Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
e1630c28
Commit
e1630c28
authored
Aug 20, 2018
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
padding for batch training of t2t
parent
6793e025
显示空白字符变更
内嵌
并排
正在显示
7 个修改的文件
包含
82 行增加
和
11 行删除
+82
-11
source/network/Main.cpp
+1
-4
source/sample/transformer/T2TEncoder.cpp
+2
-0
source/sample/transformer/T2TModel.cpp
+4
-2
source/sample/transformer/T2TTrainer.cpp
+67
-2
source/sample/transformer/T2TTrainer.h
+6
-1
source/tensor/core/reduce/ReduceMax.cu
+1
-1
source/tensor/core/reduce/ReduceSum.cu
+1
-1
没有找到文件。
source/network/Main.cpp
查看文件 @
e1630c28
...
@@ -39,7 +39,6 @@ void SumDimTest();
...
@@ -39,7 +39,6 @@ void SumDimTest();
using
namespace
nts
;
using
namespace
nts
;
using
namespace
fnnlm
;
using
namespace
fnnlm
;
using
namespace
transformer
;
using
namespace
transformer
;
using
namespace
GAN
;
int
main
(
int
argc
,
const
char
**
argv
)
int
main
(
int
argc
,
const
char
**
argv
)
{
{
...
@@ -47,9 +46,7 @@ int main( int argc, const char ** argv )
...
@@ -47,9 +46,7 @@ int main( int argc, const char ** argv )
//BackwardTest();
//BackwardTest();
//return 0;
//return 0;
if
(
argc
>
1
&&
!
strcmp
(
argv
[
1
],
"-test"
))
if
(
argc
>
1
&&
!
strcmp
(
argv
[
1
],
"-fnnlm"
))
Test
();
else
if
(
argc
>
1
&&
!
strcmp
(
argv
[
1
],
"-fnnlm"
))
FNNLMMain
(
argc
-
1
,
argv
+
1
);
FNNLMMain
(
argc
-
1
,
argv
+
1
);
else
if
(
argc
>
1
&&
!
strcmp
(
argv
[
1
],
"-t2t"
))
else
if
(
argc
>
1
&&
!
strcmp
(
argv
[
1
],
"-t2t"
))
TransformerMain
(
argc
-
1
,
argv
+
1
);
TransformerMain
(
argc
-
1
,
argv
+
1
);
...
...
source/sample/transformer/T2TEncoder.cpp
查看文件 @
e1630c28
...
@@ -103,6 +103,8 @@ XTensor AttEncoder::Make(XTensor &input, XTensor &mask, bool skipInputRes)
...
@@ -103,6 +103,8 @@ XTensor AttEncoder::Make(XTensor &input, XTensor &mask, bool skipInputRes)
XTensor
fnn
;
XTensor
fnn
;
XTensor
res
;
XTensor
res
;
/* we skip the residual connection for the first layer if
the encoder is used in language modeling. */
if
(
skipInputRes
&&
i
==
0
){
if
(
skipInputRes
&&
i
==
0
){
/* self attention */
/* self attention */
att
=
attentions
[
i
].
Make
(
x
,
x
,
x
,
mask
);
att
=
attentions
[
i
].
Make
(
x
,
x
,
x
,
mask
);
...
...
source/sample/transformer/T2TModel.cpp
查看文件 @
e1630c28
...
@@ -60,7 +60,7 @@ void T2TModel::InitModel(int argc, const char ** argv)
...
@@ -60,7 +60,7 @@ void T2TModel::InitModel(int argc, const char ** argv)
if
(
useMem
){
if
(
useMem
){
delete
mem
;
delete
mem
;
mem
=
new
XMem
(
devID
);
mem
=
new
XMem
(
devID
,
UNI_FREE
,
MILLION
*
512
,
1024
,
MILLION
*
128
);
}
}
encoder
.
InitModel
(
argc
,
argv
,
isLM
,
isLM
?
1
:
0
,
devID
,
mem
);
encoder
.
InitModel
(
argc
,
argv
,
isLM
,
isLM
?
1
:
0
,
devID
,
mem
);
...
@@ -98,7 +98,9 @@ void T2TModel::Make(XTensor &input, XTensor &output)
...
