Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
N
NiuTrans.Tensor
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
8
Issues
8
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
NiuTrans.Tensor
Commits
e1ed713a
Commit
e1ed713a
authored
Feb 19, 2020
by
xuchen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
optimize the t2t code
parent
bdf5c952
隐藏空白字符变更
内嵌
并排
正在显示
10 个修改的文件
包含
100 行增加
和
346 行删除
+100
-346
source/network/XBackwardShape.cpp
+6
-1
source/sample/transformer/T2TEmbedding.cpp
+9
-21
source/sample/transformer/T2TModel.cpp
+37
-111
source/sample/transformer/T2TModel.h
+2
-3
source/sample/transformer/T2TPredictor.cpp
+3
-3
source/sample/transformer/T2TSearch.cpp
+2
-2
source/sample/transformer/T2TTrainer.cpp
+37
-188
source/sample/transformer/T2TTrainer.h
+1
-13
source/sample/transformer/Transformer.cpp
+1
-1
source/tensor/XTensor.h
+2
-3
没有找到文件。
source/network/XBackwardShape.cpp
查看文件 @
e1ed713a
...
...
@@ -34,7 +34,12 @@ namespace nts{
/* compute dE/dx of a node */
void
XShapeGrad
::
MakeGrad
(
XTensor
*
node
,
bool
isEfficient
)
{
CheckNTErrors
(
node
->
grad
!=
NULL
,
"No gradient found!"
);
if
(
!
isEfficient
)
{
CheckNTErrors
(
node
->
grad
!=
NULL
,
"No gradient found!"
);
}
else
{
CheckNTErrors
(
!
node
->
isGrad
||
node
->
grad
!=
NULL
,
"No gradient found!"
);
}
XLink
&
income
=
node
->
income
;
int
operID
=
income
.
typeID
;
...
...
source/sample/transformer/T2TEmbedding.cpp
查看文件 @
e1ed713a
...
...
@@ -131,32 +131,20 @@ XTensor T2TEmbedder::Make(XTensor &input)
XTensor
wordEmbedding
;
XTensor
posEmbedding
;
bool
match
=
(
posEmbedding
.
order
==
input
.
order
);
if
(
match
){
for
(
int
i
=
0
;
i
<
input
.
order
;
i
++
){
if
(
dims
[
i
]
!=
posEmbedding
.
GetDim
(
i
))
match
=
false
;
}
}
/* we make positional embeddings first */
//if(!match){
if
(
true
){
InitTensor
(
&
posEmbedding
,
input
.
order
+
1
,
dims
,
X_FLOAT
,
devID
);
/* make positional embeddings */
XTensor
position
;
XTensor
embTMP
;
XTensor
*
posTMP
=
NewTensorBuf
(
2
,
dims
+
1
,
X_FLOAT
,
devID
);
_CopyValues
(
&
posEmbeddingBase
,
0
,
posTMP
->
unitNum
,
posTMP
,
0
);
_Unsqueeze
(
posTMP
,
&
posEmbedding
,
0
,
dims
[
0
]);
DelTensorBuf
(
posTMP
);
}
InitTensor1D
(
&
position
,
input
.
GetDim
(
-
1
),
X_INT
,
devID
);
position
.
Range
(
0
,
position
.
unitNum
,
1
);
embTMP
=
Gather
(
posEmbeddingBase
,
position
);
posEmbedding
=
Unsqueeze
(
embTMP
,
0
,
dims
[
0
]);
/*
then we
make word embeddings */
/* make word embeddings */
wordEmbedding
=
Gather
(
w
,
input
);
wordEmbedding
=
Linear
(
wordEmbedding
,
(
float
)
sqrt
((
float
)
eSize
));
/*
we
sum over the two embeddings */
/* sum over the two embeddings */
return
wordEmbedding
+
posEmbedding
;
}
...
...
source/sample/transformer/T2TModel.cpp
查看文件 @
e1ed713a
...
...
@@ -114,64 +114,28 @@ make the network for language modeling (with the output softmax layer)
*/
void
T2TModel
::
MakeLM
(
XTensor
&
input
,
XTensor
&
output
,
XTensor
&
padding
,
bool
isTraining
)
{
XTensor
encoding
;
/* generate mask to see "previous" words only */
//int len = input.GetDim(input.order - 2);
//int * dims = new int[input.order + 1];
//for(int i = 0; i < input.order; i++)
// dims[i + 1] = input.GetDim(i);
//dims[0] = nhead;
//dims[input.order] = len;
//XTensor mask(input.order + 1, dims, X_FLOAT, 1.0F, input.devID, input.mem);
int
len
=
input
.
GetDim
(
input
.
order
-
1
);
int
*
dims
=
new
int
[
input
.
order
+
2
];
for
(
int
i
=
0
;
i
<
input
.
order
;
i
++
)
dims
[
i
+
1
]
=
input
.
GetDim
(
i
);
int
len
=
padding
.
GetDim
(
padding
.
order
-
1
);
int
*
dims
=
new
int
[
padding
.
order
+
2
];
for
(
int
i
=
0
;
i
<
padding
.
order
;
i
++
)
dims
[
i
+
1
]
=
padding
.
