Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
c0bcb78b
Commit
c0bcb78b
authored
Mar 30, 2021
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updates of XLeader
parent
0483b910
隐藏空白字符变更
内嵌
并排
正在显示
6 个修改的文件
包含
351 行增加
和
47 行删除
+351
-47
source/train/XLeader.cpp
+0
-41
source/train/XLeader.h
+0
-3
source/train/XLeaderAllReduce.cpp
+289
-0
source/train/XLeaderAllReduce.h
+15
-0
source/train/XLeaderPS.cpp
+44
-3
source/train/XLeaderPS.h
+3
-0
没有找到文件。
source/train/XLeader.cpp
查看文件 @
c0bcb78b
...
...
@@ -184,47 +184,6 @@ void XLeader::MakeAll(XConfig * config, XModel * model)
MakeParamMap
();
}
/*
wait for finished states (i.e., all workers finish their jobs)
>> activeJobWorkers - indicates whether each job worker is active
>> isToUpdate - indicates whether the model is updated
*/
void
XLeader
::
WaitForFinishing
(
const
int
*
activeJobWorkers
,
const
int
isToUpdate
)
{
int
activeCount
=
0
;
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
if
(
activeJobWorkers
[
i
]
>
0
)
{
XWorker
*
worker
=
(
XWorker
*
)
jworkers
[
i
];
worker
->
DequeueFinishedJob
();
activeCount
++
;
CheckNTErrors
(
worker
->
GetFinishedNumInQueue
()
==
0
,
"Incorrect job number!"
);
}
}
if
(
activeCount
>
0
&&
isToUpdate
)
{
for
(
int
i
=
0
;
i
<
cworkers
.
count
;
i
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
cworkers
[
i
];
for
(
int
j
=
0
;
j
<
serverModel
.
paramNum
*
activeCount
;
j
++
)
worker
->
DequeueFinishedJob
();
CheckNTErrors
(
worker
->
GetFinishedNumInQueue
()
==
0
,
"Incorrect job number!"
);
}
for
(
int
i
=
0
;
i
<
uworkers
.
count
;
i
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
uworkers
[
i
];
for
(
int
j
=
0
;
j
<
serverModel
.
paramNum
;
j
++
)
worker
->
DequeueFinishedJob
();
CheckNTErrors
(
worker
->
GetFinishedNumInQueue
()
==
0
,
"Incorrect job number!"
);
}
for
(
int
i
=
0
;
i
<
bworkers
.
count
;
i
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
bworkers
[
i
];
for
(
int
j
=
0
;
j
<
serverModel
.
paramNum
;
j
++
)
worker
->
DequeueFinishedJob
();
CheckNTErrors
(
worker
->
GetFinishedNumInQueue
()
==
0
,
"Incorrect job number!"
);
}
}
}
/* get loss */
float
XLeader
::
GetLoss
()
{
...
...
source/train/XLeader.h
查看文件 @
c0bcb78b
...
...
@@ -138,9 +138,6 @@ public:
/* prepare for running */
void
MakeAll
(
XConfig
*
config
,
XModel
*
model
);
/* wait for finished states (i.e., all workers finish their jobs) */
void
WaitForFinishing
(
const
int
*
activeJobWorkers
,
const
int
isToUpdate
);
/* get loss */
float
GetLoss
();
...
...
source/train/XLeaderAllReduce.cpp
查看文件 @
c0bcb78b
...
...