@@ -98,7 +98,9 @@ void T2TModel::Make(XTensor &input, XTensor &output)
dims
[
input
.
order
]
=
len
;
dims
[
input
.
order
]
=
len
;
XTensor
mask
(
input
.
order
+
1
,
dims
,
X_FLOAT
,
1.0
F
,
input
.
devID
,
input
.
mem
);
XTensor
mask
(
input
.
order
+
1
,
dims
,
X_FLOAT
,
1.0
F
,
input
.
devID
,
input
.
mem
);
/* a upper triangular matrix where the cells of the upper triangular are set to -1e-9 */
/* a upper triangular matrix where the cells of the upper triangular are set to -1e-9.
this matrix can be used to prevent the attention to current or following words in
a given sequence. */
_SetDataLowTri
(
&
mask
,
1e9
F
,
-
1
);
_SetDataLowTri
(
&
mask
,
1e9
F
,
-
1
);
_ScaleAndShiftMe
(
&
mask
,
1.0
F
,
-
1e9
F
);
_ScaleAndShiftMe
(
&
mask
,
1.0
F
,
-
1e9
F
);
...
...
source/sample/transformer/T2TTrainer.cpp
查看文件 @
e1630c28
...
@@ -53,6 +53,9 @@ initialization
...
@@ -53,6 +53,9 @@ initialization
*/
*/
void
T2TTrainer
::
Init
(
int
argc
,
const
char
**
argv
)
void
T2TTrainer
::
Init
(
int
argc
,
const
char
**
argv
)
{
{
bool
useMem
=
false
;
LoadParamBool
(
argc
,
argv
,
"mem"
,
&
useMem
,
useMem
);
LoadParamInt
(
argc
,
argv
,
"dev"
,
&
devID
,
-
1
);
LoadParamInt
(
argc
,
argv
,
"dev"
,
&
devID
,
-
1
);
LoadParamFloat
(
argc
,
argv
,
"lrate"
,
&
lrate
,
0.001
F
);
LoadParamFloat
(
argc
,
argv
,
"lrate"
,
&
lrate
,
0.001
F
);
LoadParamInt
(
argc
,
argv
,
"sbatch"
,
&
sBatchSize
,
1
);
LoadParamInt
(
argc
,
argv
,
"sbatch"
,
&
sBatchSize
,
1
);
...
@@ -68,6 +71,11 @@ void T2TTrainer::Init(int argc, const char ** argv)
...
@@ -68,6 +71,11 @@ void T2TTrainer::Init(int argc, const char ** argv)
buf
=
new
int
[
bufSize
];
buf
=
new
int
[
bufSize
];
seqLen
=
new
int
[
bufSize
];
seqLen
=
new
int
[
bufSize
];
seqOffset
=
new
int
[
bufSize
];
seqOffset
=
new
int
[
bufSize
];
if
(
useMem
){
delete
mem
;
mem
=
new
XMem
(
devID
,
UNI_FREE
,
MILLION
*
64
,
1024
,
MILLION
*
64
);
}
}
}
/*
/*
...
@@ -86,6 +94,9 @@ void T2TTrainer::Train(const char * fn, T2TModel * model)
...
@@ -86,6 +94,9 @@ void T2TTrainer::Train(const char * fn, T2TModel * model)
float
loss
=
0
;
float
loss
=
0
;
float
lr
=
0
;
float
lr
=
0
;
model
->
mem
->
SetPin
();
mem
->
SetPin
();
XNet
net
;
XNet
net
;
double
startT
=
GetClockSec
();
double
startT
=
GetClockSec
();
...
@@ -97,10 +108,16 @@ void T2TTrainer::Train(const char * fn, T2TModel * model)
...
@@ -97,10 +108,16 @@ void T2TTrainer::Train(const char * fn, T2TModel * model)
wordCount
=
0
;
wordCount
=
0
;
model
->
mem
->
BackToPin
();
mem
->
BackToPin
();
/* batch of input sequences */
/* batch of input sequences */
XTensor
batch
;
XTensor
batch
;
while
(
LoadBatch
(
file
,
&
batch
,
1
,
vSize
,
sBatchSize
,
wBatchSize
,
isLenSorted
,
wc
)){
/* padding */
XTensor
padding
;
while
(
LoadBatch
(
file
,
&
batch
,
&
padding
,
1
,
vSize
,
sBatchSize
,
wBatchSize
,
isLenSorted
,
wc
)){
/* output probabilities */
/* output probabilities */
XTensor
output
;
XTensor
output
;
...
@@ -108,6 +125,10 @@ void T2TTrainer::Train(const char * fn, T2TModel * model)
...
@@ -108,6 +125,10 @@ void T2TTrainer::Train(const char * fn, T2TModel * model)
/* make the network */
/* make the network */
model
->
Make
(
batch
,
output
);
model
->
Make
(
batch
,
output
);
/* make paddings for the output */
if
(
output
.
GetDim
(
0
)
>
1
)
PadOutput
(
&
output
,
&
padding
);
/* back-propagation for obtaining gradients */
/* back-propagation for obtaining gradients */
net
.