GetDim
(
i
);
dims
[
0
]
=
nhead
;
dims
[
input
.
order
+
1
]
=
len
;
dims
[
padding
.
order
+
1
]
=
len
;
XTensor
mask
;
InitTensor
(
&
mask
,
input
.
order
+
2
,
dims
,
X_FLOAT
,
padding
.
devID
);
InitTensor
(
&
mask
,
padding
.
order
+
2
,
dims
,
X_FLOAT
,
padding
.
devID
);
delete
[]
dims
;
/* a upper triangular matrix where the cells of the upper triangular are set to -1e-9.
this matrix can be used to prevent the attention to current or following words in
a given sequence. */
_SetDataLowTri
(
&
mask
,
1e9
F
,
0
);
_ScaleAndShiftMe
(
&
mask
,
1.0
F
,
-
1e9
F
);
int
*
dimsPadding
=
new
int
[
padding
.
order
+
2
];
for
(
int
i
=
0
;
i
<
padding
.
order
-
1
;
i
++
)
dimsPadding
[
i
]
=
padding
.
GetDim
(
i
);
dimsPadding
[
padding
.
order
-
1
]
=
padding
.
GetDim
(
-
1
);
dimsPadding
[
padding
.
order
]
=
padding
.
GetDim
(
-
1
);
XTensor
*
padding2
=
NewTensorBuf
(
padding
.
order
+
1
,
dimsPadding
,
padding
.
dataType
,
padding
.
devID
);
for
(
int
i
=
0
;
i
<
padding2
->
order
;
i
++
)
dimsPadding
[
i
+
1
]
=
padding2
->
GetDim
(
i
);
dimsPadding
[
0
]
=
nhead
;
ScaleAndShiftMe
(
mask
,
1.0
F
,
-
1e9
F
);
//XTensor * padding3 = NewTensorBuf(padding.order + 2, dimsPadding, padding.dataType,
// padding.devID);
//
///* mask of the padding */
//_Unsqueeze(&padding, padding2, padding.order - 1, padding.GetDim(-1));
//_Unsqueeze(padding2, padding3, 0, nhead);
//
//_ScaleAndShiftMe(padding3, 1e9F, -1e9F);
//
////_Sum(&mask, padding3, &mask);
/* forward */
XTensor
encoding
;
encoding
=
MakeEncoder
(
input
,
mask
,
isTraining
);
outputLayer
->
Make
(
encoding
,
output
);
delete
[]
dims
;
delete
[]
dimsPadding
;
//DelTensorBuf(padding3);
DelTensorBuf
(
padding2
);
}
/*
...
...
@@ -183,7 +147,9 @@ make the network for machine translation (with the output softmax layer)
>> paddingDec - padding of the sequences (on the decoder side)
>> isTraining - indicates whether the model is for training
*/
void
T2TModel
::
MakeMT
(
XTensor
&
inputEnc
,
XTensor
&
inputDec
,
XTensor
&
output
,
XTensor
&
paddingEnc
,
XTensor
&
paddingDec
,
bool
isTraining
)
void
T2TModel
::
MakeMT
(
XTensor
&
inputEnc
,
XTensor
&
inputDec
,
XTensor
&
output
,
XTensor
&
paddingEnc
,
XTensor
&
paddingDec
,
bool
isTraining
)
{
XTensor
encoding
;
XTensor
decoding
;
...
...
@@ -192,10 +158,10 @@ void T2TModel::MakeMT(XTensor &inputEnc, XTensor &inputDec, XTensor &output, XTe
XTensor
maskEncDec
;
/* encoder mask */
MakeMTMaskEnc
(
inputEnc
,
paddingEnc
,
maskEnc
);
MakeMTMaskEnc
(
paddingEnc
,
maskEnc
);
/* decoder mask */
MakeMTMaskDec
(
inputEnc
,
inputDec
,
paddingEnc
,
paddingDec
,
maskDec
,
maskEncDec
);
MakeMTMaskDec
(
paddingEnc
,
paddingDec
,
maskDec
,
maskEncDec
);
encoding
=
MakeEncoder
(
inputEnc
,
maskEnc
,
isTraining
);
...
...
@@ -289,40 +255,21 @@ make the mask of the encoder
>> paddingEnc - padding of the encoder input
>> maskEnc - mask of the encoder self-attention
*/
void
T2TModel
::
MakeMTMaskEnc
(
XTensor
&
inputEnc
,
XTensor
&
paddingEnc
,
XTensor
&
maskEnc
)
void
T2TModel
::
MakeMTMaskEnc
(
XTensor
&
paddingEnc
,
XTensor
&
maskEnc
)
{
/* padding on the source side */
int
*
dimsPadding
=
new
int
[
paddingEnc
.
order
+
2
];
for
(
int
i
=
0
;
i
<
paddingEnc
.
order
-
1
;
i
++
)
dimsPadding
[
i
]
=
paddingEnc
.
GetDim
(
i
);
dimsPadding
[
paddingEnc
.
order
-
1
]
=
paddingEnc
.
