Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
d1714e17
Commit
d1714e17
authored
Jul 16, 2019
by
liyinqiao
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Clean the codes.
parent
151efd50
隐藏空白字符变更
内嵌
并排
正在显示
4 个修改的文件
包含
0 行增加
和
921 行删除
+0
-921
source/tensor/function/CrossEntropy.cpp
+0
-595
source/tensor/function/CrossEntropy.cu
+0
-215
source/tensor/function/CrossEntropy.cuh
+0
-49
source/tensor/function/CrossEntropy.h
+0
-62
没有找到文件。
source/tensor/function/CrossEntropy.cpp
deleted
100644 → 0
查看文件 @
151efd50
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-09-17
*/
#include <math.h>
#include "CrossEntropy.h"
#include "CrossEntropy.cuh"
#include "../core/arithmetic/MultiplyDim.h"
#include "../core/arithmetic/Multiply.h"
#include "../core/math/Unary.h"
#include "../core/math/ScaleAndShift.h"
#include "../core/arithmetic/Negate.h"
#include "../core/reduce/ReduceSum.h"
#include "../core/reduce/ReduceSumAll.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
/*
compute the cross entropy loss
loss = sum_{i} (-gold_i * log(output_i))
where gold and output are distributions
>> output - model prediction
>> gold - gold standard
>> loss - compute loss
>> weight - a rescaling weight given to each class
>> padding - specify a target value that is ignored and does not contribute to the loss computation
>> leadingDim - the leading dimension for the output
*/
void
_CrossEntropy
(
const
XTensor
*
output
,
const
XTensor
*
gold
,
XTensor
*
loss
,
const
XTensor
*
weight
,
const
XTensor
*
padding
,
int
leadingDim
)
{
int
n
=
leadingDim
<
0
?
output
->
order
-
1
:
leadingDim
;
int
unitNum
=
output
->
dimSize
[
n
];
CheckNTErrors
(
n
>=
0
&&
n
<
output
->
order
,
"Wrong leadingDim!"
);
CheckNTErrors
(
XTensor
::
IsSameShaped
(
output
,
gold
),
"The output tensor and gold tensor must be of the same size!"
);
CheckNTErrors
(
weight
==
NULL
||
weight
->
unitNum
==
unitNum
,
"Wrong weight tensor!"
);
CheckNTErrors
(
padding
==
NULL
||
XTensor
::
IsSameShaped
(
padding
,
loss
),
"The loss tensor and padding tensor must be same shape!"
);
CheckNTErrors
(
loss
->
order
==
output
->
order
-
1
,
"Wrong loss dimension!"
);
CheckNTErrors
(
gold
->
dataType
==
DEFAULT_DTYPE
&&
output
->
dataType
==
DEFAULT_DTYPE
,
"TODO!"
);
XTensor
*
interBuf1
=
NewTensorBuf
(
output
,
output
->
devID
,
output
->
mem
);
XTensor
*
interBuf2
=
NewTensorBuf
(
output
,
output
->
devID
,
output
->
mem
);
_Log
(
output
,
interBuf1
);
_Multiply
(
gold
,
interBuf1
,
interBuf2
);
if
(
weight
!=
NULL
)
_MultiplyDimMe
(
interBuf2
,
weight
,
n
);
_NegateMe
(
interBuf2
);
_ReduceSum
(
interBuf2
,
loss
,
n
);
if
(
padding
!=
NULL
)
_MultiplyMe
(
loss
,
padding
);
DelTensorBuf
(
interBuf2
);
DelTensorBuf
(
interBuf1
);
}
/*
compute the cross entropy loss (faster implementation with optimized code)
loss = sum_{i} (-gold_i * log(output_i))
where gold and output are distributions
>> output - model prediction
>> gold - gold standard
>> loss - compute loss
>> weight - a rescaling weight given to each class
>> padding - specify a target value that is ignored and does not contribute to the loss computation
>> leadingDim - the leading dimension for the output
*/
void
_CrossEntropyFast
(
const
XTensor
*
output
,
const
XTensor
*
gold
,
XTensor
*
loss
,
const
XTensor
*
weight
,
const
XTensor
*
padding
,
int
leadingDim
)
{
int
order
=
output
->
order
;
int
n
=
leadingDim
<
0
?
output
->
order
-
1
:
leadingDim
;
int
leadingDimSize
=
output
->
GetDim
(
n
);
CheckNTErrors
(
n
>=
0
&&
n
<
output
->
order
,
"Wrong leading dimension!"
