do it on site)
keep the result in the input tensor a and return nothing */
void ClipMe(XTensor & a, DTYPE lower, DTYPE upper);
/* set every entry to its clip value (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Clip(const XTensor & a, DTYPE lower, DTYPE upper);
void Clip(const XTensor & a, XTensor & b, DTYPE lower, DTYPE upper, bool requireLink = false);
void Clip(const XTensor & a, XTensor & b, DTYPE lower, DTYPE upper);
/*
backward of Clip function
......
......@@ -32,6 +32,9 @@ void _Equal(const XTensor * a, XTensor * b, DTYPE value);
/* check whether every entry is equal to the given value (do it on site) */
void _EqualMe(XTensor * a, DTYPE value);
/* check whether every entry is equal to the given value (do it on site) */
void EqualMe(XTensor & a, DTYPE value);
/* check whether every entry is equal to the given value (return an XTensor structure) */
XTensor Equal(const XTensor & a, DTYPE value);
......@@ -41,6 +44,9 @@ void _NotEqual(const XTensor * a, XTensor * b, DTYPE value);
/* check whether every entry is not equal to the given value (do it on site) */
void _NotEqualMe(XTensor * a, DTYPE value);
/* check whether every entry is not equal to the given value (do it on site) */
void NotEqualMe(XTensor & a, DTYPE value);
/* check whether every entry is not equal to the given value (return an XTensor structure) */
XTensor NotEqual(const XTensor & a, DTYPE value);
......
......@@ -113,6 +113,27 @@ void _NormalizeMe(XTensor * input, int dim, const XTensor * mean, const XTensor
{
_Normalize(input, input, dim, mean, var, a, b, epsilon);
}
/*
normalized the data with normal distribution (do it on site)
keep the result in the input tensor and return nothing
For an input x, x = a * (x-mean)/sqrt(variance+\epsilon) + b
where a and b are the scalar and bias respectively, and \epsilon is the adjustment parameter.
>> input - the input tensor
>> dim - dimension alone which we generate the mean and variance
>> mean - the mean of the input
>> var - the variance of the input
>> a - the scalar
>> b - the bias
>> epsilon - a parameter
*/
void NormalizeMe(XTensor& input, int dim, const XTensor& mean, const XTensor& var, const XTensor& a, const XTensor& b, DTYPE epsilon)
{
_Normalize(&input, &input, dim, &mean, &var, &a, &b, epsilon);
}
/*
normalized the data with normal distribution (return an XTensor structure)
make a new tensor to keep the result and return it
......
......@@ -42,6 +42,14 @@ where a and b are the scalar and bias respectively, and \epsilon is the adjustme
void _NormalizeMe(XTensor * input, int dim, const XTensor * mean, const XTensor * var, const XTensor * a, const XTensor * b, DTYPE epsilon);
/*
normalized the data with normal distribution (do it on site)
keep the result in the input tenosr and return nothing
For an input x, x = a * (x-mean)/sqrt(variance+\epsilon) + b
where a and b are the scalar and bias respectively, and \epsilon is the adjustment parameter.
*/
void NormalizeMe(XTensor & input, int dim, const XTensor & mean, const XTensor & var, const XTensor & a, const XTensor & b, DTYPE epsilon);
/*
normalized the data with normal distribution (return an XTensor structure)
make a new tensor to keep the result and return it
For an input x, y = a * (x-mean)/sqrt(variance+\epsilon) + b
......
......@@ -81,6 +81,17 @@ void _PowerMe(XTensor * a, DTYPE p)
}
/*
get the power(a, p) (do it on site)
keep the result in the input tensor a and return nothing
>> a - the tensor
>> p - parameter
*/
void PowerMe(XTensor& a, DTYPE p)
{
_Power(&a, &a, p);
}
/*
get the power(a, p) (return an XTensor structure)
make a new tensor to keep the result and return it
>> a - input tensor
......@@ -107,9 +118,8 @@ get the power(a, p)
>> a - input tensor
>> b - output tensor
>> p - parameter
>> requireLink - if add operation to network
*/
void Power(const XTensor & a, XTensor & b, DTYPE p, bool requireLink)
void Power(const XTensor & a, XTensor & b, DTYPE p)
{
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) {
InitTensor(&b, &a);
......@@ -118,7 +128,7 @@ void Power(const XTensor & a, XTensor & b, DTYPE p, bool requireLink)
/* call _Power function */
_Power(&a, &b, p);
if (requireLink) {
if (b.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, NULL, &b, MATH_POWER);
XLink::AddParamToHead(&b, p);
......