GetDim
(
-
1
);
dimsPadding
[
paddingEnc
.
order
]
=
paddingEnc
.
GetDim
(
-
1
);
XTensor
*
padding2
=
NewTensorBuf
(
paddingEnc
.
order
+
1
,
dimsPadding
,
paddingEnc
.
dataType
,
paddingEnc
.
devID
);
for
(
int
i
=
0
;
i
<
padding2
->
order
;
i
++
)
dimsPadding
[
i
+
1
]
=
padding2
->
GetDim
(
i
);
dimsPadding
[
0
]
=
nhead
;
XTensor
*
padding3
=
NewTensorBuf
(
paddingEnc
.
order
+
2
,
dimsPadding
,
paddingEnc
.
dataType
,
paddingEnc
.
devID
);
XTensor
padding2
;
XTensor
padding3
;
/* mask of the padding */
_Unsqueeze
(
&
paddingEnc
,
padding2
,
paddingEnc
.
order
-
1
,
paddingEnc
.
GetDim
(
-
1
));
_Unsqueeze
(
padding2
,
padding3
,
0
,
nhead
);
_ScaleAndShiftMe
(
padding3
,
1e9
F
,
-
1e9
F
);
Unsqueeze
(
paddingEnc
,
padding2
,
paddingEnc
.
order
-
1
,
paddingEnc
.
GetDim
(
-
1
));
Unsqueeze
(
padding2
,
padding3
,
0
,
nhead
);
ScaleAndShiftMe
(
padding3
,
1e9
F
,
-
1e9
F
);
InitTensor
(
&
maskEnc
,
padding3
);
InitTensor
(
&
maskEnc
,
&
padding3
);
maskEnc
.
SetZeroAll
();
/* generate the mask on the source language side (for padding) */
_Sum
(
&
maskEnc
,
padding3
,
&
maskEnc
);
DelTensorBuf
(
padding3
);
DelTensorBuf
(
padding2
);
delete
[]
dimsPadding
;
SumMe
(
maskEnc
,
padding3
);
}
/*
...
...
@@ -334,54 +281,33 @@ make the mask of the decoder
>> maksDec - mask of the decoder self-attention
>> maksEncDec - mask of the decoder enc-dec attention
*/
void
T2TModel
::
MakeMTMaskDec
(
XTensor
&
inputEnc
,
XTensor
&
inputDec
,
XTensor
&
paddingEnc
,
XTensor
&
paddingDec
,
void
T2TModel
::
MakeMTMaskDec
(
XTensor
&
paddingEnc
,
XTensor
&
paddingDec
,
XTensor
&
maskDec
,
XTensor
&
maskEncDec
)
{
int
len
=
inputDec
.
GetDim
(
input
Dec
.
order
-
1
);
int
*
dims
=
new
int
[
input
Dec
.
order
+
2
];
for
(
int
i
=
0
;
i
<
input
Dec
.
order
;
i
++
)
dims
[
i
+
1
]
=
input
Dec
.
GetDim
(
i
);
int
len
=
paddingDec
.
GetDim
(
padding
Dec
.
order
-
1
);
int
*
dims
=
new
int
[
padding
Dec
.
order
+
2
];
for
(
int
i
=
0
;
i
<
padding
Dec
.
order
;
i
++
)
dims
[
i
+
1
]
=
padding
Dec
.
GetDim
(
i
);
dims
[
0
]
=
nhead
;
dims
[
input
Dec
.
order
+
1
]
=
len
;
InitTensor
(
&
maskDec
,
input
Dec
.
order
+
2
,
dims
,
X_FLOAT
,
paddingDec
.
devID
);
dims
[
padding
Dec
.
order
+
1
]
=
len
;
InitTensor
(
&
maskDec
,
padding
Dec
.
order
+
2
,
dims
,
X_FLOAT
,
paddingDec
.
devID
);
/* An upper triangular matrix where the cells of the upper triangular are set to -1e-9.
This matrix can be used to block the attention to current or following words in
a given sequence. */
_SetDataLowTri
(
&
maskDec
,
1e9
F
,
0
);
//maskDec.Dump(stderr, "mask: ");
_ScaleAndShiftMe
(
&
maskDec
,
1.0
F
,
-
1e9
F
);
ScaleAndShiftMe
(
maskDec
,
1.0
F
,
-
1e9
F
);
//maskDec.Dump(stderr, "mask: ");
/* encoder-decoder mask that prevents the attention to padding dummy words */
dims
[
inputDec
.
order
+
1
]
=
inputEnc
.
GetDim
(
inputEnc
.
order
-
1
);
InitTensor
(
&
maskEncDec
,
inputDec
.
order
+
2
,
dims
,
X_FLOAT
,
paddingEnc
.
devID
);
XTensor
maskEncDecTMP
;
XTensor
*
maskEncDecTMPEnc
=
NewTensorBuf
(
paddingEnc
.
order
+
1
,
dims
+
1
,
paddingEnc
.
dataType
,
paddingEnc
.
devID
);
XTensor
*
maskEncDecTMPDec
=
NewTensorBuf
(
maskEncDecTMPEnc
,
paddingEnc
.
devID
);
Unsqueeze
(
paddingEnc
,
maskEncDecTMP
,
paddingEnc
.
order
-
1
,
paddingDec
.
