/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-27 */ #include "TTopK.h" namespace nts { // namespace nts(NiuTrans.Tensor) /* case 1: get the top-k items along a given dimension. In this case, (2, 4) -> (2, 4), dim = 0, k = 2 (2, 4) -> (2, 4), dim = 1, k = 4 */ bool TestTopK1() { /* a input tensor of size (2, 4) */ int sOrder = 2; int * sDimSize = new int[sOrder]; sDimSize[0] = 2; sDimSize[1] = 4; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; /* a output tensor of size (2, 4) */ int tOrder = 2; int * tDimSize = new int[tOrder]; tDimSize[0] = 2; tDimSize[1] = 4; int tUnitNum = 1; for (int i = 0; i < tOrder; i++) tUnitNum *= tDimSize[i]; DTYPE sData[2][4] = { {5.0F, 1.0F, 2.0F, 8.0F}, {4.0F, 3.0F, 7.0F, 6.0F} }; DTYPE tAnswer1[2][4] = { {5.0F, 3.0F, 7.0F, 8.0F}, {4.0F, 1.0F, 2.0F, 6.0F} }; int indexAnswer1[2][4] = { {0, 1, 1, 0}, {1, 0, 0, 1} }; DTYPE tAnswer2[2][4] = { {8.0F, 5.0F, 2.0F, 1.0F}, {7.0F, 6.0F, 4.0F, 3.0F} }; int indexAnswer2[2][4] = { {3, 0, 2, 1}, {2, 3, 0, 1} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * s = NewTensor(sOrder, sDimSize); XTensor * t1 = NewTensor(tOrder, tDimSize); XTensor * t2 = NewTensor(tOrder, tDimSize); XTensor * index1 = NewTensor(tOrder, tDimSize, X_INT); XTensor * index2 = NewTensor(tOrder, tDimSize, X_INT); XTensor sUser = XTensor(sOrder, sDimSize, X_FLOAT, 1.0F, -1, NULL); XTensor tUser1 = XTensor(tOrder, tDimSize, X_FLOAT, 1.0F, -1, NULL); XTensor tUser2 = XTensor(tOrder, tDimSize, X_FLOAT, 1.0F, -1, NULL); XTensor indexUser1 = NewTensor(tOrder, tDimSize, X_INT, 1.0F, -1, NULL); XTensor indexUser2 = NewTensor(tOrder, tDimSize, X_INT, 1.0F, -1, NULL); /* initialize variables */ s->SetData(sData, sUnitNum); t1->SetZeroAll(); t2->SetZeroAll(); index1->SetZeroAll(); index2->SetZeroAll(); sUser.SetData(sData, sUnitNum); tUser1.SetZeroAll(); tUser2.SetZeroAll(); indexUser1.SetZeroAll(); indexUser2.SetZeroAll(); /* call TopK function */ int dim = 0; int k = sDimSize[dim]; _TopK(s, t1, index1, dim, k); TopK(sUser, tUser1, indexUser1, dim, k); dim = 1; k = sDimSize[dim]; _TopK(s, t2, index2, dim, k); TopK(sUser, tUser2, indexUser2, dim, k); /* check results */ cpuTest = t1->CheckData(tAnswer1, tUnitNum) && tUser1.CheckData(tAnswer1, tUnitNum) && t2->CheckData(tAnswer2, tUnitNum) && tUser2.CheckData(tAnswer2, tUnitNum) && index1->CheckData(indexAnswer1, tUnitNum) && indexUser1.CheckData(indexAnswer1, tUnitNum) && index2->CheckData(indexAnswer2, tUnitNum) && indexUser2.CheckData(indexAnswer2, tUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensors */ XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * tGPU1 = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0); XTensor * tGPU2 = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0); XTensor * indexGPU1 = NewTensor(tOrder, tDimSize, X_INT, 1.0F, 0); XTensor * indexGPU2 = NewTensor(tOrder, tDimSize, X_INT, 1.0F, 0); XTensor sUserGPU = XTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0, NULL); XTensor tUserGPU1 = XTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0, NULL); XTensor tUserGPU2 = XTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0, NULL); XTensor indexUserGPU1 = NewTensor(tOrder, tDimSize, X_INT, 1.0F, 0, NULL); XTensor indexUserGPU2 = NewTensor(tOrder, tDimSize, X_INT, 1.0F, 0, NULL); /* initialize variables */ sGPU->SetData(sData, sUnitNum); tGPU1->SetZeroAll(); tGPU2->SetZeroAll(); indexGPU1->SetZeroAll(); indexGPU2->SetZeroAll(); sUserGPU.SetData(sData, sUnitNum); tUserGPU1.SetZeroAll(); tUserGPU2.SetZeroAll(); indexUserGPU1.SetZeroAll(); indexUserGPU2.SetZeroAll(); /* call TopK function */ dim = 0; k = sDimSize[dim]; _TopK(sGPU, tGPU1, indexGPU1, dim, k); TopK(sUserGPU, tUserGPU1, indexUserGPU1, dim, k); dim = 1; k = sDimSize[dim]; _TopK(sGPU, tGPU2, indexGPU2, dim, k); TopK(sUserGPU, tUserGPU2, indexUserGPU2, dim, k); /* check results */ gpuTest = tGPU1->CheckData(tAnswer1, tUnitNum) && tUserGPU1.CheckData(tAnswer1, tUnitNum) && tGPU2->CheckData(tAnswer2, tUnitNum) && tUserGPU2.CheckData(tAnswer2, tUnitNum) && indexGPU1->CheckData(indexAnswer1, tUnitNum) && indexUserGPU1.CheckData(indexAnswer1, tUnitNum) && indexGPU2->CheckData(indexAnswer2, tUnitNum) && indexUserGPU2.CheckData(indexAnswer2, tUnitNum); /* destroy variables */ delete s; delete t1; delete t2; delete index1; delete index2; delete sGPU; delete tGPU1; delete tGPU2; delete indexGPU1; delete indexGPU2; delete[] sDimSize; delete[] tDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete s; delete t1; delete t2; delete index1; delete index2; delete[] sDimSize; delete[] tDimSize; return cpuTest; #endif // USE_CUDA } /* case 2: get the top-k items along a given dimension. In this case, (2, 4) -> (2, 2), dim = 1, k = 2. */ bool TestTopK2() { /* a input tensor of size (2, 4) */ int sOrder = 2; int * sDimSize = new int[sOrder]; sDimSize[0] = 2; sDimSize[1] = 4; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; /* a output tensor of size (2, 2) */ int tOrder = 2; int * tDimSize = new int[tOrder]; tDimSize[0] = 2; tDimSize[1] = 2; int tUnitNum = 1; for (int i = 0; i < tOrder; i++) tUnitNum *= tDimSize[i]; DTYPE sData[2][4] = { {5.0F, 1.0F, 2.0F, 8.0F}, {4.0F, 3.0F, 7.0F, 6.0F} }; DTYPE tAnswer[2][2] = { {8.0F, 5.0F}, {7.0F, 6.0F} }; int indexAnswer[2][2] = { {3, 0}, {2, 3} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * s = NewTensor(sOrder, sDimSize); XTensor * t = NewTensor(tOrder, tDimSize); XTensor * index = NewTensor(tOrder, tDimSize, X_INT); XTensor sUser = XTensor(sOrder, sDimSize, X_FLOAT, 1.0F, -1, NULL); XTensor tUser = XTensor(tOrder, tDimSize, X_FLOAT, 1.0F, -1, NULL); XTensor indexUser = NewTensor(tOrder, tDimSize, X_INT, 1.0F, -1, NULL); /* initialize variables */ s->SetData(sData, sUnitNum); t->SetZeroAll(); index->SetZeroAll(); sUser.SetData(sData, sUnitNum); tUser.SetZeroAll(); indexUser.SetZeroAll(); /* call TopK function */ int dim = 1; int k = tDimSize[dim]; _TopK(s, t, index, dim, k); TopK(sUser, tUser, indexUser, dim, k); /* check results */ cpuTest = t->CheckData(tAnswer, tUnitNum) && tUser.CheckData(tAnswer, tUnitNum) && index->CheckData(indexAnswer, tUnitNum) && indexUser.CheckData(indexAnswer, tUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensors */ XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * tGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0); XTensor * indexGPU = NewTensor(tOrder, tDimSize, X_INT, 1.0F, 0); XTensor sUserGPU = XTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0, NULL); XTensor tUserGPU = XTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0, NULL); XTensor indexUserGPU = NewTensor(tOrder, tDimSize, X_INT, 1.0F, 0, NULL); /* initialize variables */ sGPU->SetData(sData, sUnitNum); tGPU->SetZeroAll(); indexGPU->SetZeroAll(); sUserGPU.SetData(sData, sUnitNum); tUserGPU.SetZeroAll(); indexUserGPU.SetZeroAll(); /* call TopK function */ dim = 1; k = tDimSize[dim]; _TopK(sGPU, tGPU, indexGPU, dim, k); TopK(sUserGPU, tUserGPU, indexUserGPU, dim, k); /* check results */ gpuTest = tGPU->CheckData(tAnswer, tUnitNum) && tUserGPU.CheckData(tAnswer, tUnitNum) && indexGPU->CheckData(indexAnswer, tUnitNum) && indexUserGPU.CheckData(indexAnswer, tUnitNum); /* destroy variables */ delete s; delete t; delete index; delete sGPU; delete tGPU; delete indexGPU; delete[] sDimSize; delete[] tDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete s; delete t; delete index; delete[] sDimSize; delete[] tDimSize; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for TopK Function */ bool TestTopK() { XPRINT(0, stdout, "[TEST TopK] get the top-k items along a given dimension\n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestTopK1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* case 2 test */ caseFlag = TestTopK2(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 2 failed!\n"); } else XPRINT(0, stdout, ">> case 2 passed!\n"); /* other cases test */ /* TODO!! */ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)