/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-25 */ #include "Sigmoid.h" #include "Sigmoid.cuh" #include "Loss.cuh" #include "../loss/CrossEntropy.cuh" #include "../XDevice.h" #ifdef USE_CUDA // the CUDA stuff #include <cuda_runtime.h> #include <cublas_v2.h> #include <cuda.h> #endif namespace nts{ // namespace nts(NiuTrans.Tensor) #ifdef USE_CUDA /* sigmoid function y = 1/(1+exp(-x)) (Cuda kernel) >> x - input data pointer >> y - output data pointer >> size - size of input/output */ __global__ void KernelSigmoidCompute(DTYPE * x, DTYPE * y, int size) { int i = blockDim.x * blockIdx.x + threadIdx.x; if (i < size){ y[i] = 1/(1+exp(-x[i])); } } /* sigmoid function y = 1/(1+exp(-x)) (Cuda version) >> x - input vector >> y - result */ void _CudaSigmoid(const XTensor * x, XTensor * y) { if(x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE){ CheckNTErrors(!x->isSparse && !y->isSparse, "the activation function (rectify) does not support sparse matrices."); CheckNTErrors(x->unitNum && y->unitNum, "we require two vectors with the same length."); int gridSize[3], blockSize[3]; GDevs.GetCudaThread(x->devID, x->unitNum, gridSize, blockSize); int devIDBackup; ProtectCudaDev(x->devID, devIDBackup); KernelSigmoidCompute<<<dim3(gridSize[0]), dim3(blockSize[0])>>>((DTYPE*)x->data, (DTYPE*)y->data, x->unitNum); BacktoCudaDev(x->devID, devIDBackup); } else ShowNTErrors("TODO!"); } /* sigmoid backward computation of dE/dx (Cuda kernel) dE/ds = dE/dy * dy/dx sigmoid: y = 1/(1+exp(-x)) and dy/ds = y * (1 -y) >> dedy - dE/dy >> dedx - dE/ds >> gold - gold standard >> y - output of the function >> x - input of the function >> size - size of output/input */ __global__ void KernelSigmoidBackward(DTYPE * dedy, DTYPE * dedx, DTYPE * gold, DTYPE * y, DTYPE * x, int size) { int i = blockDim.x * blockIdx.x + threadIdx.x; if (i < size){ dedx[i] = dedy[i] * y[i] * ((DTYPE)1.0 - y[i]); } } /* backward computation (Cuda version) dE/ds = dE/dy * dy/dx sigmoid: y = 1/(1+exp(-x)) and dy/dx = y * (1 -y) >> gold - gold standard to measure error (or loss) >> y - output of the function >> x - input of the function >> dedy - dE/dy >> dedx - dE/dx >> lossName - type of loss function, e.g., cross entropy */ void _CudaSigmoidBackward(XTensor * gold, XTensor * y, XTensor * x, XTensor * dedy, XTensor * dedx, LOSS_FUNCTION_NAME lossName) { if(x->dataType == DEFAULT_DTYPE && y->dataType == DEFAULT_DTYPE){ /* calculate dE/dy */ if(lossName == CROSSENTROPY) _CudaCrossEntropyBackward(dedy, y, gold); else if(lossName != NOLOSS) _LossBackward(dedy, gold, y, lossName); int gridSize[3], blockSize[3]; GDevs.GetCudaThread(x->devID, x->unitNum, gridSize, blockSize); int devIDBackup; ProtectCudaDev(x->devID, devIDBackup); /* dE/ds = dE/dy * dy/ds */ KernelSigmoidBackward<<<dim3(gridSize[0]),dim3(blockSize[0])>>> ((DTYPE*)dedy->data, (DTYPE*)dedx->data, gold == NULL ? NULL : (DTYPE*)gold->data, (DTYPE*)y->data, (DTYPE*)x->data, x->unitNum); BacktoCudaDev(x->devID, devIDBackup); } else ShowNTErrors("TODO!"); } #endif } // namespace nts(NiuTrans.Tensor)