......@@ -36,13 +36,19 @@ keep the result in the input tensor a and return nothing
void _PowerMe(XTensor * a, DTYPE p);
/*
get the power(x, y) (do it on site)
keep the result in the input tensor a and return nothing
*/
void PowerMe(XTensor & a, DTYPE p);
/*
get the power(x, y) (return an XTensor structure)
make a new tensor to keep the result and return it
*/
XTensor Power(const XTensor & a, DTYPE p);
/* get the power(x, y) */
void Power(const XTensor & a, XTensor & b, DTYPE p, bool requireLink = false);
void Power(const XTensor & a, XTensor & b, DTYPE p);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -92,6 +92,21 @@ void _ScaleAndShiftMe(XTensor * a, DTYPE scale, DTYPE shift)
}
/*
scale and shift all tensor entires (do it on site)
keep the result in the input tensor a and return nothing
a = a * scale + shift
>> a - the input/output tensor
>> scale - the scaler factor
>> shift - the shift factor
*/
void ScaleAndShiftMe(XTensor& a, DTYPE scale, DTYPE shift)
{
_ScaleAndShift(&a, &a, scale, shift);
}
/*
scale and shift all tensor entires (return an XTensor structure)
make a new tensor to keep the result and return it
......@@ -127,9 +142,8 @@ b = a * scale + shift
>> b - the output tensor
>> scale - the scaler factor
>> shift - the shift factor
>> requireLink - if add operation to network
*/
void ScaleAndShift(const XTensor & a, XTensor & b, DTYPE scale, DTYPE shift, bool requireLink)
void ScaleAndShift(const XTensor & a, XTensor & b, DTYPE scale, DTYPE shift)
{
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) {
InitTensor(&b, &a);
......@@ -138,7 +152,7 @@ void ScaleAndShift(const XTensor & a, XTensor & b, DTYPE scale, DTYPE shift, boo
/* call _ScaleAndShift function */
_ScaleAndShift(&a, &b, scale, shift);
if (requireLink) {
if (b.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, NULL, &b, MATH_SCALEANDSHIFT);
XLink::AddParamToHead(&b, scale);
......
......@@ -45,6 +45,13 @@ void _ScaleAndShiftMe(XTensor * a, DTYPE scale, DTYPE shift = 0);
/*
scale and shift all tensor entires
keep the result in the input tensor a and return nothing
a = a * scale + shift
*/
void ScaleAndShiftMe(XTensor & a, DTYPE scale, DTYPE shift = 0);
/*
scale and shift all tensor entires
make a new tensor to keep the result and return it
b = a * scale + shift
*/
......@@ -54,7 +61,7 @@ XTensor ScaleAndShift(const XTensor &a, DTYPE scale, DTYPE shift = 0);
scale and shift all tensor entires
b = a * scale + shift
*/
void ScaleAndShift(const XTensor &a, XTensor &b, DTYPE scale, DTYPE shift = 0, bool requireLink = false);
void ScaleAndShift(const XTensor &a, XTensor &b, DTYPE scale, DTYPE shift = 0);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -83,13 +83,13 @@ XTensor funcName(const XTensor &a) \
}
#define SIMPLE_UNARY_FUNCTION_VOID(funcName, _funcName, operationId) \
void funcName(const XTensor &a, XTensor &b, bool requireLink) \
void funcName(const XTensor &a, XTensor &b) \
{ \
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { \
InitTensor(&b, &a); \
} \
_funcName(&a, &b); \
if (requireLink) { \
if (b.enableGrad) { \
XLink::MakeLink(&a, NULL, &b, operationId); \
} \
}
......@@ -189,13 +189,13 @@ XTensor funcName(const XTensor &a) \
return b; \
}
#define SIMPLE_UNARY_FUNCTION_VOID(funcName, _funcName, operationId) \
void funcName(const XTensor &a, XTensor &b, bool requireLink) \
void funcName(const XTensor &a, XTensor &b) \
{ \
if (!b.isInit || !XTensor::IsSameShaped(&a, &b)) { \
InitTensor(&b, &a); \
} \
_funcName(&a, &b); \
if (requireLink) { \
if (b.enableGrad) { \
XLink::MakeLink(&a, NULL, &b, operationId); \
} \
}
......
