/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24 */ #ifndef __REDUCEVARIANCE_H__ #define __REDUCEVARIANCE_H__ #include "../../XTensor.h" namespace nts{ // namespace nts(NiuTrans.Tensor) /* variance of the items along a dimension of the tensor For a 1-dimensional data array a, variance = 1/n * \sum_i (a_i - mean)^2 */ void _ReduceVariance(const XTensor * input, XTensor * output, int dim, const XTensor * mean); /* variance of the items along a dimension of the tensor (return an XTensor structure) make a new tensor to keep the result and return it For a 1-dimensional data array a, variance = 1/n * \sum_i (a_i - mean)^2 */ XTensor ReduceVariance(const XTensor &input, int dim, const XTensor &mean); /* variance of the items along a dimension of the tensor For a 1-dimensional data array a, variance = 1/n * \sum_i (a_i - mean)^2 */ void ReduceVariance(const XTensor &input, XTensor &output, int dim, const XTensor &mean, bool requireLink = false); } // namespace nts(NiuTrans.Tensor) #endif // __REDUCEVARIANCE_H__