@@ -45,4 +45,292 @@ XLeaderAllReduce::~XLeaderAllReduce()
{
}
/*
create workers and other stuff
>> config - configuration
>> model - the model that we run
>> devIDs - device ids of the workers (the first id is for server)
>> jobWorkerNum - number of job workers
*/
void
XLeaderAllReduce
::
MakeAll
(
XConfig
*
config
,
XModel
*
model
,
const
int
*
devIDs
,
const
int
jobWorkerNum
)
{
Init
();
AddJobWorker
(
model
,
jobWorkerNum
,
devIDs
);
AddCollectWorker
();
for
(
int
i
=
0
;
i
<
jobWorkerNum
;
i
++
)
AddUpdateWorker
(
model
);
AddParamterWorker
(
model
->
paramNum
);
XLeader
::
MakeAll
(
config
,
model
);
}
/*
wait for finished states (i.e., all workers finish their jobs)
>> activeJobWorkers - indicates whether each job worker is active
>> isToUpdate - indicates whether the model is updated
*/
void
XLeaderAllReduce
::
WaitForFinishing
(
const
int
*
activeJobWorkers
,
const
int
isToUpdate
)
{
int
activeCount
=
0
;
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
if
(
activeJobWorkers
[
i
]
>
0
)
{
XWorker
*
worker
=
(
XWorker
*
)
jworkers
[
i
];
worker
->
DequeueFinishedJob
();
activeCount
++
;
CheckNTErrors
(
worker
->
GetFinishedNumInQueue
()
==
0
,
"Incorrect job number!"
);
}
}
if
(
activeCount
>
0
&&
isToUpdate
)
{
for
(
int
i
=
0
;
i
<
cworkers
.
count
;
i
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
cworkers
[
i
];
for
(
int
j
=
0
;
j
<
activeCount
;
j
++
)
worker
->
DequeueFinishedJob
();
CheckNTErrors
(
worker
->
GetFinishedNumInQueue
()
==
0
,
"Incorrect job number!"
);
}
for
(
int
i
=
0
;
i
<
uworkers
.
count
;
i
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
uworkers
[
i
];
for
(
int
j
=
0
;
j
<
serverModel
.
paramNum
;
j
++
)
worker
->
DequeueFinishedJob
();
CheckNTErrors
(
worker
->
GetFinishedNumInQueue
()
==
0
,
"Incorrect job number!"
);
}
}
}
/*
run the model (for one time). Basically this is a map-reduce process.
>> config - the configuration
>> dataDistributor - data distributor
>> optimizer - the optimization method
<< return - if we can fetch the new data
*/
bool
XLeaderAllReduce
::
Run
(
XConfig
*
config
,
DataDistributeBase
*
dataDistributor
,
XOptimizer
*
optimizer
)
{
CheckNTErrors
(
jworkers
.
count
>
0
,
"No jworkers!"
);
CheckNTErrors
(
cworkers
.
count
>
0
,
"No cworkers!"
);
CheckNTErrors
(
uworkers
.
count
>
0
,
"No uworkers!"
);
CheckNTErrors
(
bworkers
.
count
>
0
,
"No bworkers!"
);
CheckNTErrors
(
pworkers
.
count
>
0
,
"No pworkers!"
);
bool
isToUpdate
=
(
optimizer
!=
NULL
);
int
activeJobCount
=
0
;
int
*
active
=
new
int
[
jworkers
.
count
];
InitForRun
();
/* run models on job workers */
activeJobCount
=
RunModel
(
config
,
dataDistributor
,
active
);
/* update the model on the server side */
if
(
activeJobCount
>
0
&&
isToUpdate
)
RunUpdate
(
config
,
optimizer
,
active
);
WaitForFinishing
(
active
,
isToUpdate
);
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
i
];
worker
->
Clear
();
}
delete
[]
active
;
return
activeJobCount
>
0
;
}
/*
run the model
>> config - the configuration
>> dataDistributor - to load batches of samples
>> active - flag for each job worker (1 = active, 0 = not active)
<< return - number of active job workers
*/
int
XLeaderAllReduce
::
RunModel
(
XConfig
*
config
,
DataDistributeBase
*
dataDistributor
,
int
*
active
)
{
int
activeJobCount
=
0
;
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
active
[
i
]
=
0
;
/* Feed the input to each worker and geneate the output.
For each worker, we define a job queue and enqueue jobs
into it.