......@@ -31,110 +31,140 @@ void _Absolute(const XTensor * a, XTensor * b);
/* set every entry to its absolute value (do it on site)
keep the result in the input tensor a and return nothing */
void _AbsoluteMe(XTensor * a);
/* set every entry to its absolute value (do it on site)
keep the result in the input tensor a and return nothing */
void AbsoluteMe(XTensor & a);
/* set every entry to its absolute value (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Absolute(const XTensor & a);
/* set every entry to its absolute value */
void Absolute(const XTensor & a, XTensor & b, bool requireLink = false);
void Absolute(const XTensor & a, XTensor & b);
/* set every entry to its ceil value */
void _Ceil(const XTensor * a, XTensor * b);
/* set every entry to its ceil value (do it on site)
keep the result in the input tensor a and return nothing */
void _CeilMe(XTensor * a);
/* set every entry to its ceil value (do it on site)
keep the result in the input tensor a and return nothing */
void CeilMe(XTensor & a);
/* set every entry to its ceil value (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Ceil(const XTensor & a);
/* set every entry to its ceil value */
void Ceil(const XTensor & a, XTensor & b, bool requireLink = false);
void Ceil(const XTensor & a, XTensor & b);
/* set every entry to its exponent value */
void _Exp(const XTensor * a, XTensor * b);
/* set every entry to its exponent value (do it on site)
keep the result in the input tensor a and return nothing */
void _ExpMe(XTensor * a);
/* set every entry to its exponent value (do it on site)
keep the result in the input tensor a and return nothing */
void ExpMe(XTensor & a);
/* set every entry to its exponent value (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Exp(const XTensor & a);
/* set every entry to its exponent value */
void Exp(const XTensor & a, XTensor & b, bool requireLink = false);
void Exp(const XTensor & a, XTensor & b);
/* set every entry to its floor value */
void _Floor(const XTensor * a, XTensor * b);
/* set every entry to its floor value (do it on site)
keep the result in the input tensor a and return nothing */
void _FloorMe(XTensor * a);
/* set every entry to its floor value (do it on site)
keep the result in the input tensor a and return nothing */
void FloorMe(XTensor & a);
/* set every entry to its floor value (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Floor(const XTensor & a);
/* set every entry to its floor value */
void Floor(const XTensor & a, XTensor & b, bool requireLink = false);
void Floor(const XTensor & a, XTensor & b);
/* if source entry is non-zero, set target entry to be one, otherwise zero */
void _IsNonZero(const XTensor *a, XTensor *b);
/* if source entry is non-zero, set target entry to be one, otherwise zero (do it on site)
keep the result in the input tensor a and return nothing */
void _IsNonZeroMe(XTensor *a);
/* if source entry is non-zero, set target entry to be one, otherwise zero (do it on site)
keep the result in the input tensor a and return nothing */
void IsNonZeroMe(XTensor &a);
/* if source entry is non-zero, set target entry to be one, otherwise zero (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor IsNonZero(const XTensor &a);
/* if source entry is non-zero, set target entry to be one, otherwise zero */
void IsNonZero(const XTensor &a, XTensor & b, bool requireLink = false);
void IsNonZero(const XTensor &a, XTensor & b);
/* if source entry is zero, set target entry to be one, otherwise zero */
void _IsZero(const XTensor *a, XTensor *b);
/* if source entry is zero, set target entry to be one, otherwise zero (do it on site)
keep the result in the input tensor a and return nothing */
void _IsZeroMe(XTensor *a);
/* if source entry is zero, set target entry to be one, otherwise zero (do it on site)
keep the result in the input tensor a and return nothing */
void IsZeroMe(XTensor &a);
/* if source entry is zero, set target entry to be one, otherwise zero (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor IsZero(const XTensor &a);
/* if source entry is zero, set target entry to be one, otherwise zero */
void IsZero(const XTensor &a, XTensor & b, bool requireLink = false);
void IsZero(const XTensor &a, XTensor & b);
/* set every entry to its logarithm value */
void _Log(const XTensor * a, XTensor * b);
/* set every entry to its logarithm value (do it on site)
keep the result in the input tensor a and return nothing */
void _LogMe(XTensor * a);
/* set every entry to its logarithm value (do it on site)
keep the result in the input tensor a and return nothing */
void LogMe(XTensor & a);
/* set every entry to its logarithm value (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Log(const XTensor & a);
/* set every entry to its logarithm value */
void Log(const XTensor & a, XTensor & b, bool requireLink = false);
void Log(const XTensor & a, XTensor & b);
/* set every entry to its round value */
void _Round(const XTensor * a, XTensor * b);
/* set every entry to its round value (do it on site)
keep the result in the input tensor a and return nothing */
void _RoundMe(XTensor * a);
/* set every entry to its round value (do it on site)
keep the result in the input tensor a and return nothing */
void RoundMe(XTensor & a);
/* set every entry to its round value (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Round(const XTensor & a);
/* set every entry to its round value */
void Round(const XTensor & a, XTensor & b, bool requireLink = false);
void Round(const XTensor & a, XTensor & b);
/* set every entry to its sqrt value */
void _Sqrt(const XTensor * a, XTensor * b);
/* set every entry to its sqrt value (do it on site)
keep the result in the input tensor a and return nothing */
void _SqrtMe(XTensor * a);
/* set every entry to its sqrt value (do it on site)
keep the result in the input tensor a and return nothing */
void SqrtMe(XTensor & a);
/* set every entry to its sqrt value (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Sqrt(const XTensor & a);
/* set every entry to its sqrt value */
void Sqrt(const XTensor & a, XTensor & b, bool requireLink = false);
void Sqrt(const XTensor & a, XTensor & b);
/* set every entry to its square value */
void _Square(const XTensor * a, XTensor * b);
/* set every entry to its square value (do it on site)
keep the result in the input tensor a and return nothing */
void _SquareMe(XTensor * a);