GetDim
(
-
1
));
ScaleAndShiftMe
(
maskEncDecTMP
,
1e9
F
,
-
1e9
F
);
Unsqueeze
(
maskEncDecTMP
,
maskEncDec
,
0
,
dims
[
0
]
);
_Unsqueeze
(
&
paddingEnc
,
maskEncDecTMPEnc
,
paddingEnc
.
order
-
1
,
paddingDec
.
GetDim
(
-
1
));
//paddingEnc.Dump(stderr, "paddingenc:");
//maskEncDecTMPEnc->Dump(stderr, "maskencdectmpenc:");
_ScaleAndShiftMe
(
maskEncDecTMPEnc
,
1e9
F
,
-
1e9
F
);
//maskEncDecTMPEnc->Dump(stderr, "maskencdectmpenc:");
_Unsqueeze
(
maskEncDecTMPEnc
,
&
maskEncDec
,
0
,
dims
[
0
]);
//maskEncDecTMPEnc->Dump(stderr, "maskencdectmpenc:");
DelTensorBuf
(
maskEncDecTMPDec
);
DelTensorBuf
(
maskEncDecTMPEnc
);
delete
[]
dims
;
}
/*
get parameter matrics
>> list - the list that keeps the parameter matrics
...
...
source/sample/transformer/T2TModel.h
查看文件 @
e1ed713a
...
...
@@ -87,11 +87,10 @@ public:
XTensor
&
maskEnc
,
XTensor
&
maskDec
,
XTensor
&
maskEncDec
);
/* make the mask of the encoder */
void
MakeMTMaskEnc
(
XTensor
&
inputEnc
,
XTensor
&
paddingEnc
,
XTensor
&
maskEnc
);
void
MakeMTMaskEnc
(
XTensor
&
paddingEnc
,
XTensor
&
maskEnc
);
/* make the mask of the decoder */
void
MakeMTMaskDec
(
XTensor
&
inputEnc
,
XTensor
&
inputDec
,
XTensor
&
paddingEnc
,
XTensor
&
paddingDec
,
void
MakeMTMaskDec
(
XTensor
&
paddingEnc
,
XTensor
&
paddingDec
,
XTensor
&
maskDec
,
XTensor
&
maskEncDec
);
/* get parameter matrics */
...
...
source/sample/transformer/T2TPredictor.cpp
查看文件 @
e1ed713a
...
...
@@ -171,7 +171,7 @@ void T2TPredictor::Predict(T2TStateBundle * next, XTensor * encoding,
dims
[
inputEnc
->
order
-
1
]
=
1
;
InitTensor
(
&
first
,
inputEnc
->
order
,
dims
,
X_INT
,
inputEnc
->
devID
);
_SetDataFixedInt
(
&
first
,
startSymbol
);
first
.
SetDataFixed
(
startSymbol
);
/* add a new word into the input sequence of the decoder side */
if
(
inputLast
==
NULL
)
{
...
...
@@ -195,13 +195,13 @@ void T2TPredictor::Predict(T2TStateBundle * next, XTensor * encoding,
XTensor
paddingDec
;
InitTensor
(
&
paddingDec
,
inputDec
.
order
,
dims
,
X_INT
,
paddingEnc
->
devID
);
SetDataFixedInt
(
paddingDec
,
1
);
paddingDec
.
SetDataFixed
(
1
);
XTensor
maskDec
;
XTensor
maskEncDec
;
/* decoder mask */
m
->
MakeMTMaskDec
(
*
inputEnc
,
inputDec
,
*
paddingEnc
,
paddingDec
,
maskDec
,
maskEncDec
);
m
->
MakeMTMaskDec
(
*
paddingEnc
,
paddingDec
,
maskDec
,
maskEncDec
);
/* make the decoding network */
decoding
=
decoder
.
Make
(
inputDec
,
*
encoding
,
maskDec
,
maskEncDec
,
false
);
...
...
source/sample/transformer/T2TSearch.cpp
查看文件 @
e1ed713a
...
...
@@ -89,7 +89,7 @@ void T2TSearch::Search(T2TModel * model, XTensor * input, XTensor * padding, XTe
Prepare
(
input
->
unitNum
/
input
->
GetDim
(
-
1
),
beamSize
);
/* encoder mask */
model
->
MakeMTMaskEnc
(
*
input
,
*
padding
,
maskEnc
);
model
->
MakeMTMaskEnc
(
*
padding
,
maskEnc
);
//input->Dump(stderr, "input:");
//maskEnc.Dump(stderr, "maskenc:");
...
...
@@ -503,7 +503,7 @@ void T2TSearch::Dump(XTensor * output)
int
*
words
=
new
int
[
maxLength
];
InitTensor
(
output
,
3
,
dims
,
X_INT
);
SetDataFixedInt
(
*
output
,
-
1
);
output
->
SetDataFixed
(
-
1
);
/* heap for an input sentence in the batch */
for
(
int
h
=
0
;
h
<
batchSize
;
h
++
){
...