);
CheckNTErrors
(
XTensor
::
IsSameShaped
(
output
,
gold
),
"The output tensor and gold tensor must be of the same size!"
);
CheckNTErrors
(
weight
==
NULL
||
weight
->
unitNum
==
leadingDimSize
,
"Wrong weight tensor!"
);
CheckNTErrors
(
padding
==
NULL
||
XTensor
::
IsSameShaped
(
padding
,
loss
),
"The loss tensor and padding tensor must be same shape!"
);
CheckNTErrors
(
loss
->
order
==
output
->
order
-
1
,
"Wrong loss dimension!"
);
CheckNTErrors
(
gold
->
dataType
==
DEFAULT_DTYPE
&&
output
->
dataType
==
DEFAULT_DTYPE
,
"TODO!"
);
for
(
int
i
=
0
;
i
<
order
;
i
++
){
if
(
i
<
n
){
CheckNTErrors
((
output
->
GetDim
(
i
)
==
loss
->
GetDim
(
i
)),
"Unmatched tensors!"
);
}
else
if
(
i
>
n
){
CheckNTErrors
((
output
->
GetDim
(
i
)
==
loss
->
GetDim
(
i
-
1
)),
"Unmatched tensors!"
);
}
}
#ifdef USE_CUDA
if
(
output
->
devID
>=
0
)
{
_CudaCrossEntropyFast
(
output
,
gold
,
loss
,
weight
,
padding
,
leadingDim
);
return
;
}
#endif
int
blockNum
=
1
;
int
blockSize
=
1
;
int
stride
=
1
;
for
(
int
i
=
n
+
1
;
i
<
order
;
i
++
)
stride
*=
output
->
GetDim
(
i
);
blockSize
=
stride
*
leadingDimSize
;
blockNum
=
output
->
unitNum
/
blockSize
;
DTYPE
*
outputData
=
(
DTYPE
*
)
output
->
data
;
DTYPE
*
goldData
=
(
DTYPE
*
)
gold
->
data
;
DTYPE
*
lossData
=
(
DTYPE
*
)
loss
->
data
;
DTYPE
tmpLoss
;
int
lossPos
;
int
goldPos
;
if
(
weight
==
NULL
)
{
if
(
padding
==
NULL
)
{
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
tmpLoss
=
0
;
lossPos
=
i
*
stride
+
j
;
for
(
int
k
=
0
;
k
<
leadingDimSize
;
k
++
)
{
goldPos
=
i
*
blockSize
+
j
+
k
*
stride
;
tmpLoss
+=
-
(
*
(
goldData
+
goldPos
))
*
(
DTYPE
)
log
(
*
(
outputData
+
goldPos
));
}
*
(
lossData
+
lossPos
)
=
tmpLoss
;
}
}
}
else
{
DTYPE
*
paddingData
=
(
DTYPE
*
)
padding
->
data
;
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
lossPos
=
i
*
stride
+
j
;
if
(
*
(
paddingData
+
lossPos
)
==
0
)
*
(
lossData
+
lossPos
)
=
0
;
else
{
tmpLoss
=
0
;
for
(
int
k
=
0
;
k
<
leadingDimSize
;
k
++
)
{
goldPos
=
i
*
blockSize
+
j
+
k
*
stride
;
tmpLoss
+=
-
(
*
(
goldData
+
goldPos
))
*
(
DTYPE
)
log
(
*
(
outputData
+
goldPos
));
}
*
(
lossData
+
lossPos
)
=
tmpLoss
;
}
}
}
}
}
else
{
DTYPE
*
weightData
=
(
DTYPE
*
)
weight
->
data
;
if
(
padding
==
NULL
)
{
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
tmpLoss
=
0
;
lossPos
=
i
*
stride
+
j
;
for
(
int
k
=
0
;
k
<
leadingDimSize
;
k
++
)
{
goldPos
=
i
*
blockSize
+
j
+
k
*
stride
;
tmpLoss
+=
-
(
*
(
goldData
+
goldPos
))
*
(
DTYPE
)
log
(
*
(
outputData
+
goldPos
))
*
(
*
(
weightData
+
k
));
}
*
(
lossData
+
lossPos
)
=
tmpLoss
;
}
}
}
else
{
DTYPE
*
paddingData
=
(
DTYPE
*
)
padding
->
data
;
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
lossPos
=
i
*
stride
+
j
;
if
(
*
(
paddingData
+
lossPos
)
==
0
)
*
(
lossData
+
lossPos
)
=
0
;
else
{
tmpLoss
=
0
;
for
(
int
k
=
0
;
k
<
leadingDimSize
;
k
++
)
{
goldPos
=
i
*
blockSize
+
j
+
k
*
stride
;
tmpLoss
+=
-
(
*
(
goldData
+
goldPos
))
*
(
DTYPE
)
log
(
*
(
outputData
+
goldPos
))
*
(
*
(
weightData
+
k
));
}
*
(
lossData
+
lossPos
)
=
tmpLoss
;
}
}
}
}
}
}
/*