Backward
(
output
,
batch
,
CROSSENTROPY
);
net
.
Backward
(
output
,
batch
,
CROSSENTROPY
);
...
@@ -135,6 +156,9 @@ void T2TTrainer::Train(const char * fn, T2TModel * model)
...
@@ -135,6 +156,9 @@ void T2TTrainer::Train(const char * fn, T2TModel * model)
XPRINT6
(
0
,
stderr
,
"[INFO] lr=%.2e, elapsed=%.1fs, step=%d, epoch=%d, word=%d, ppl=%.3f
\n
"
,
XPRINT6
(
0
,
stderr
,
"[INFO] lr=%.2e, elapsed=%.1fs, step=%d, epoch=%d, word=%d, ppl=%.3f
\n
"
,
lr
,
elapsed
,
step
,
epoch
+
1
,
wordCountTotal
,
exp
(
loss
/
wordCount
));
lr
,
elapsed
,
step
,
epoch
+
1
,
wordCountTotal
,
exp
(
loss
/
wordCount
));
}
}
model
->
mem
->
BackToPin
();
mem
->
BackToPin
();
}
}
fclose
(
file
);
fclose
(
file
);
...
@@ -230,6 +254,7 @@ int T2TTrainer::LoadBuf(FILE * file)
...
@@ -230,6 +254,7 @@ int T2TTrainer::LoadBuf(FILE * file)
load a batch of sequences
load a batch of sequences
>> file - the handle to the data file
>> file - the handle to the data file
>> batch - the batch
>> batch - the batch
>> padding - padding of the input sequences
>> step - the step we go over when move to the next sequence
>> step - the step we go over when move to the next sequence
>> vs - vocabulary size
>> vs - vocabulary size
>> sBatch - batch size of sequences
>> sBatch - batch size of sequences
...
@@ -237,7 +262,9 @@ load a batch of sequences
...
@@ -237,7 +262,9 @@ load a batch of sequences
>> isSorted - indicates whether the sequences are sorted by length
>> isSorted - indicates whether the sequences are sorted by length
>> wCount - word count
>> wCount - word count
*/
*/
int
T2TTrainer
::
LoadBatch
(
FILE
*
file
,
XTensor
*
batch
,
int
step
,
int
vs
,
int
sBatch
,
int
wBatch
,
bool
isSorted
,
int
&
wCount
)
int
T2TTrainer
::
LoadBatch
(
FILE
*
file
,
XTensor
*
batch
,
XTensor
*
padding
,
int
step
,
int
vs
,
int
sBatch
,
int
wBatch
,
bool
isSorted
,
int
&
wCount
)
{
{
if
(
nextSeq
<
0
||
nextSeq
>=
nseqBuf
)
if
(
nextSeq
<
0
||
nextSeq
>=
nseqBuf
)
LoadBuf
(
file
);
LoadBuf
(
file
);
...
@@ -273,12 +300,19 @@ int T2TTrainer::LoadBatch(FILE * file, XTensor * batch, int step, int vs, int sB
...
@@ -273,12 +300,19 @@ int T2TTrainer::LoadBatch(FILE * file, XTensor * batch, int step, int vs, int sB
InitTensor
(
batch
,
3
,
dims
,
X_FLOAT
,
1.0
F
,
devID
,
mem
);
InitTensor
(
batch
,
3
,
dims
,
X_FLOAT
,
1.0
F
,
devID
,
mem
);
}
}
if
(
padding
->
order
!=
2
||
padding
->
GetDim
(
0
)
!=
sc
||
padding
->
GetDim
(
1
)
!=
max
){
InitTensor2D
(
padding
,
sc
,
max
,
X_FLOAT
,
devID
,
mem
);
}
batch
->
SetZeroAll
();
batch
->
SetZeroAll
();
padding
->
SetZeroAll
();
/* this might be slow on GPUs :( */
/* this might be slow on GPUs :( */
for
(
int
s
=
seq
;
s
<
seq
+
sc
;
s
++
){
for
(
int
s
=
seq
;
s
<
seq
+
sc
;
s
++
){
for
(
int
w
=
0
;
w
<
seqLen
[
s
];
w
++
){
for
(
int
w
=
0
;
w
<
seqLen
[
s
];
w
++
){
batch
->
Set3D
(
1.0
F
,
s
-
seq
,
w
,
buf
[
seqOffset
[
s
]
+
w
]);
batch
->
Set3D
(
1.0
F
,
s
-
seq
,
w
,
buf
[
seqOffset
[
s
]
+
w
]);
padding
->
Set2D
(
1.0
F
,
s
-
seq
,
w
);
wCount
++
;
wCount
++
;
}
}
}
}
...