...
source/sample/transformer/T2TTrainer.cpp
查看文件 @
e1ed713a
...
...
@@ -119,7 +119,7 @@ void T2TTrainer::Train(const char * fn, const char * validFN, const char * model
int
ws
=
0
;
int
wordCount
=
0
;
int
wordCountTotal
=
0
;
int
wordCountBatch
=
0
;
int
batchCountTotal
=
0
;
bool
isEnd
=
false
;
float
loss
=
0
;
float
lr
=
0
;
...
...
@@ -174,9 +174,6 @@ void T2TTrainer::Train(const char * fn, const char * validFN, const char * model
/* gold standard */
XTensor
gold
;
/* label smoothed gold standard (if needed) */
XTensor
goldSmoothed
;
while
(
batchLoader
.
LoadBatch
(
file
,
model
->
isLM
,
&
batchEnc
,
&
paddingEnc
,
&
batchDec
,
&
paddingDec
,
&
gold
,
&
label
,
NULL
,
vSize
,
vSizeTgt
,
...
...
@@ -197,51 +194,34 @@ void T2TTrainer::Train(const char * fn, const char * validFN, const char * model
ShowNTErrors
(
"Illegal model type!"
);
}
/* back-propagation for obtaining gradients */
//if (labelSmoothingP > 0)
// LabelSmooth(&gold, &goldSmoothed, labelSmoothingP);
/* get loss and probabilities */
XTensor
labelOnehot
;
XTensor
lossTensor
;
labelOnehot
=
IndexToOnehot
(
label
,
vSizeTgt
,
labelSmoothingP
);
/* make paddings for the output */
//if (output.GetDim(0) > 0)
//PadOutput(&output, &labelOnehot, &paddingDec);
/* get probabilities */
//float prob = GetProb(&output, &labelOnehot, NULL);
XTensor
lossTensor
;
lossTensor
=
CrossEntropy
(
output
,
labelOnehot
,
paddingDec
);
float
prob
=
ReduceSumAll
(
lossTensor
);
float
lossBatch
=
ReduceSumAll
(
lossTensor
);
DTYPE
lossLocal
=
prob
/
wc
;
DTYPE
lossLocal
=
lossBatch
/
wc
;
bool
doUpdate
=
(
!
IsNAN
(
lossLocal
)
&&
!
IsINF
(
lossLocal
)
&&
lossLocal
<
1e3
F
);
//XTensor &g = labelSmoothingP > 0 ? goldSmoothed : gold;
if
(
doUpdate
)
{
/* recale the output for normalized loss */
//RescaleOutput(&output, &labelOnehot, &paddingDec);
/* back-propagation */
net
.
Backward
(
lossTensor
);
//net.Backward(output, labelOnehot, paddingDec, CROSSENTROPY);
//net.Backward(output, label, labelSmoothingP, CROSSENTROPY);
gradStep
+=
1
;
loss
+=
prob
;
loss
+=
lossBatch
;
wordCount
+=
wc
;
wordCountTotal
+=
wc
;
//totalW = wc + ws;
wordCountBatch
+=
ws
;
batchCountTotal
+=
ws
;
/* update the parameters */
if
(
gradStep
==
updateStep
){
/* learning rate */
lr
=
lrate
*
(
1.0
F
/
(
float
)
sqrt
((
float
)
d
))
*
(
float
)
MIN
(
pow
((
float
)
validStep
+
1
,
-
0.5
F
-
lrbias
),
((
float
)
validStep
+
1
)
*
pow
((
float
)
nwarmup
,
-
1.5
F
-
lrbias
));
lr
=
lrate
*
(
1.0
F
/
(
float
)
sqrt
((
float
)
d
))
*
(
float
)
MIN
(
pow
((
float
)
validStep
+
1
,
-
0.5
F
-
lrbias
),
((
float
)
validStep
+
1
)
*
pow
((
float
)
nwarmup
,
-
1.5
F
-
lrbias
));
/* model update */
Update
(
model
,
lr
);
...
...
@@ -260,8 +240,10 @@ void T2TTrainer::Train(const char * fn, const char * validFN, const char * model
if
(
step
%
100
==
0
)
{
double
elapsed
=
GetClockSec
()
-
startT
;
XPRINT8
(
0
,
stderr
,
"[INFO] elapsed=%.1fs, step=%d, epoch=%d, tword=%d, sword=%d, loss=%.3f, ppl=%.3f, sppl=%.3f"
,
elapsed
,
step
,
epoch
,
wordCountTotal
,
wordCountBatch
,
loss
/
wordCount
,
exp
(
loss
/
wordCount
),
exp
(
prob
/
wc
));
XPRINT8
(
0
,
stderr
,
"[INFO] elapsed=%.1fs, step=%d, epoch=%d, total word=%d, total batch=%d, loss=%.3f, ppl=%.3f, sppl=%.3f"
,
elapsed
,
step
,
epoch
,
wordCountTotal
,
batchCountTotal
,
loss
/
wordCount
,
exp
(
loss
/
wordCount
),
exp
(
lossBatch
/
wc
));
if
(
!
doUpdate
)
XPRINT
(
0
,
stderr
,
" (no update)"
);
XPRINT
(
0
,
stderr
,
"
\n
"
);
...