/* set every entry to its square value (do it on site)
keep the result in the input tensor a and return nothing */
void SquareMe(XTensor & a);
/* set every entry to its square value (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Square(const XTensor & a);
/* set every entry to its square value */
void Square(const XTensor & a, XTensor & b, bool requireLink = false);
void Square(const XTensor & a, XTensor & b);
/* set every entry to its sine value */
......@@ -142,33 +172,42 @@ void _Sin(const XTensor * a, XTensor * b);
/* set every entry to its sine value (do it on site)
keep the result in the input tensor a and return nothing */
void _SinMe(XTensor * a);
/* set every entry to its sine value (do it on site)
keep the result in the input tensor a and return nothing */
void SinMe(XTensor & a);
/* set every entry to its sine value (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Sin(const XTensor & a);
/* set every entry to its sine value */
void Sin(const XTensor & a, XTensor & b, bool requireLink = false);
void Sin(const XTensor & a, XTensor & b);
/* set every entry to its cosine value */
void _Cos(const XTensor * a, XTensor * b);
/* set every entry to its cosine value (do it on site)
keep the result in the input tensor a and return nothing */
void _CosMe(XTensor * a);
/* set every entry to its cosine value (do it on site)
keep the result in the input tensor a and return nothing */
void CosMe(XTensor & a);
/* set every entry to its cosine value (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Cos(const XTensor & a);
/* set every entry to its cosine value */
void Cos(const XTensor & a, XTensor & b, bool requireLink = false);
void Cos(const XTensor & a, XTensor & b);
/* set every entry to its tangent value */
void _Tan(const XTensor * a, XTensor * b);
/* set every entry to its tangent value (do it on site)
keep the result in the input tensor a and return nothing */
void _TanMe(XTensor * a);
/* set every entry to its tangent value (do it on site)
keep the result in the input tensor a and return nothing */
void TanMe(XTensor & a);
/* set every entry to its tangent value (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Tan(const XTensor & a);
/* set every entry to its tangent value */
void Tan(const XTensor & a, XTensor & b, bool requireLink = false);
void Tan(const XTensor & a, XTensor & b);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -137,9 +137,8 @@ get the max value of the items along a dimension of the tensor
>> input - the input tensor
>> output - the output tensor
>> dim - the dimension where the reduction is performed on
>> requireLink - if add operation to network
*/
void ReduceMax(const XTensor &input, XTensor &output, int dim, bool requireLink)
void ReduceMax(const XTensor &input, XTensor &output, int dim)
{
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
......@@ -163,7 +162,7 @@ void ReduceMax(const XTensor &input, XTensor &output, int dim, bool requireLink)
/* call _ReduceMax function */
_ReduceMax(&input, &output, dim);
if (requireLink) {
if (output.enableGrad) {
/* tensor connections */
XLink::MakeLink(&input, NULL, &output, REDUCE_REDUCEMAX);
XLink::AddParamToHeadInt(&output, dim);
......
......@@ -36,7 +36,7 @@ make a new tensor to keep the result and return it
XTensor ReduceMax(const XTensor &input, int dim);
/* get the max value of the items along a dimension of the tensor. */
void ReduceMax(const XTensor &input, XTensor &output, int dim, bool requireLink = false);
void ReduceMax(const XTensor &input, XTensor &output, int dim);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -94,9 +94,8 @@ For a 1-dimensional data array a, mean = (1/n) * sum_i input_i
>> input - the input tensor
>> output - the output tensor
>> dim - the dimension where the reduction is performed on
>> requireLink - if add operation to network
*/
void ReduceMean(const XTensor &input, XTensor &output, int dim, bool requireLink)
void ReduceMean(const XTensor &input, XTensor &output, int dim)
{
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
......@@ -120,7 +119,7 @@ void ReduceMean(const XTensor &input, XTensor &output, int dim, bool requireLink
/* call _ReduceMean function */
_ReduceMean(&input, &output, dim);
if (requireLink) {
if (output.enableGrad) {
/* tensor connections */
XLink::MakeLink(&input, NULL, &output, REDUCE_REDUCEMEAN);
XLink::AddParamToHeadInt(&output, dim);
......
......@@ -43,7 +43,7 @@ XTensor ReduceMean(const XTensor &input, int dim);
get the mean value along a dimension of the tensor
For a 1-dimensional data array a, mean = (1/n) * sum_i input_i
*/
void ReduceMean(const XTensor &input, XTensor &output, int dim, bool requireLink = false);
void ReduceMean(const XTensor &input, XTensor &output, int dim);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -244,7 +244,7 @@ XTensor ReduceSum(const XTensor &input, int dim, const XTensor &shift, DTYPE pow
return output;
}
void ReduceSum(const XTensor &input, XTensor &output, int dim, const XTensor &shift, DTYPE power, bool isExp, bool requireLink)
void ReduceSum(const XTensor &input, XTensor &output, int dim, const XTensor &shift, DTYPE power, bool isExp)
{
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
......@@ -268,7 +268,7 @@ void ReduceSum(const XTensor &input, XTensor &output, int dim, const XTensor &sh
/* call _ReduceSum function */
_ReduceSum(&input, &output, dim, &shift, power, isExp);
if (requireLink) {
if (output.enableGrad) {
/* tensor connections */
XLink::MakeLink(&input, &shift, &output, REDUCE_REDUCESUM);
XLink::AddParamToHeadInt(&output, dim);
......@@ -336,9 +336,8 @@ sum = \sum_i exp((a_i - shift)^power) if isExp == true
>> shift - shift the input
>> ieExp - specify if the exp() is performed
>> power - we perform pow(item_i, power) on each item in the array
>> requireLink - if add operation to network
*/
void ReduceSum(const XTensor &input, XTensor &output, int dim, DTYPE power, bool isExp, bool requireLink)
void ReduceSum(const XTensor &input, XTensor &output, int dim, DTYPE power, bool isExp)
{
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
......@@ -362,7 +361,7 @@ void ReduceSum(const XTensor &input, XTensor &output, int dim, DTYPE power, bool
/* call _ReduceSum function */
_ReduceSum(&input, &output, dim, NULL, power, isExp);
if (requireLink) {
if (output.enableGrad) {
/* tensor connections */
XLink::MakeLink(&input, NULL, &output, REDUCE_REDUCESUM);
XLink::AddParamToHeadInt(&output, dim);
......