compute the cross entropy loss
loss = sum_{i} (-gold_i * log(output_i))
where gold and output are distributions
>> output - model prediction
>> gold - gold standard
>> reduce - loss compute way, sum or mean
>> weight - a rescaling weight given to each class
>> padding - specify a target value that is ignored and does not contribute to the loss computation
>> leadingDim - the leading dimension for the output
*/
DTYPE
_CrossEntropy
(
const
XTensor
*
output
,
const
XTensor
*
gold
,
LOSS_COMPUTE_WAY
reduceWay
,
const
XTensor
*
weight
,
const
XTensor
*
padding
,
int
leadingDim
)
{
DTYPE
loss
=
0
;
int
order
=
output
->
order
;
int
n
=
leadingDim
<
0
?
output
->
order
-
1
:
leadingDim
;
int
unitNum
=
output
->
dimSize
[
n
];
CheckNTErrors
(
n
>=
0
&&
n
<
output
->
order
,
"Wrong leadingDim!"
);
CheckNTErrors
(
XTensor
::
IsSameShaped
(
output
,
gold
),
"The output tensor and gold tensor must be of the same size!"
);
CheckNTErrors
(
weight
==
NULL
||
weight
->
unitNum
==
unitNum
,
"Wrong weight tensor!"
);
CheckNTErrors
(
padding
==
NULL
||
padding
->
order
==
output
->
order
-
1
,
"The loss tensor and padding tensor must be same shape!"
);
CheckNTErrors
(
gold
->
dataType
==
DEFAULT_DTYPE
&&
output
->
dataType
==
DEFAULT_DTYPE
,
"TODO!"
);
int
*
dimSize
=
new
int
[
order
-
1
];
for
(
int
i
=
0
;
i
<
order
;
i
++
)
{
if
(
i
<
n
)
dimSize
[
i
]
=
output
->
dimSize
[
i
];
else
if
(
i
>
n
)
dimSize
[
i
-
1
]
=
output
->
dimSize
[
i
];
}
XTensor
*
lossBuf
=
NewTensorBuf
(
output
->
order
-
1
,
dimSize
,
output
->
dataType
,
output
->
denseRatio
,
output
->
devID
,
output
->
mem
);
_CrossEntropy
(
output
,
gold
,
lossBuf
,
weight
,
padding
,
leadingDim
);
loss
=
_ReduceSumAll
(
lossBuf
);
if
(
reduceWay
==
REDUCE_MEAN
)
{
int
nonZeroNum
;
if
(
padding
==
NULL
)
{
nonZeroNum
=
lossBuf
->
unitNum
;
}
else
{
XTensor
*
tmp
=
NewTensorBuf
(
padding
,
padding
->
devID
,
padding
->
mem
);
_IsNonZero
(
padding
,
tmp
);
nonZeroNum
=
(
int
)
_ReduceSumAll
(
tmp
);
DelTensorBuf
(
tmp
);
}
loss
=
loss
/
(
DTYPE
)
nonZeroNum
;
}
else
if
(
reduceWay
==
REDUCE_SUM
)
{
/* don't need to do anything */
}
else
{
ShowNTErrors
(
"TODO"
);
}
delete
[]
dimSize
;
DelTensorBuf
(
lossBuf
);
return
loss
;
}
/*
compute the cross entropy loss (faster implementation with optimized code)
loss = sum_{i} (-gold_i * log(output_i))
where gold and output are distributions
>> output - model prediction
>> gold - gold standard
>> reduceWay - loss compute way, sum or mean
>> weight - a rescaling weight given to each class
>> padding - specify a target value that is ignored and does not contribute to the loss computation
>> leadingDim - the leading dimension for the output
<< return - the cross entropy loss that is a scalar
*/
DTYPE
_CrossEntropyFast
(
const
XTensor
*
output
,
const
XTensor
*
gold
,
LOSS_COMPUTE_WAY
reduceWay
,
const
XTensor
*
weight
,
const
XTensor
*
padding
,
int
leadingDim
)
{
DTYPE
loss
=
0
;
int
order
=
output
->
order
;
int
n
=
leadingDim
<
0
?
output
->
order
-
1
:
leadingDim
;
int
leadingDimSize
=
output
->
GetDim
(
n
);
CheckNTErrors
(
n
>=
0
&&
n
<
output
->
order
,
"Wrong leadingDim!"