*/
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
i
];
XModel
*
jmodel
=
worker
->
GetModel
();
/* get a batch of samples */
bool
fetched
=
dataDistributor
->
GetBatchSimple
(
worker
->
GetInput
(),
worker
->
GetGold
());
if
(
fetched
)
{
/* job in queue 1: refresh the model */
worker
->
AddJobRefresh
(
jmodel
);
/* job in queue 1: run the model */
worker
->
AddJobNeuralNet
(
jmodel
,
worker
->
GetInput
(),
worker
->
GetOutput
(),
worker
->
GetGold
(),
worker
->
GetLoss
());
/* job in queue 1: make a record of the run */
worker
->
AddJobRecord
(
&
serverRecord
);
/* job in queue 1: mark finished */
worker
->
AddJobEnqueueFinished
();
active
[
i
]
=
1
;
activeJobCount
++
;
}
}
return
activeJobCount
;
}
/*
update the model in a standard server-worker manner
>> config - the configuration
>> optimizer - the optimizer
>> active - flag for each job worker (1 = active, 0 = not active)
*/
void
XLeaderAllReduce
::
RunUpdate
(
XConfig
*
config
,
XOptimizer
*
optimizer
,
const
int
*
active
)
{
/* workers */
XWorkerCollect
*
collecter
=
(
XWorkerCollect
*
)
cworkers
.
GetItem
(
0
);
XWorkerUpdate
*
updater
=
(
XWorkerUpdate
*
)
uworkers
.
GetItem
(
0
);
XWorkerBroadcast
*
broadcaster
=
(
XWorkerBroadcast
*
)
bworkers
.
GetItem
(
0
);
/* parameter map */
MakeParamMap
();
/* all member models */
XList
membersAll
(
jworkers
.
count
);
/* job queues */
XList
jobQueues
;
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
i
];
membersAll
.
Add
(
worker
->
GetModel
());
}
for
(
int
i
=
0
;
i
<
pworkers
.
count
;
i
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
pworkers
[
i
];
jobQueues
.
Add
(
worker
->
GetJobQueue
());
}
CheckNTErrors
(
jobQueues
.
count
==
serverModel
.
paramNum
,
"Incompatiable model!"
);
/* jobs in queue 2 (say jobQueue): collect the (gradient) data.
This is a reduce process. Then we add a job to to update the model. followed
by a job to broadcast the lastest parameters to workers. NOTE that we
would update a worker to the latest model parameters, even if it is not
involved in this run. */
int
finished
=
0
;
for
(
int
j
=
0
;
j
<
serverModel
.
paramNum
;
j
++
)
serverModel
.
params
[
j
].
flag
=
PARAM_STATE_NOT_READY
;
/* counts how many member models are collected for each parameter */
int
*
finishedCount
=
new
int
[
serverModel
.
paramNum
];
memset
(
finishedCount
,
0
,
sizeof
(
int
)
*
serverModel
.
paramNum
);
/* flag active models */
int
modelCount
=
0
;
int
activeModelCount
=
0
;
int
*
modelFlag
=
new
int
[
modelNum
];
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
i
];
for
(
int
j
=
0
;
j
<
worker
->
GetModelNum
();
j
++
)
{
modelFlag
[
modelCount
++
]
=
active
[
i
];
if
(
active
[
i
]
!=
0
)
activeModelCount
++
;
}
}
XList
*
paramList
=
new
XList
[
serverModel
.
paramNum
];
CheckNTErrors
(
modelCount
==
modelNum
,
"Wrong model number!"
);
/* This is a simple implementation of the do-and-wait process */
while
(
1
)
{
for
(
int
j
=
0
;
j
<
serverModel
.
paramNum
;
j
++
)
{
XTensorKeeper
&
paramServer
=
serverModel
.
params
[
j
];
/* isGradFinished is true only if the model finishes the computation
(in another thread) */
if
(
paramServer
.
flag
!=
PARAM_STATE_NOT_READY
||
!
paramServer
.
tensor
->
isGradFinished
)
continue
;
/* set the gradient tensor */
if
(
paramServer
.
grad
!=
paramServer
.