......@@ -44,7 +44,7 @@ sum = \sum_i exp(a_i - shift) if isExp == true
*/
XTensor ReduceSum(const XTensor &input, int dim, const XTensor &shift, DTYPE power = (DTYPE)1.0F, bool isExp = false);
void ReduceSum(const XTensor &input, XTensor &output, int dim, const XTensor &shift, DTYPE power = (DTYPE)1.0F, bool isExp = false, bool requireLink = false);
void ReduceSum(const XTensor &input, XTensor &output, int dim, const XTensor &shift, DTYPE power = (DTYPE)1.0F, bool isExp = false);
/*
sum the items along a dimension of the tensor (return an XTensor structure)
......@@ -61,7 +61,7 @@ For a 1-dimensional data array a,
sum = \sum_i (a_i - shift) if isExp == false
sum = \sum_i exp(a_i - shift) if isExp == true
*/
void ReduceSum(const XTensor &input, XTensor &output, int dim, DTYPE power = (DTYPE)1.0F, bool isExp = false, bool requireLink = false);
void ReduceSum(const XTensor &input, XTensor &output, int dim, DTYPE power = (DTYPE)1.0F, bool isExp = false);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -91,9 +91,8 @@ For a 1-dimensional data array a, sum = \sum_i (a_i - shift)^2
>> output - the output tensor
>> dim - the dimension where the reduction is performed on
>> shift - bias on the input
>> requireLink - if add operation to network
*/
void ReduceSumSquared(const XTensor &input, XTensor &output, int dim, const XTensor &shift, bool requireLink)
void ReduceSumSquared(const XTensor &input, XTensor &output, int dim, const XTensor &shift)
{
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
......@@ -117,7 +116,7 @@ void ReduceSumSquared(const XTensor &input, XTensor &output, int dim, const XTen
/* call _ReduceSumSquared function */
_ReduceSumSquared(&input, &output, dim, &shift);
if (requireLink) {
if (output.enableGrad) {
/* tensor connections */
XLink::MakeLink(&input, &shift, &output, REDUCE_REDUCESUMSQUARED);
XLink::AddParamToHeadInt(&output, dim);
......
......@@ -45,7 +45,7 @@ squared sum of the items along a dimension of the tensor
For a 1-dimensional data array a,
sum = \sum_i (a_i - shift)^2
*/
void ReduceSumSquared(const XTensor &input, XTensor &output, int dim, const XTensor &shift, bool requireLink = false);
void ReduceSumSquared(const XTensor &input, XTensor &output, int dim, const XTensor &shift);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -94,9 +94,8 @@ For a 1-dimensional data array a, variance = 1/n * \sum_i (a_i - mean)^2
>> output - the output tensor
>> dim - the dimension where the reduction is performed on
>> mean - the mean value
>> requireLink - if add operation to network
*/
void ReduceVariance(const XTensor &input, XTensor &output, int dim, const XTensor &mean, bool requireLink)
void ReduceVariance(const XTensor &input, XTensor &output, int dim, const XTensor &mean)
{
CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!");
......@@ -120,7 +119,7 @@ void ReduceVariance(const XTensor &input, XTensor &output, int dim, const XTenso
/* call _ReduceVariance function */
_ReduceVariance(&input, &output, dim, &mean);
if (requireLink) {
if (output.enableGrad) {
/* tensor connection */
XLink::MakeLink(&input, &mean, &output, REDUCE_REDUCEVARIANCE);
XLink::AddParamToHeadInt(&output, dim);
......
......@@ -43,7 +43,7 @@ XTensor ReduceVariance(const XTensor &input, int dim, const XTensor &mean);
variance of the items along a dimension of the tensor
For a 1-dimensional data array a, variance = 1/n * \sum_i (a_i - mean)^2
*/
void ReduceVariance(const XTensor &input, XTensor &output, int dim, const XTensor &mean, bool requireLink = false);
void ReduceVariance(const XTensor &input, XTensor &output, int dim, const XTensor &mean);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -232,7 +232,7 @@ XTensor Merge(const XTensor &s, int whereToMerge, int leadingDim)
return t;
}
void Merge(const XTensor &s, XTensor &t, int whereToMerge, int leadingDim, bool requireLink)
void Merge(const XTensor &s, XTensor &t, int whereToMerge, int leadingDim)
{
if (!t.isInit || !CheckMergeSize(&s, &t, whereToMerge, leadingDim)) {
if (leadingDim < 0)
......@@ -261,7 +261,7 @@ void Merge(const XTensor &s, XTensor &t, int whereToMerge, int leadingDim, bool
/* call _Merge function */
_Merge(&s, &t, whereToMerge, leadingDim);
if (requireLink) {
if (t.enableGrad) {
/* tensor connections */
XLink::MakeLink(&s, NULL, &t, SHAPE_MERGE);
XLink::AddParamToHeadInt(&t, whereToMerge);
......