...
@@ -301,12 +283,11 @@ test the model
>> ofn - output data file
>> model - model that is trained
*/
void
T2TTrainer
::
Test
(
const
char
*
fn
,
const
char
*
ofn
,
T2TModel
*
model
)
void
T2TTrainer
::
Validate
(
const
char
*
fn
,
const
char
*
ofn
,
T2TModel
*
model
)
{
int
wc
=
0
;
int
ws
=
0
;
int
wordCount
=
0
;
int
wordCountTotal
=
0
;
int
sentCount
=
0
;
float
loss
=
0
;
...
...
@@ -316,14 +297,8 @@ void T2TTrainer::Test(const char * fn, const char * ofn, T2TModel * model)
FILE
*
ofile
=
fopen
(
ofn
,
"wb"
);
CheckNTErrors
(
ofile
,
"Cannot open the output file"
);
int
devID
=
model
->
devID
;
XNet
net
;
double
startT
=
GetClockSec
();
wordCount
=
0
;
/* batch of input sequences */
XTensor
batchEnc
;
XTensor
batchDec
;
...
...
@@ -346,7 +321,7 @@ void T2TTrainer::Test(const char * fn, const char * ofn, T2TModel * model)
while
(
batchLoader
.
LoadBatch
(
file
,
model
->
isLM
,
&
batchEnc
,
&
paddingEnc
,
&
batchDec
,
&
paddingDec
,
&
gold
,
&
label
,
seqs
,
vSize
,
vSizeTgt
,
1
,
1
,
false
,
ws
,
wc
,
devID
,
false
))
1
,
1
,
false
,
ws
,
wc
,
model
->
devID
,
false
))
{
CheckNTErrors
(
batchEnc
.
order
==
2
,
"wrong tensor order of the sequence batch"
);
...
...
@@ -366,15 +341,11 @@ void T2TTrainer::Test(const char * fn, const char * ofn, T2TModel * model)
int
length
=
output
.
GetDim
(
1
);
/* prediction probabilities */
XTensor
probs
;
InitTensor1D
(
&
probs
,
bSize
*
length
);
XTensor
labelOnehot
;
XTensor
lossTensor
;
labelOnehot
=
IndexToOnehot
(
label
,
vSizeTgt
,
0
);
/* get probabilities */
float
prob
=
GetProb
(
&
output
,
&
labelOnehot
,
&
probs
);
lossTensor
=
CrossEntropy
(
output
,
labelOnehot
,
paddingDec
);
float
lossBatch
=
ReduceSumAll
(
lossTensor
);
/* dump the test result */
for
(
int
s
=
0
;
s
<
bSize
;
s
++
){
...
...
@@ -390,7 +361,7 @@ void T2TTrainer::Test(const char * fn, const char * ofn, T2TModel * model)
fprintf
(
ofile
,
"||| "
);
for
(
int
i
=
0
;
i
<
length
;
i
++
){
if
(
seq
[
i
]
>=
0
){
DTYPE
p
=
probs
.
Get1D
(
s
*
length
+
i
);
DTYPE
p
=
lossTensor
.
Get2D
(
s
,
i
);
fprintf
(
ofile
,
"%.3e "
,
p
);
sum
+=
p
;
}
...
...
@@ -400,12 +371,12 @@ void T2TTrainer::Test(const char * fn, const char * ofn, T2TModel * model)
fprintf
(
ofile
,
"||| %e
\n
"
,
sum
);
}
loss
+=
-
prob
;
loss
+=
lossBatch
;
wordCount
+=
wc
;
wordCountTotal
+=
wc
;
sentCount
+=
1
;
sentCount
+=
bSize
;
}
fclose
(
file
);
fclose
(
ofile
);
...
...
@@ -413,8 +384,8 @@ void T2TTrainer::Test(const char * fn, const char * ofn, T2TModel * model)
double
elapsed
=
GetClockSec
()
-
startT
;
XPRINT
3
(
0
,
stderr
,
"[INFO] test finished (took %.1fs, word=%d,
and ppl=%.3f)
\n
"
,
elapsed
,
wordCountTotal
,
exp
(
loss
/
wordCount
));
XPRINT
5
(
0
,
stderr
,
"[INFO] test finished (took %.1fs, sentence=%d, word=%d, loss=%.3f
and ppl=%.3f)
\n
"
,
elapsed
,
sentCount
,
wordCount
,
loss
/
wordCount
,
exp
(
loss
/
wordCount
));
}
/*
...
...