@@ -394,4 +428,35 @@ void T2TTrainer::Update(T2TModel * model, const float lr)
...
@@ -394,4 +428,35 @@ void T2TTrainer::Update(T2TModel * model, const float lr)
}
}
}
}
/*
do padding on the output
>> output - output tensor of the network
>> padding - padding of a batch of sentences
*/
void
T2TTrainer
::
PadOutput
(
XTensor
*
output
,
XTensor
*
padding
)
{
if
(
output
==
NULL
||
padding
==
NULL
)
return
;
int
on
=
output
->
order
;
int
*
dimso
=
new
int
[
on
];
memcpy
(
dimso
,
output
->
dimSize
,
sizeof
(
int
)
*
on
);
output
->
Reshape
(
output
->
unitNum
/
dimso
[
output
->
order
-
1
],
dimso
[
output
->
order
-
1
]);
XTensor
*
padding2
=
NewTensorBuf
(
1
,
&
padding
->
unitNum
,
X_FLOAT
,
1.0
F
,
padding
->
devID
,
padding
->
mem
);
_CopyValues
(
padding
,
padding2
);
_ScaleAndShiftMe
(
padding2
,
1e9
F
,
-
1e9
F
);
_SumDim
(
output
,
padding2
,
output
,
0
);
output
->
Reshape
(
on
,
dimso
);
delete
[]
dimso
;
DelTensorBuf
(
padding2
);
}
}
}
source/sample/transformer/T2TTrainer.h
查看文件 @
e1630c28
...
@@ -105,13 +105,18 @@ public:
...
@@ -105,13 +105,18 @@ public:
int
LoadBuf
(
FILE
*
file
);
int
LoadBuf
(
FILE
*
file
);
/* load a batch of sequences */
/* load a batch of sequences */
int
LoadBatch
(
FILE
*
file
,
XTensor
*
batch
,
int
step
,
int
vs
,
int
sBatch
,
int
wBatch
,
bool
isSorted
,
int
&
wCount
);
int
LoadBatch
(
FILE
*
file
,
XTensor
*
batch
,
XTensor
*
padding
,
int
step
,
int
vs
,
int
sBatch
,
int
wBatch
,
bool
isSorted
,
int
&
wCount
);
/* get word probabilities for a batch of sequences */
/* get word probabilities for a batch of sequences */
float
GetProb
(
XTensor
*
output
,
XTensor
*
gold
,
XTensor
*
wordProbs
);
float
GetProb
(
XTensor
*
output
,
XTensor
*
gold
,
XTensor
*
wordProbs
);
/* update the model by delta rule */
/* update the model by delta rule */
void
Update
(
T2TModel
*
model
,
const
float
lr
);
void
Update
(
T2TModel
*
model
,
const
float
lr
);
/* do padding on the output */
void
PadOutput
(
XTensor
*
output
,
XTensor
*
padding
);
};
};
...
...
source/tensor/core/reduce/ReduceMax.cu
查看文件 @
e1630c28
...
@@ -405,7 +405,7 @@ inline void continuousStorageThreadAllocation(dim3& grid, dim3& block, long long
...
@@ -405,7 +405,7 @@ inline void continuousStorageThreadAllocation(dim3& grid, dim3& block, long long
if (vectorSize % 32 != 0) minWarpNum++;
if (vectorSize % 32 != 0) minWarpNum++;
warpNum = min(warpNum, minWarpNum);
warpNum = min(warpNum, minWarpNum);
grid.x = vectorNum;
grid.x =
(unsigned int)
vectorNum;
grid.y = 1;
grid.y = 1;
grid.z = 1;
grid.z = 1;
block.x = 1;
block.x = 1;
...
...
source/tensor/core/reduce/ReduceSum.cu
查看文件 @
e1630c28
...
@@ -629,7 +629,7 @@ inline void continuousStorageThreadAllocation(dim3& grid, dim3& block, long long
...
@@ -629,7 +629,7 @@ inline void continuousStorageThreadAllocation(dim3& grid, dim3& block, long long
if (vectorSize % 32 != 0) minWarpNum++;
if (vectorSize % 32 != 0) minWarpNum++;
warpNum = min(warpNum, minWarpNum);
warpNum = min(warpNum, minWarpNum);
grid.x = vectorNum;
grid.x =
(unsigned int)
vectorNum;
grid.y = 1;
grid.y = 1;
grid.z = 1;
grid.z = 1;
block.x = 1;
block.x = 1;
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论