);
CheckNTErrors
(
XTensor
::
IsSameShaped
(
output
,
gold
),
"The output tensor and gold tensor must be of the same size!"
);
CheckNTErrors
(
weight
==
NULL
||
weight
->
unitNum
==
leadingDimSize
,
"Wrong weight tensor!"
);
CheckNTErrors
(
padding
==
NULL
||
padding
->
order
==
output
->
order
-
1
,
"Wrong padding tensor!"
);
CheckNTErrors
(
gold
->
dataType
==
DEFAULT_DTYPE
&&
output
->
dataType
==
DEFAULT_DTYPE
,
"TODO!"
);
if
(
padding
!=
NULL
)
{
for
(
int
i
=
0
;
i
<
order
;
i
++
){
if
(
i
<
n
){
CheckNTErrors
((
output
->
GetDim
(
i
)
==
padding
->
GetDim
(
i
)),
"Unmatched tensors!"
);
}
else
if
(
i
>
n
){
CheckNTErrors
((
output
->
GetDim
(
i
)
==
padding
->
dimSize
[
i
-
1
]),
"Unmatched tensors!"
);
}
}
}
#ifdef USE_CUDA
if
(
output
->
devID
>=
0
)
{
return
_CudaCrossEntropyFast
(
output
,
gold
,
reduceWay
,
weight
,
padding
,
leadingDim
);
}
#endif
int
blockNum
=
1
;
int
blockSize
=
1
;
int
stride
=
1
;
for
(
int
i
=
n
+
1
;
i
<
order
;
i
++
)
stride
*=
output
->
GetDim
(
i
);
blockSize
=
stride
*
leadingDimSize
;
blockNum
=
output
->
unitNum
/
blockSize
;
DTYPE
*
outputData
=
(
DTYPE
*
)
output
->
data
;
DTYPE
*
goldData
=
(
DTYPE
*
)
gold
->
data
;
int
paddingPos
;
int
goldPos
;
int
nonZeroNum
=
0
;
if
(
weight
==
NULL
)
{
if
(
padding
==
NULL
)
{
nonZeroNum
=
blockNum
*
stride
;
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
paddingPos
=
i
*
stride
+
j
;
for
(
int
k
=
0
;
k
<
leadingDimSize
;
k
++
)
{
goldPos
=
i
*
blockSize
+
j
+
k
*
stride
;
loss
+=
-
(
*
(
goldData
+
goldPos
))
*
(
DTYPE
)
log
(
*
(
outputData
+
goldPos
));
}
}
}
}
else
{
DTYPE
*
paddingData
=
(
DTYPE
*
)
padding
->
data
;
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
paddingPos
=
i
*
stride
+
j
;
if
(
*
(
paddingData
+
paddingPos
)
==
0
)
continue
;
else
{
nonZeroNum
+=
1
;
for
(
int
k
=
0
;
k
<
leadingDimSize
;
k
++
)
{
goldPos
=
i
*
blockSize
+
j
+
k
*
stride
;
loss
+=
-
(
*
(
goldData
+
goldPos
))
*
(
DTYPE
)
log
(
*
(
outputData
+
goldPos
));
}
}
}
}
}
}
else
{
DTYPE
*
weightData
=
(
DTYPE
*
)
weight
->
data
;
if
(
padding
==
NULL
)
{
nonZeroNum
=
blockNum
*
stride
;
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
paddingPos
=
i
*
stride
+
j
;
for
(
int
k
=
0
;
k
<
leadingDimSize
;
k
++
)
{
goldPos
=
i
*
blockSize
+
j
+
k
*
stride
;
loss
+=
-
(
*
(
goldData
+
goldPos
))
