/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: LI Yinqiao (li.yin.qiao.2012@hotmail.com) 2018-04-30 */ #include "TSum.h" namespace nts { // namespace nts(NiuTrans.Tensor) /* case 1: tensor summation c = a + b * \beta */ bool TestSum1() { /* a tensor of size (2, 4) */ int order = 2; int * dimSize = new int[order]; dimSize[0] = 2; dimSize[1] = 4; int unitNum = 1; for (int i = 0; i < order; i++) unitNum *= dimSize[i]; DTYPE aData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F}, {4.0F, 5.0F, 6.0F, 7.0F} }; DTYPE bData[2][4] = { {1.0F, -1.0F, -3.0F, -5.0F}, {-7.0F, -9.0F, -11.0F, -13.0F} }; DTYPE answer[2][4] = { {1.0F, 0.0F, -1.0F, -2.0F}, {-3.0F, -4.0F, -5.0F, -6.0F} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * a = NewTensor(order, dimSize); XTensor * b = NewTensor(order, dimSize); XTensor * c = NewTensor(order, dimSize); XTensor * cMe = NewTensor(order, dimSize); XTensor cUser; /* initialize variables */ a->SetData(aData, unitNum); cMe->SetData(aData, unitNum); b->SetData(bData, unitNum); c->SetZeroAll(); /* call Sum function */ _Sum(a, b, c); _SumMe(cMe, b); cUser = Sum(*a, *b); /* check results */ cpuTest = c->CheckData(answer, unitNum) && cMe->CheckData(answer, unitNum) && cUser.CheckData(answer, unitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * aGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * bGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * cGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * cMeGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor cUserGPU; /* Initialize variables */ aGPU->SetData(aData, unitNum); cMeGPU->SetData(aData, unitNum); bGPU->SetData(bData, unitNum); cGPU->SetZeroAll(); /* call Sum function */ _Sum(aGPU, bGPU, cGPU); _SumMe(cMeGPU, bGPU); cUserGPU = Sum(*aGPU, *bGPU); /* check results */ gpuTest = cGPU->CheckData(answer, unitNum) && cMeGPU->CheckData(answer, unitNum) && cUserGPU.CheckData(answer, unitNum); /* destroy variables */ delete a; delete b; delete c; delete cMe; delete aGPU; delete bGPU; delete cGPU; delete cMeGPU; delete[] dimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete a; delete b; delete c; delete cMe; delete[] dimSize; return cpuTest; #endif // USE_CUDA } /* case 2: tensor summation c = a + b * \beta */ bool TestSum2() { /* a tensor of size (2, 4) */ int order = 2; int * dimSize = new int[order]; dimSize[0] = 2; dimSize[1] = 4; int unitNum = 1; for (int i = 0; i < order; i++) { unitNum *= dimSize[i]; } DTYPE aData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F}, {4.0F, 5.0F, 6.0F, 7.0F} }; DTYPE bData[2][4] = { {1.0F, -1.0F, -3.0F, -5.0F}, {-7.0F, -9.0F, -11.0F, -13.0F} }; DTYPE answer[2][4] = { {0.5F, 0.5F, 0.5F, 0.5F}, {0.5F, 0.5F, 0.5F, 0.5F} }; float beta = 0.5F; /* CPU test */ bool cpuTest = true; /* create tensor */ XTensor * a = NewTensor(order, dimSize); XTensor * b = NewTensor(order, dimSize); XTensor * c = NewTensor(order, dimSize); XTensor * cMe = NewTensor(order, dimSize); XTensor cUser; /* initialize variables */ a->SetData(aData, unitNum); cMe->SetData(aData, unitNum); b->SetData(bData, unitNum); c->SetZeroAll(); /* call Sum function */ _Sum(a, b, c, beta); _SumMe(cMe, b, beta); cUser = Sum(*a, *b, beta); /* check results */ cpuTest = c->CheckData(answer, unitNum) && cMe->CheckData(answer, unitNum) && cUser.CheckData(answer, unitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * aGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * bGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * cGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * cMeGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor cUserGPU; /* Initialize variables */ aGPU->SetData(aData, unitNum); cMeGPU->SetData(aData, unitNum); bGPU->SetData(bData, unitNum); cGPU->SetZeroAll(); /* call Sum function */ _Sum(aGPU, bGPU, cGPU, beta); _SumMe(cMeGPU, bGPU, beta); cUserGPU = Sum(*aGPU, *bGPU, beta); /* check results */ gpuTest = cGPU->CheckData(answer, unitNum) && cMeGPU->CheckData(answer, unitNum) && cUserGPU.CheckData(answer, unitNum); /* destroy variables */ delete a; delete b; delete c; delete cMe; delete aGPU; delete bGPU; delete cGPU; delete cMeGPU; delete[] dimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete a; delete b; delete c; delete cMe; delete[] dimSize; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for Sum Function */ bool TestSum() { XPRINT(0, stdout, "[TEST SUM] tensor summation c = a + b * beta\n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestSum1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* case 2 test */ caseFlag = TestSum2(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 2 failed!\n"); } else XPRINT(0, stdout, ">> case 2 passed!\n"); /* other cases test */ /* TODO!! */ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)