@@ -428,64 +399,25 @@ make a checkpoint
void
T2TTrainer
::
MakeCheckpoint
(
T2TModel
*
model
,
const
char
*
validFN
,
const
char
*
modelFN
,
const
char
*
label
,
int
id
)
{
char
*
fn
=
new
char
[
MAX_LINE_LENGTH
];
char
*
fn2
=
new
char
[
MAX_LINE_LENGTH
];
sprintf
(
fn
,
"%s.%s.%03d"
,
modelFN
,
label
,
id
);
sprintf
(
fn2
,
"%s.%s.%03d.output"
,
modelFN
,
label
,
id
);
model
->
Dump
(
fn
);
//if(validFN != NULL){
//T2TTrainer trainer;
//trainer.Init(argNum, argArray);
//trainer.Test(validFN, fn2, model);
//}
delete
[]
fn
;
delete
[]
fn2
;
}
/*
get word probabilities for a batch of sequences
>> output - word distribution for each position
>> gold - gold standard
>> wordProbs - word probability for gold prediction
*/
float
T2TTrainer
::
GetProb
(
XTensor
*
output
,
XTensor
*
gold
,
XTensor
*
wordProbs
)
{
XTensor
probs
;
InitTensorV2
(
&
probs
,
output
);
_Multiply
(
output
,
gold
,
&
probs
);
/* probability of each word */
XTensor
wprobs
;
InitTensor1D
(
&
wprobs
,
output
->
unitNum
/
output
->
GetDim
(
-
1
),
X_FLOAT
,
output
->
devID
);
int
dims
[
2
]
=
{
output
->
unitNum
/
output
->
GetDim
(
-
1
),
output
->
GetDim
(
-
1
)};
probs
.
Reshape
(
2
,
dims
);
_ReduceSum
(
&
probs
,
&
wprobs
,
1
);
if
(
wordProbs
!=
NULL
)
_CopyValues
(
&
wprobs
,
wordProbs
);
/* reshape the tensor to fit it into the reduce procedure
TODO: XTensor supports scalars */
dims
[
0
]
=
1
;
dims
[
1
]
=
probs
.
unitNum
;
probs
.
Reshape
(
2
,
dims
);
/* probability for the batch */
XTensor
result
;
InitTensor1D
(
&
result
,
1
,
X_FLOAT
,
output
->
devID
);
_ReduceSum
(
&
probs
,
&
result
,
1
);
return
result
.
Get1D
(
0
);
char
*
fn2
=
new
char
[
MAX_LINE_LENGTH
];
sprintf
(
fn2
,
"%s.%s.%03d.output"
,
modelFN
,
label
,
id
);
if
(
validFN
!=
NULL
){
T2TTrainer
trainer
;
trainer
.
Init
(
argNum
,
argArray
);
trainer
.
Validate
(
validFN
,
fn2
,
model
);
}
delete
[]
fn2
;
}
/*
update the model by delta rule
\theta_
new
= \theta - \lrate * grad
\theta_
{new}
= \theta - \lrate * grad
where
\lrate = d^-0.5 * min(stepNum^
-0.5, stepNum * warmupStepNum^-1.5
)
\lrate = d^-0.5 * min(stepNum^
{-0.5}, stepNum * warmupStepNum^{-1.5}
)
>> model - the t2t model
>> lr - learning rate
*/
...
...
@@ -531,7 +463,6 @@ void T2TTrainer::Update(T2TModel * model, const float lr)
_Sum
(
para
,
v2
,
para
,
-
e
);
DelTensorBuf
(
v2
);
}
else
{
/* the delta rule */
...
...
@@ -574,86 +505,4 @@ void T2TTrainer::PrepareModel(T2TModel * model)
adamBeta2T
=
1.0
F
;
}
/*
do padding on the output
>> output - output tensor of the network
>> gold - gold standard
>> padding - padding of a batch of sentences
>> lsP - smoothing factor
*/
void
T2TTrainer
::
PadOutput
(
XTensor
*
output
,
XTensor
*
gold
,
XTensor
*
padding
)
{
if
(
output
==
NULL
||
padding
==
NULL
)
return
;
int
on
=
output
->
order
;
int
*
dimso
=
new
int
[
on
];
memcpy
(
dimso
,
output
->
dimSize
,
sizeof
(
int
)
*
on
);
output
->
Reshape
(
output
->
unitNum
/
dimso
[
output
->
order
-
1
],
dimso
[
output
->
order
-
1
]);
XTensor
*
padding2
=
NewTensorBuf
(
1
,
&
padding
->
unitNum
,
X_FLOAT
,
padding
->
devID
);
_CopyValues
(
padding
,
padding2
);
_MultiplyDim
(
output
,
padding2
,
output
,
0
);
_ScaleAndShiftMe
(
padding2
,
1e9
F
,
-
1e9
F
);
_SumDim
(
output
,
padding2
,
output
,
0
);
output
->
Reshape
(
on
,
dimso
);
if
(
gold
!=
NULL
){
gold
->
Reshape
(
gold
->
unitNum
/
dimso
[
gold
->
order
-
1
],
dimso
[
gold
->
order
-
1
]);
_CopyValues
(
padding
,
padding2
);
_MultiplyDim
(
gold
,
padding2
,
gold
,
0
);
gold
->
Reshape
(
on
,
dimso
);
}
delete
[]
dimso
;
DelTensorBuf
(
padding2
);
}
/*
recale the output and gold tensors for normalized loss
>> output - output tensor of the network
>> gold - gold standard
>> padding - padding of a batch of sentences
*/
void
T2TTrainer
::
RescaleOutput
(
XTensor
*
output
,
XTensor
*
gold
,
XTensor
*
padding
)
{
CheckNTErrors
(
output
->
order
==
3
,
"Wrong dimension number!"