*
(
DTYPE
)
log
(
*
(
outputData
+
goldPos
))
*
(
*
(
weightData
+
k
));
}
}
}
}
else
{
DTYPE
*
paddingData
=
(
DTYPE
*
)
padding
->
data
;
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
paddingPos
=
i
*
stride
+
j
;
if
(
*
(
paddingData
+
paddingPos
)
==
0
)
continue
;
else
{
nonZeroNum
+=
1
;
for
(
int
k
=
0
;
k
<
leadingDimSize
;
k
++
)
{
goldPos
=
i
*
blockSize
+
j
+
k
*
stride
;
loss
+=
-
(
*
(
goldData
+
goldPos
))
*
(
DTYPE
)
log
(
*
(
outputData
+
goldPos
))
*
(
*
(
weightData
+
j
));
}
}
}
}
}
}
if
(
reduceWay
==
REDUCE_MEAN
)
{
loss
=
loss
/
(
DTYPE
)
nonZeroNum
;
}
else
if
(
reduceWay
==
REDUCE_SUM
)
{
/* don't need to do anything */
}
else
{
ShowNTErrors
(
"TODO"
);
}
return
loss
;
}
/*
backward compuation for cross entropy function
loss = sum_{i} (-t_i * log(y_i))
dE/dy_i = -t_i / y_i
where E is the error(loss) function that measure the errors in y
with respect to gold standard, and y this the model output
>> dedy - dE/dy (for return)
>> output - model prediction
>> gold - gold standard
>> weight - a rescaling weight given to each class
>> padding - specify a target value that is ignored and does not contribute to the loss computation
>> leadingDim - the leading dimension for the output
*/
void
_CrossEntropyBackward
(
XTensor
*
dedy
,
const
XTensor
*
output
,
const
XTensor
*
gold
,
const
XTensor
*
weight
,
XTensor
*
padding
,
int
leadingDim
)
{
int
order
=
output
->
order
;
int
n
=
leadingDim
<
0
?
output
->
order
-
1
:
leadingDim
;
int
leadingDimSize
=
output
->
GetDim
(
n
);
CheckNTErrors
(
n
>=
0
&&
n
<
output
->
order
,
"Wrong leading dimension!"
);
CheckNTErrors
(
XTensor
::
IsSameShaped
(
dedy
,
output
,
gold
),
"The output tensor and gold tensor must be of the same size!"
);
CheckNTErrors
(
weight
==
NULL
||
weight
->
unitNum
==
leadingDimSize
,
"Wrong weight tensor!"
);
CheckNTErrors
(
padding
==
NULL
||
padding
->
order
==
output
->
order
-
1
,
"Wrong padding tensor!"
);
CheckNTErrors
(
gold
->
dataType
==
DEFAULT_DTYPE
&&
output
->
dataType
==
DEFAULT_DTYPE
,
"TODO!"
);
if
(
padding
!=
NULL
)
{
for
(
int
i
=
0
;
i
<
order
;
i
++
){
if
(
i
<
n
){
CheckNTErrors
((
output
->
GetDim
(
i
)
==
padding
->
GetDim
(
i
)),
"Unmatched tensors!"
);
}
else
if
(
i
>
n
){
CheckNTErrors
((
output
->
GetDim
(
i
)
==
padding
->
dimSize
[
i
-
1
]),
"Unmatched tensors!"