tensor
->
grad
)
paramServer
.
grad
=
paramServer
.
tensor
->
grad
;
/* check if all the models (or part of them) are ready */
for
(
int
n
=
0
,
i
=
0
;
n
<
jworkers
.
count
;
n
++
)
{
XWorkerJob
*
worker
=
(
XWorkerJob
*
)
jworkers
[
n
];
for
(
int
m
=
0
;
m
<
worker
->
GetModelNum
();
m
++
,
i
++
)
{
XTensorKeeper
&
paramWorker
=
paramMap
[
j
][
i
];
/* isGradFinished is true only if the model finishes the computation
(in another thread) */
if
(
paramWorker
.
flag
==
PARAM_STATE_NOT_READY
&&
paramWorker
.
tensor
->
isGradFinished
)
{
/* get the gradient */
paramWorker
.
grad
=
paramWorker
.
tensor
->
grad
;
/* the job queue of updating parameter j */
XQueue
*
jobQueue
=
(
XQueue
*
)
jobQueues
.
GetItem
(
j
);
/* data transmit */
collecter
->
AddJobCollectDataP2P
(
jobQueue
,
paramWorker
.
grad
,
paramServer
.
grad
);
collecter
->
AddJobEnqueueFinished
(
jobQueue
);
/* We keep the worker parameter in a list. It would be used when we broadcast
the updated paramter to the workers, that is, this is a list of worker
parameters. */
paramList
[
j
].
Add
(
&
paramWorker
);
/* reset the flag */
paramWorker
.
flag
=
PARAM_STATE_COLLECTED
;
finished
++
;
finishedCount
[
j
]
++
;
/* we call model update (in another thread) and then
broadcast the new parameters to member models
(in another thread) */
if
(
finishedCount
[
j
]
==
activeModelCount
)
{
paramServer
.
flag
=
PARAM_STATE_COLLECTED
;
if
(
updater
!=
NULL
)
{
/* update the parameters */
updater
->
AddJobUpdate
(
jobQueue
,
&
paramServer
,
optimizer
);
updater
->
AddJobEnqueueFinished
(
jobQueue
);
/* broadcast the new parameter to other models */
broadcaster
->
AddJobBroadcast
(
jobQueue
,
&
paramServer
,
&
paramList
[
j
]);
broadcaster
->
AddJobEnqueueFinished
(
jobQueue
);
}
}
else
if
(
finishedCount
[
j
]
>
activeModelCount
)
{
ShowNTErrors
(
"Something is wrong with finishedCount!"
);
}
}
}
}
}
/* finishes if all data tensors are processed */
if
(
finished
==
serverModel
.
paramNum
*
activeModelCount
)
break
;
XSleep
(
SLEEP_TIME_IN_WAITING_JOB_WORKERS
);
}
delete
[]
finishedCount
;
delete
[]
modelFlag
;
delete
[]
paramList
;
}
}
\ No newline at end of file
source/train/XLeaderAllReduce.h
查看文件 @
c0bcb78b
...
...
@@ -49,6 +49,21 @@ public:
/* deconstructor */
~
XLeaderAllReduce
();
/* create workers and other stuff used in training */
void
MakeAll
(
XConfig
*
config
,
XModel
*
model
,
const
int
*
devIDs
,
const
int
jobWorkerNum
);
/* wait for finished states (i.e., all workers finish their jobs) */
void
WaitForFinishing
(
const
int
*
activeJobWorkers
,
const
int
isToUpdate
);
/* run the model and update it (for one time) */
bool
Run
(
XConfig
*
config
,
DataDistributeBase
*
dataDistributor
,
XOptimizer
*
optimizer
);
/* run the model */
int
RunModel
(
XConfig
*
config
,
DataDistributeBase
*
dataDistributor
,
int
*
active
);
/* update the model */
void
RunUpdate
(
XConfig
*
config
,
XOptimizer
*
optimizer
,
const
int
*
active
);
};
}
...
...
source/train/XLeaderPS.cpp
查看文件 @
c0bcb78b
...