......@@ -33,7 +33,7 @@ void _Merge(const XTensor * s, XTensor * t, int whereToMerge, int leadingDim = -
e.g., (M, N/3, 3) -> (M, N) */
XTensor Merge(const XTensor &s, int whereToMerge, int leadingDim = -1);
void Merge(const XTensor &s, XTensor &t, int whereToMerge, int leadingDim = -1, bool requireLink = false);
void Merge(const XTensor &s, XTensor &t, int whereToMerge, int leadingDim = -1);
/* merge small tensors into a big tensor */
void _Merge(const TensorList * smalls, XTensor * big, int whereToMerge);
......
......@@ -42,6 +42,13 @@ a = permuted(a)
void _PermuteMe(XTensor * a, int * dimPermute);
/*
permute the tensor dimensions (do it on site).
keep the result in the input tensor and return nothing.
a = permuted(a)
*/
void PermuteMe(XTensor &a, int * dimPermute);
/*
make a tensor with permuted dimensions (return an XTensor structure).
make a new tensor to keep the result and return it.
b = permuted(a)
......
......@@ -48,7 +48,7 @@ XTensor Reshape(XTensor &s, int order, int * dimSize)
return t;
}
void Reshape(XTensor &s, XTensor &t, int order, int * dimSize, bool requireLink)
void Reshape(XTensor &s, XTensor &t, int order, int * dimSize)
{
if (!t.isInit || !XTensor::IsSameShaped(&t, &s)) {
InitTensor(&t, &s);
......@@ -57,7 +57,7 @@ void Reshape(XTensor &s, XTensor &t, int order, int * dimSize, bool requireLink)
/* call Reshape function */
t.Reshape(order, dimSize);
if (requireLink) {
if (t.enableGrad) {
/* tensor connections */
XLink::MakeLink(&s, NULL, &t, SHAPE_RESHAPE);
}
......
......@@ -29,7 +29,7 @@ namespace nts { // namespace nts(NiuTrans.Tensor)
/* reshape the tensor */
XTensor Reshape(XTensor &s, int order, int * dimSize);
void Reshape(XTensor &s, XTensor &t, int order, int * dimSize, bool requireLink = false);
void Reshape(XTensor &s, XTensor &t, int order, int * dimSize);
} // namespace nts(NiuTrans.Tensor)
#endif // __RESHAPE_H__
......@@ -227,7 +227,7 @@ XTensor Split(const XTensor &s, int whereToSplit, int splitNum)
return t;
}
void Split(const XTensor &s, XTensor &t, int whereToSplit, int splitNum, bool requireLink)
void Split(const XTensor &s, XTensor &t, int whereToSplit, int splitNum)
{
if (!t.isInit || !CheckSplitSize(&s, &t, whereToSplit, splitNum)) {
int order = s.order + 1;
......@@ -251,7 +251,7 @@ void Split(const XTensor &s, XTensor &t, int whereToSplit, int splitNum, bool re
/* call _Split function */
_Split(&s, &t, whereToSplit, splitNum);
if (requireLink) {
if (t.enableGrad) {
/* tensor connections */
XLink::MakeLink(&s, NULL, &t, SHAPE_SPLIT);
XLink::AddParamToHeadInt(&t, whereToSplit);
......
......@@ -41,7 +41,7 @@ e.g., (M, N) -> (M, N/3, 3)
*/
XTensor Split(const XTensor &s, int whereToSplit, int splitNum);
void Split(const XTensor &s, XTensor &t, int whereToSplit, int splitNum, bool requireLink = false);
void Split(const XTensor &s, XTensor &t, int whereToSplit, int splitNum);
/* split a big tensor into small tensors */
void _Split(const XTensor * big, TensorList * smalls, int whereToSplit, int splitNum);
......
......@@ -89,6 +89,20 @@ void _SqueezeMe(XTensor * source, int leadingDim)
}
/*
squeeze the tensor along the specified dimension (do it on site)
keep the result in the input tensor a and return nothing
>> source - the input tensor
>> leadingDim - the dimension that we would squeeze
if leadingDim = -1, squeeze all dimensions that are 1
else, squeeze the specified dimension
*/
void SqueezeMe(XTensor& source, int leadingDim)
{
_Squeeze(&source, &source, leadingDim);
}
/*
squeeze the tensor along the specified dimension (return an XTensor structure)
make a new tensor to keep the result and return it
......@@ -112,7 +126,7 @@ XTensor Squeeze(XTensor & source, int leadingDim)
return target;
}
void Squeeze(XTensor & source, XTensor & target, int leadingDim, bool requireLink)
void Squeeze(XTensor & source, XTensor & target, int leadingDim)
{
if (!target.isInit || !XTensor::IsSameShaped(&source, &target)) {
InitTensor(&target, &source);
......@@ -121,7 +135,7 @@ void Squeeze(XTensor & source, XTensor & target, int leadingDim, bool requireLin
/* call _Squeeze function */
_Squeeze(&source, &target, leadingDim);
if (requireLink) {
if (target.enableGrad) {
/* tensor connections */
XLink::MakeLink(&source, NULL, &target, SHAPE_SQUEEZE);
}
......