);
}
}
}
#ifdef USE_CUDA
if
(
output
->
devID
>=
0
)
{
_CudaCrossEntropyBackward
(
dedy
,
output
,
gold
,
weight
,
padding
,
leadingDim
);
return
;
}
#endif
int
blockNum
=
1
;
int
blockSize
=
1
;
int
stride
=
1
;
for
(
int
i
=
n
+
1
;
i
<
order
;
i
++
)
stride
*=
output
->
GetDim
(
i
);
blockSize
=
stride
*
leadingDimSize
;
blockNum
=
output
->
unitNum
/
blockSize
;
DTYPE
*
dedyData
=
(
DTYPE
*
)
dedy
->
data
;
DTYPE
*
outputData
=
(
DTYPE
*
)
output
->
data
;
DTYPE
*
goldData
=
(
DTYPE
*
)
gold
->
data
;
int
paddingPos
;
int
goldPos
;
if
(
weight
==
NULL
)
{
if
(
padding
==
NULL
)
{
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
for
(
int
k
=
0
;
k
<
leadingDimSize
;
k
++
)
{
goldPos
=
i
*
blockSize
+
j
+
k
*
stride
;
*
(
dedyData
+
goldPos
)
=
-
(
*
(
goldData
+
goldPos
))
/
(
*
(
outputData
+
goldPos
));
}
}
}
}
else
{
DTYPE
*
paddingData
=
(
DTYPE
*
)
padding
->
data
;
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
paddingPos
=
i
*
stride
+
j
;
for
(
int
k
=
0
;
k
<
leadingDimSize
;
k
++
)
{
goldPos
=
i
*
blockSize
+
j
+
k
*
stride
;
if
(
*
(
paddingData
+
paddingPos
)
==
0
)
*
(
dedyData
+
goldPos
)
=
0
;
else
*
(
dedyData
+
goldPos
)
=
-
(
*
(
goldData
+
goldPos
))
/
(
*
(
outputData
+
goldPos
));
}
}
}
}
}
else
{
DTYPE
*
weightData
=
(
DTYPE
*
)
weight
->
data
;
if
(
padding
==
NULL
)
{
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
for
(
int
k
=
0
;
k
<
leadingDimSize
;
k
++
)
{
goldPos
=
i
*
blockSize
+
j
+
k
*
stride
;
*
(
dedyData
+
goldPos
)
=
-
(
*
(
weightData
+
k
))
*
(
*
(
goldData
+
goldPos
))
/
(
*
(
outputData
+
goldPos
));
}
}
}
}
else
{
DTYPE
*
paddingData
=
(
DTYPE
*
)
padding
->
data
;
for
(
int
i
=
0
;
i
<
blockNum
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
paddingPos
=
i
*
stride
+
j
;
for
(
int
k
=
0
;
k
<
leadingDimSize
;
k
++
)
{
goldPos
=
i
*
blockSize
+
j
+
k
*
stride
;
if
(
*
(
paddingData
+
paddingPos
)
==
0
)
*
(
dedyData
+
goldPos
)
=
0
;
else
*
(
dedyData
+
goldPos
)
=
-
(
*
(
weightData
+
k
))
*
(
*
(
goldData
+
goldPos
))
/
(
*
(
outputData
+
goldPos
));
}
}
}
}
}
//if(padding != NULL) {
// XTensor * tmp = NewTensor(padding);
// _IsNonZero(padding, tmp);
// int nonZeroNum = (int)_ReduceSumAll(tmp);
// _ScaleAndShiftMe(dedy, (DTYPE)1.0/(DTYPE)nonZeroNum);
// delete tmp;
//}
//else {
// _ScaleAndShiftMe(dedy, (DTYPE)1.0/(DTYPE)blockNum);
//}
}
}
//
namespace
nts
(
NiuTrans
.
Tensor
)
\ No newline at end of file
source/tensor/function/CrossEntropy.cu
deleted
100644 → 0
查看文件 @
151efd50
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-09-17
*/
#ifndef __CROSSENTROPY_CUH__
#define __CROSSENTROPY_CUH__
#include "../XTensor.h"
#include "../XDevice.h"
#include "CrossEntropy.cuh"
#include "CrossEntropy.h"
#include "../core/arithmetic/Div.h"
#include "../core/arithmetic/Multiply.h"
#include "../core/arithmetic/MultiplyDim.h"
#include "../core/arithmetic/Negate.h"
#include "../core/math/Unary.h"
#include "../core/math/ScaleAndShift.h"
#include "../core/reduce/ReduceSum.h"
#include "../core/reduce/ReduceSumAll.h"
#include "../core/shape/Transpose.h"
#include "../core/shape/Unsqueeze.h"
namespace nts{ // namespace nts(NiuTrans.Tensor)
/*
compute the cross entropy loss (cuda version)
loss = sum_{i} (-gold_i * log(output_i))
where gold and output are distributions
>> output - model prediction
>> gold - gold standard
>> loss - compute loss
>> weight - a rescaling weight given to each class
>> padding - specify a target value that is ignored and does not contribute to the loss computation
>> leadingDim - the leading dimension for the output
*/
void _CudaCrossEntropyFast(const XTensor * output, const XTensor * gold,