...
@@ -44,7 +44,7 @@ XLeaderPS::~XLeaderPS()
}
/*
create workers
create workers
and other stuff
>> config - configuration
>> model - the model that we run
>> devIDs - device ids of the workers (the first id is for server)
...
...
@@ -63,6 +63,47 @@ void XLeaderPS::MakeAll(XConfig * config, XModel * model, const int * devIDs, co
}
/*
wait for finished states (i.e., all workers finish their jobs)
>> activeJobWorkers - indicates whether each job worker is active
>> isToUpdate - indicates whether the model is updated
*/
void
XLeaderPS
::
WaitForFinishing
(
const
int
*
activeJobWorkers
,
const
int
isToUpdate
)
{
int
activeCount
=
0
;
for
(
int
i
=
0
;
i
<
jworkers
.
count
;
i
++
)
{
if
(
activeJobWorkers
[
i
]
>
0
)
{
XWorker
*
worker
=
(
XWorker
*
)
jworkers
[
i
];
worker
->
DequeueFinishedJob
();
activeCount
++
;
CheckNTErrors
(
worker
->
GetFinishedNumInQueue
()
==
0
,
"Incorrect job number!"
);
}
}
if
(
activeCount
>
0
&&
isToUpdate
)
{
for
(
int
i
=
0
;
i
<
cworkers
.
count
;
i
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
cworkers
[
i
];
for
(
int
j
=
0
;
j
<
serverModel
.
paramNum
*
activeCount
;
j
++
)
worker
->
DequeueFinishedJob
();
CheckNTErrors
(
worker
->
GetFinishedNumInQueue
()
==
0
,
"Incorrect job number!"
);
}
for
(
int
i
=
0
;
i
<
uworkers
.
count
;
i
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
uworkers
[
i
];
for
(
int
j
=
0
;
j
<
serverModel
.
paramNum
;
j
++
)
worker
->
DequeueFinishedJob
();
CheckNTErrors
(
worker
->
GetFinishedNumInQueue
()
==
0
,
"Incorrect job number!"
);
}
for
(
int
i
=
0
;
i
<
bworkers
.
count
;
i
++
)
{
XWorker
*
worker
=
(
XWorker
*
)
bworkers
[
i
];
for
(
int
j
=
0
;
j
<
serverModel
.
paramNum
;
j
++
)
worker
->
DequeueFinishedJob
();
CheckNTErrors
(
worker
->
GetFinishedNumInQueue
()
==
0
,
"Incorrect job number!"
);
}
}
}
/*
run the model (for one time). Basically this is a map-reduce process.
>> config - the configuration
>> dataDistributor - data distributor
...
...
@@ -133,8 +174,8 @@ int XLeaderPS::RunModel(XConfig* config, DataDistributeBase* dataDistributor, in
/* job in queue 1: run the model */
worker
->
AddJobNeuralNet
(
jmodel
,
worker
->
GetInput
(),
worker
->
GetOutput
(),
worker
->
GetGold
(),
worker
->
GetLoss
());
worker
->
GetInput
(),
worker
->
GetOutput
(),
worker
->
GetGold
(),
worker
->
GetLoss
());
/* job in queue 1: make a record of the run */
worker
->
AddJobRecord
(
&
serverRecord
);
...
...
source/train/XLeaderPS.h
查看文件 @
c0bcb78b
...
...
@@ -50,6 +50,9 @@ public:
/* create workers and other stuff used in training */
void
MakeAll
(
XConfig
*
config
,
XModel
*
model
,
const
int
*
devIDs
,
const
int
jobWorkerNum
);
/* wait for finished states (i.e., all workers finish their jobs) */
void
WaitForFinishing
(
const
int
*
activeJobWorkers
,
const
int
isToUpdate
);
/* run the model and update it (for one time) */
bool
Run
(
XConfig
*
config
,
DataDistributeBase
*
dataDistributor
,
XOptimizer
*
optimizer
);
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论