......@@ -33,11 +33,15 @@ void _Squeeze(XTensor * source, XTensor * target, int leadingDim = -1);
keep the result in the input tensor a and return nothing */
void _SqueezeMe(XTensor * source, int leadingDim = -1);
/* squeeze the tensor along the specified dimension (do it on site)
keep the result in the input tensor a and return nothing */
void SqueezeMe(XTensor & source, int leadingDim = -1);
/* squeeze the tensor along the specified dimension (return an XTensor structure)
make a new tensor to keep the result and return it */
XTensor Squeeze(XTensor & source, int leadingDim = -1);
void Squeeze(XTensor & source, XTensor & target, int leadingDim = -1, bool requireLink = false);
void Squeeze(XTensor & source, XTensor & target, int leadingDim = -1);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -166,7 +166,7 @@ XTensor Unsqueeze(const XTensor &a, int dim, int dSize)
return b;
}
void Unsqueeze(const XTensor &a, XTensor &b, int dim, int dSize, bool requireLink)
void Unsqueeze(const XTensor &a, XTensor &b, int dim, int dSize)
{
if (!b.isInit || !CheckUnsqueezeSize(&a, &b, dim, dSize)) {
int order = a.order + 1;
......@@ -191,7 +191,7 @@ void Unsqueeze(const XTensor &a, XTensor &b, int dim, int dSize, bool requireLin
/* call _Unsqueeze function */
_Unsqueeze(&a, &b, dim, dSize);
if (requireLink) {
if (b.enableGrad) {
/* tensor connections */
XLink::MakeLink(&a, NULL, &b, SHAPE_UNSQUEEZE);
XLink::AddParamToHeadInt(&b, dim);
......
......@@ -35,7 +35,7 @@ void _Unsqueeze(const XTensor * a, XTensor * b, int dim, int dSize);
make a new tensor to keep the result and return it */
XTensor Unsqueeze(const XTensor &a, int dim, int dSize);
void Unsqueeze(const XTensor &a, XTensor &b, int dim, int dSize, bool requireLink = false);
void Unsqueeze(const XTensor &a, XTensor &b, int dim, int dSize);
} // namespace nts(NiuTrans.Tensor)
......
......@@ -98,6 +98,21 @@ void _SortMe(XTensor * a, XTensor * index, int dim)
}
/*
sort the tensor along a given dimension (do it on site)
keep the result in the input tensor a and return nothing
>> a - input tensor
>> index - index of the items in the resulting tensor
>> dim - the dimension along which the sorting is performed
*/
void SortMe(XTensor& a, XTensor& index, int dim)
{
_Sort(&a, &a, &index, dim);
}
/*
sort the tensor along a given dimension (return an XTensor structure)
make a new tensor to keep the result and return it
......
......@@ -36,6 +36,12 @@ keep the result in the input tensor a and return nothing
void _SortMe(XTensor * a, XTensor * index, int dim);
/*
sort the data along a given dimension (do it on site)
keep the result in the input tensor a and return nothing
*/
void SortMe(XTensor & a, XTensor & index, int dim);
/*
sort the data along a given dimension (return an XTensor structure)
make a new tensor to keep the result and return it
*/
......
......@@ -84,7 +84,7 @@ XTensor HardTanH(const XTensor &x)
return y;
}
void HardTanH(const XTensor &x, XTensor &y, bool requireLink)
void HardTanH(const XTensor &x, XTensor &y)
{
if (!y.isInit || !XTensor::IsSameShaped(&y, &x)) {
InitTensor(&y, &x);
......@@ -93,7 +93,7 @@ void HardTanH(const XTensor &x, XTensor &y, bool requireLink)
/* call _HardTanH function */
_HardTanH(&x, &y);
if (requireLink) {
if (y.enableGrad) {
/* tensor connection */
XLink::MakeLink(&x, NULL, &y, FUNC_HARDTANH);
}
......
......@@ -40,7 +40,7 @@ void _HardTanH(const XTensor * x, XTensor * y);
/* hard tanh function (return an XTensor structure) */
XTensor HardTanH(const XTensor &x);
void HardTanH(const XTensor &x, XTensor &y, bool requireLink = false);
void HardTanH(const XTensor &x, XTensor &y);
/* de/dx */
void _HardTanHBackward(XTensor * gold, XTensor * y, XTensor * x,
......