XTensor * loss, const XTensor * weight,
const XTensor * padding, int leadingDim)
{
int n = leadingDim < 0 ? output->order - 1 : leadingDim;
XTensor * interBuf1 = NewTensorBuf(output, output->devID, output->mem);
XTensor * interBuf2 = NewTensorBuf(output, output->devID, output->mem);
_Log(output, interBuf1);
_Multiply(gold, interBuf1, interBuf2);
if(weight != NULL)
_MultiplyDimMe(interBuf2, weight, n);
_NegateMe(interBuf2);
_ReduceSum(interBuf2, loss, n);
if(padding != NULL)
_MultiplyMe(loss, padding);
DelTensorBuf(interBuf2);
DelTensorBuf(interBuf1);
}
/*
compute the cross entropy loss (scalar version)
loss = sum_{i} (-gold_i * log(output_i))
where gold and output are distributions
>> output - model prediction
>> gold - gold standard
>> reduceWay - loss compute way, sum or mean
>> weight - a rescaling weight given to each class
>> padding - specify a target value that is ignored and does not contribute to the loss computation
>> leadingDim - the leading dimension for the output
<< return - the cross entropy loss that is a scalar
*/
DTYPE _CudaCrossEntropyFast(const XTensor * output, const XTensor * gold,
LOSS_COMPUTE_WAY reduceWay, const XTensor * weight,
const XTensor * padding, int leadingDim)
{
DTYPE loss = 0;
int order = output->order;
int n = leadingDim < 0 ? output->order - 1 : leadingDim;
int leadingDimSize = output->GetDim(n);
CheckNTErrors(n >= 0 && n < output->order,
"Wrong leadingDim!");
CheckNTErrors(XTensor::IsSameShaped(output, gold),
"The output tensor and gold tensor must be of the same size!");
CheckNTErrors(weight == NULL || weight->unitNum == leadingDimSize,
"Wrong weight tensor!");
CheckNTErrors(padding == NULL || padding->order == output->order - 1,
"Wrong padding tensor!");
CheckNTErrors(gold->dataType == DEFAULT_DTYPE && output->dataType == DEFAULT_DTYPE,
"TODO!");
int * dimSize = new int[output->order - 1];
for (int i = 0; i < order; i++) {
if(i < n)
dimSize[i] = output->dimSize[i];
else if(i > n)
dimSize[i - 1] = output->dimSize[i];
}
XTensor * lossBuf = NewTensorBuf(output->order - 1, dimSize, output->dataType, output->denseRatio,
output->devID, output->mem);
_CudaCrossEntropyFast(output, gold, lossBuf, weight, padding, leadingDim);
loss = _ReduceSumAll(lossBuf);
if(reduceWay == REDUCE_MEAN) {
int nonZeroNum;
if(padding == NULL) {
nonZeroNum = lossBuf->unitNum;
}
else {
XTensor * tmp = NewTensorBuf(padding, padding->devID, padding->mem);
_IsNonZero(padding, tmp);
nonZeroNum = (int)_ReduceSumAll(tmp);
DelTensorBuf(tmp);
}
loss = loss / (DTYPE)nonZeroNum;
}
else if(reduceWay == REDUCE_SUM) {
/* don't need to do anything */
}
else {
ShowNTErrors("TODO");
}
delete[] dimSize;
DelTensorBuf(lossBuf);
return loss;
}
/*
backward computation of cross entropy function
loss = sum_{i} (-t_i * log(y_i))
dE/dy_i = -t_i / y_i
where E is the error(loss) function that measure the errors in y
with respect to gold standard, and y this the model output
>> dedy - dE/dy (for return)
>> output - model prediction
>> gold - gold standard
>> weight - a rescaling weight given to each class
>> padding - specify a target value that is ignored and does not contribute to the loss computation
>> leadingDim - the leading dimension for the output
*/
void _CudaCrossEntropyBackward(XTensor * dedy, const XTensor * output,
const XTensor * gold, const XTensor * weight,
XTensor * padding, int leadingDim)
{
int n = leadingDim < 0 ? output->order - 1 : leadingDim;
_Div(gold, output, dedy);
_NegateMe(dedy);
if(weight != NULL)
_MultiplyDimMe(dedy, weight, n);
if(padding != NULL) {
int paddingOrder = padding->order;
int * paddingDims = new int[paddingOrder];
memcpy(paddingDims, padding->dimSize, padding->order * sizeof(int));
