/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24 */ #include "../math/ScaleAndShift.h" #include "../../XName.h" #include "ReduceSum.h" #include "ReduceMean.h" namespace nts{ // namespace nts(NiuTrans.Tensor) /* get the mean value along a dimension of the tensor For a 1-dimensional data array a, mean = (1/n) * sum_i input_i >> input - the input tensor >> output - the output tensor >> dim - the dimension where the reduction is performed on */ void _ReduceMean(const XTensor * input, XTensor * output, int dim) { CheckNTErrors((input->order > dim), "Illegal dimension specified!"); int dimRDI = input->order - dim - 1; int num = input->dimSizeRDI[dimRDI]; _ReduceSum(input, output, dim); _ScaleAndShiftMe(output, (DTYPE)1/num, 0); } /* get the mean value along a dimension of the tensor (return an XTensor structure) make a new tenosr to keep the result and return it For a 1-dimensional data array a, mean = (1/n) * sum_i input_i >> input - the input tensor >> dim - the dimension where the reduction is performed on << return - the mean value along a dimension of the tensor */ XTensor ReduceMean(const XTensor &input, int dim) { CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!"); int order = input.order - 1; int * dimSize = new int[order]; for(int i = 0; i < order; i++){ if(i < dim) dimSize[i] = input.dimSize[i]; else if(i >= dim) dimSize[i] = input.dimSize[i + 1]; } float dr = (!input.isSparse) ? 1.0F : input.denseRatio; XTensor output(order, dimSize, input.dataType, dr, input.devID, input.mem); output.SetTMPFlag(); /* call _ReduceMean function */ _ReduceMean(&input, &output, dim); /* tensor connection */ XLink::MakeLink(&input, NULL, &output, REDUCE_REDUCEMEAN); XLink::AddParamToHeadInt(&output, dim); /* destroy variables */ delete[] dimSize; return output; } /* get the mean value along a dimension of the tensor For a 1-dimensional data array a, mean = (1/n) * sum_i input_i >> input - the input tensor >> output - the output tensor >> dim - the dimension where the reduction is performed on >> requireLink - if add operation to network */ void ReduceMean(const XTensor &input, XTensor &output, int dim, bool requireLink) { CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!"); if (!output.isInit || !XTensor::IsReduceShaped(&input, &output, dim)) { int order = input.order - 1; int * dimSize = new int[order]; for (int i = 0; i < order; i++) { if (i < dim) dimSize[i] = input.dimSize[i]; else if (i >= dim) dimSize[i] = input.dimSize[i + 1]; } float dr = (!input.isSparse) ? 1.0F : input.denseRatio; InitTensor(&output, order, dimSize, input.dataType, dr, input.devID, input.mem); /* destroy variables */ delete[] dimSize; } /* call _ReduceMean function */ _ReduceMean(&input, &output, dim); if (requireLink) { /* tensor connections */ XLink::MakeLink(&input, NULL, &output, REDUCE_REDUCEMEAN); XLink::AddParamToHeadInt(&output, dim); } } } // namespace nts(NiuTrans.Tensor)