......@@ -58,7 +58,7 @@ XTensor Identity(const XTensor &x)
return y;
}
void Identity(const XTensor &x, XTensor &y, bool requireLink)
void Identity(const XTensor &x, XTensor &y)
{
if (!y.isInit || !y.IsSameShaped(&y, &x)) {
InitTensor(&y, &x);
......@@ -67,7 +67,7 @@ void Identity(const XTensor &x, XTensor &y, bool requireLink)
/* call _Identity function */
_Identity(&x, &y);
if (requireLink) {
if (y.enableGrad) {
/* tensor connection */
XLink::MakeLink(&x, NULL, &y, FUNC_IDENTITY);
}
......
......@@ -33,7 +33,7 @@ void _Identity(const XTensor * x, XTensor * y);
/* identity function y = x (return an XTensor structure) */
XTensor Identity(const XTensor &x);
void Identity(const XTensor &x, XTensor &y, bool requireLink = false);
void Identity(const XTensor &x, XTensor &y);
/* de/dx */
void _IdentityBackward(XTensor * gold, XTensor * y, XTensor * x,
......
......@@ -194,7 +194,15 @@ XTensor LogSoftmax(const XTensor &x, int leadDim)
return y;
}
void LogSoftmax(const XTensor &x, XTensor &y, int leadDim, bool requireLink)
/*
log scale softmax y = log(e^x / \sum_{i} e^{x_i})
make a new tensor to keep the result and return it
>> x - input vector
>> y - output vector
>> leadDim - leading dimension (along which we perform reduction)
*/
void LogSoftmax(const XTensor &x, XTensor &y, int leadDim)
{
int ld = leadDim;
if (ld < 0)
......@@ -207,32 +215,13 @@ void LogSoftmax(const XTensor &x, XTensor &y, int leadDim, bool requireLink)
/* call _LogSoftmax function */
_LogSoftmax(&x, &y, ld);
if (requireLink) {
if (y.enableGrad) {
/* tensor connection */
XLink::MakeLink(&x, NULL, &y, FUNC_LOGSOFTMAX);
XLink::AddParamToHeadInt(&y, ld);
}
}
/*
log scale softmax y = log(e^x / \sum_{i} e^{x_i})
make a new tensor to keep the result and return it
>> x - input vector
>> y - output vector
>> leadDim - leading dimension (along which we perform reduction)
*/
void LogSoftmax(const XTensor &x, XTensor &y, int leadDim)
{
if(!XTensor::IsSameShaped(&x, &y))
InitTensor(&y, &x);
/* call _LogSoftmax function */
_LogSoftmax(&x, &y, leadDim);
/* tensor connection */
XLink::MakeLink(&x, NULL, &y, FUNC_LOGSOFTMAX);
XLink::AddParamToHeadInt(&y, leadDim);
}
/*
backward computation for dense matrices with default data type
......
......@@ -33,8 +33,6 @@ void _LogSoftmax(const XTensor * x, XTensor * y, int leadDim);
/* log scale softmax y = log(e^x / \sum_{i} e^{x_i}) (return an XTensor structure) */
XTensor LogSoftmax(const XTensor &x, int leadDim);
void LogSoftmax(const XTensor &x, XTensor &y, int leadDim, bool requireLink = false);
/* log scale softmax y = log(e^x / \sum_{i} e^{x_i}) (with both argument of x and y) */
void LogSoftmax(const XTensor &x, XTensor &y, int leadDim);
......
......@@ -77,7 +77,7 @@ XTensor Rectify(const XTensor &x)
return y;
}
void Rectify(const XTensor &x, XTensor &y, bool requireLink)
void Rectify(const XTensor &x, XTensor &y)
{
if (!y.isInit || !XTensor::IsSameShaped(&y, &x)) {
InitTensor(&y, &x);
......@@ -86,7 +86,7 @@ void Rectify(const XTensor &x, XTensor &y, bool requireLink)
/* call _Rectify function */
_Rectify(&x, &y);
if (requireLink) {
if (y.enableGrad) {
/* tensor connection */
XLink::MakeLink(&x, NULL, &y, FUNC_RECTIFY);
}
......
......@@ -33,7 +33,7 @@ void _Rectify(const XTensor * x, XTensor * y);
/* rectify function y = max(0, x) (return an XTensor structure) */
XTensor Rectify(const XTensor &x);
void Rectify(const XTensor &x, XTensor &y, bool requireLink = false);
void Rectify(const XTensor &x, XTensor &y);
/* de/dx */
void _RectifyBackward(XTensor * gold, XTensor * y, XTensor * x,
......
......@@ -75,7 +75,7 @@ XTensor Sigmoid(const XTensor &x)
return y;
}
void Sigmoid(const XTensor &x, XTensor &y, bool requireLink)
void Sigmoid(const XTensor &x, XTensor &y)
{
if (!y.isInit || !XTensor::IsSameShaped(&y, &x)) {
InitTensor(&y, &x);
......@@ -84,7 +84,7 @@ void Sigmoid(const XTensor &x, XTensor &y, bool requireLink)
/* call _Sigmoid function */
_Sigmoid(&x, &y);
if (requireLink) {
if (y.enableGrad) {
/* tensor connection */
XLink::MakeLink(&x, NULL, &y, FUNC_SIGMOID);
}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论