padding->Reshape(padding->unitNum);
int order = dedy->order;
int * dims = new int[order];
memcpy(dims, dedy->dimSize, dedy->order * sizeof(int));
dedy->Reshape(dedy->unitNum/dedy->GetDim(n), dedy->GetDim(n));
_MultiplyDimMe(dedy, padding, 0);
padding->Reshape(paddingOrder, paddingDims);
dedy->Reshape(order, dims);
delete[] paddingDims;
delete[] dims;
}
//if(padding != NULL) {
// XTensor * tmp = NewTensor(padding);
// _IsNonZero(padding, tmp);
// int nonZeroNum = (int)_ReduceSumAll(tmp);
// _ScaleAndShiftMe(dedy, (DTYPE)1.0/(DTYPE)nonZeroNum);
// delete tmp;
//}
//else {
// _ScaleAndShiftMe(dedy, (DTYPE)1.0/(DTYPE)blockNum);
//}
}
} // namespace nts(NiuTrans.Tensor)
#endif // __CROSSENTROPY_CUH__
\ No newline at end of file
source/tensor/function/CrossEntropy.cuh
deleted
100644 → 0
查看文件 @
151efd50
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-09-17
*/
#ifndef __CROSSENTROPY_CUH__
#define __CROSSENTROPY_CUH__
#include "../XTensor.h"
#include "CrossEntropy.h"
namespace nts{ // namespace nts(NiuTrans.Tensor)
/* compute the cross entropy loss */
void _CudaCrossEntropyFast(const XTensor * output, const XTensor * gold,
XTensor * loss, const XTensor * weight = NULL,
const XTensor * padding = NULL, int leadingDim = -1);
/* compute the cross entropy loss */
DTYPE _CudaCrossEntropyFast(const XTensor * output, const XTensor * gold,
LOSS_COMPUTE_WAY reduceWay, const XTensor * weight = NULL,
const XTensor * padding = NULL, int leadingDim = -1);
/* backward computation of cross entropy function */
void _CudaCrossEntropyBackward(XTensor * dedy, const XTensor * output,
const XTensor * gold, const XTensor * weight = NULL,
XTensor * padding = NULL, int leadingDim = -1);
} // namespace nts(NiuTrans.Tensor)
#endif // __CROSSENTROPY_CUH__
\ No newline at end of file
source/tensor/function/CrossEntropy.h
deleted
100644 → 0
查看文件 @
151efd50
/* NiuTrans.Tensor - an open-source tensor library
* Copyright (C) 2017, Natural Language Processing Lab, Northestern University.
* All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* $Created by: Xu Chen (email: hello_master1954@163.com) 2018-09-17
*/
#ifndef __CROSSENTROPY_H__
#define __CROSSENTROPY_H__
#include "../XTensor.h"
namespace
nts
{
// namespace nts(NiuTrans.Tensor)
enum
LOSS_COMPUTE_WAY
{
REDUCE_SUM
,
REDUCE_MEAN
};
/* compute the cross entropy loss */
void
_CrossEntropy
(
const
XTensor
*
output
,
const
XTensor
*
gold
,
XTensor
*
loss
,
const
XTensor
*
weight
=
NULL
,
const
XTensor
*
padding
=
NULL
,
int
leadingDim
=
-
1
);
/* compute the cross entropy loss */
void
_CrossEntropyFast
(
const
XTensor
*
output
,
const
XTensor
*
gold
,
XTensor
*
loss
,
const
XTensor
*
weight
=
NULL
,
const
XTensor
*
padding
=
NULL
,
int
leadingDim
=
-
1
);
/* compute the cross entropy loss (return the loss) */
DTYPE
_CrossEntropy
(
const
XTensor
*
output
,
const
XTensor
*
gold
,
LOSS_COMPUTE_WAY
reduceWay
,
const
XTensor
*
weight
=
NULL
,
const
XTensor
*
padding
=
NULL
,
int
leadingDim
=
-
1
);
/* compute the cross entropy loss (return the loss) */
DTYPE
_CrossEntropyFast
(
const
XTensor
*
output
,
const
XTensor
*
gold
,
LOSS_COMPUTE_WAY
reduceWay
=
REDUCE_MEAN
,
const
XTensor
*
weight
=
NULL
,
const
XTensor
*
padding
=
NULL
,
int
leadingDim
=
-
1
);
/* backward computation of cross entropy function */
void
_CrossEntropyBackward
(
XTensor
*
dedy
,
const
XTensor
*
output
,
const
XTensor
*
gold
,
const
XTensor
*
weight
=
NULL
,
XTensor
*
padding
=
NULL
,
int
leadingDim
=
-
1
);
}
// namespace nts(NiuTrans.Tensor)
#endif // __CROSSENTROPY_H__
\ No newline at end of file
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论