);
CheckNTErrors
(
gold
->
order
==
3
,
"Wrong dimension number!"
);
DTYPE
count
=
_ReduceSumAll
(
padding
);
_ExpMe
(
output
);
_ScaleAndShiftMe
(
output
,
1
/
count
);
_LogMe
(
output
);
_ScaleAndShiftMe
(
gold
,
1
/
count
);
}
/*
perform label smoothing
>> gold - gold standard
>> smoothed - result of label smoothing
>> p - smoothing factor
*/
void
T2TTrainer
::
LabelSmooth
(
XTensor
*
gold
,
XTensor
*
smoothed
,
DTYPE
p
)
{
CheckNTErrors
(
p
>=
0
&&
p
<=
1.0
F
,
"Smoothing factor must be in range [0,1]"
);
int
n
=
gold
->
GetDim
(
-
1
);
DTYPE
q
=
1.0
F
-
p
;
DTYPE
gift
=
p
/
n
;
InitTensor
(
smoothed
,
gold
);
_CopyValues
(
gold
,
smoothed
);
if
(
p
==
0
)
return
;
_ScaleAndShiftMe
(
smoothed
,
q
,
gift
);
}
}
source/sample/transformer/T2TTrainer.h
查看文件 @
e1ed713a
...
...
@@ -125,28 +125,16 @@ public:
void
Train
(
const
char
*
fn
,
const
char
*
validFN
,
const
char
*
modelFN
,
T2TModel
*
model
);
/* test the model */
void
Test
(
const
char
*
fn
,
const
char
*
ofn
,
T2TModel
*
model
);
void
Validate
(
const
char
*
fn
,
const
char
*
ofn
,
T2TModel
*
model
);
/* make a checkpoint */
void
MakeCheckpoint
(
T2TModel
*
model
,
const
char
*
validFN
,
const
char
*
modelFN
,
const
char
*
label
,
int
id
);
/* get word probabilities for a batch of sequences */
float
GetProb
(
XTensor
*
output
,
XTensor
*
gold
,
XTensor
*
wordProbs
);
/* update the model by delta rule */
void
Update
(
T2TModel
*
model
,
const
float
lr
);
/* prepare model for training */
void
PrepareModel
(
T2TModel
*
model
);
/* do padding on the output */
void
PadOutput
(
XTensor
*
output
,
XTensor
*
gold
,
XTensor
*
padding
);
/* recale the output and gold tensors for normalized loss */
void
RescaleOutput
(
XTensor
*
output
,
XTensor
*
gold
,
XTensor
*
padding
);
/* perform label smoothing */
void
LabelSmooth
(
XTensor
*
gold
,
XTensor
*
smoothed
,
DTYPE
p
);
};
...
...
source/sample/transformer/Transformer.cpp
查看文件 @
e1ed713a
...
...
@@ -94,7 +94,7 @@ int TransformerMain(int argc, const char ** argv)
else
{
T2TTrainer
tester
;
tester
.
Init
(
argc
,
args
);
tester
.
Test
(
testFN
,
outputFN
,
&
model
);
tester
.
Validate
(
testFN
,
outputFN
,
&
model
);
}
}
...
...
source/tensor/XTensor.h
查看文件 @
e1ed713a
...
...
@@ -28,7 +28,6 @@
#ifndef __XTENSOR_H__
#define __XTENSOR_H__
#include <math.h>
#include "XGlobal.h"
#include "XMem.h"
#include "XPRunner.h"
...
...
@@ -416,11 +415,11 @@ public:
bool
BinarySearch
(
int
key
,
DTYPE
&
value
,
void
*
&
position
)
const
;
/* dump data to a file */
void
Dump
(
FILE
*
file
,
const
char
*
label
=
NULL
,
const
int
n
=
-
1
,
const
int
beg
=
0
,
const
int
verbose
=
0
);
void
Dump
(
FILE
*
file
=
stderr
,
const
char
*
label
=
NULL
,
const
int
n
=
-
1
,
const
int
beg
=
0
,
const
int
verbose
=
0
);
/* dump data to a file */
static
void
Dump
(
const
XTensor
*
tensor
,
FILE
*
file
,
const
char
*
label
=
NULL
,
const
int
n
=
-
1
,
const
int
beg
=
0
,
const
int
verbose
=
0
);
void
Dump
(
const
XTensor
*
tensor
,
FILE
*
file
=
stderr
,
const
char
*
label
=
NULL
,
const
int
n
=
-
1
,
const
int
beg
=
0
,
const
int
verbose
=
0
);
/* dump data to a binary file */
void
BinaryDump
(
FILE
*
file
);
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论