/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: LI Yinqiao (email: li.yin.qiao.2012@hotmail.com) 2018-04-30 */ #include "TReduceMean.h" namespace nts { // namespace nt(NiuTrans.Tensor) /* case 1: get the mean value along a dimension of the tensor */ bool TestReduceMean1() { /* a tensor of size (2, 4) */ int sOrder = 2; int * sDimSize = new int[sOrder]; sDimSize[0] = 2; sDimSize[1] = 4; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; /* a tensor of size (4) */ int tOrder1 = 1; int * tDimSize1 = new int[tOrder1]; tDimSize1[0] = 4; int tUnitNum1 = 1; for (int i = 0; i < tOrder1; i++) tUnitNum1 *= tDimSize1[i]; /* a tensor of size (2) */ int tOrder2 = 1; int * tDimSize2 = new int[tOrder2]; tDimSize2[0] = 2; int tUnitNum2 = 1; for (int i = 0; i < tOrder2; i++) tUnitNum2 *= tDimSize2[i]; DTYPE sData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F}, {4.0F, 5.0F, 6.0F, 7.0F} }; DTYPE answer1[4] = {2.0F, 3.0F, 4.0F, 5.0F}; DTYPE answer2[2] = {1.5F, 5.5F}; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * s = NewTensor(sOrder, sDimSize); XTensor * t1 = NewTensor(tOrder1, tDimSize1); XTensor * t2 = NewTensor(tOrder2, tDimSize2); XTensor tUser1; XTensor tUser2; /* initialize variables */ s->SetData(sData, sUnitNum); t1->SetZeroAll(); t2->SetZeroAll(); /* call ReduceMean function */ _ReduceMean(s, t1, 0); _ReduceMean(s, t2, 1); tUser1 = ReduceMean(*s, 0); tUser2 = ReduceMean(*s, 1); /* check results */ cpuTest = t1->CheckData(answer1, tUnitNum1) && tUser1.CheckData(answer1, tUnitNum1) && t2->CheckData(answer2, tUnitNum2) && tUser2.CheckData(answer2, tUnitNum2); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * tGPU1 = NewTensor(tOrder1, tDimSize1, X_FLOAT, 1.0F, 0); XTensor * tGPU2 = NewTensor(tOrder2, tDimSize2, X_FLOAT, 1.0F, 0); XTensor tUserGPU1; XTensor tUserGPU2; /* Initialize variables */ sGPU->SetData(sData, sUnitNum); tGPU1->SetZeroAll(); tGPU2->SetZeroAll(); /* call ReduceMean function */ _ReduceMean(sGPU, tGPU1, 0); _ReduceMean(sGPU, tGPU2, 1); tUserGPU1 = ReduceMean(*sGPU, 0); tUserGPU2 = ReduceMean(*sGPU, 1); /* check results */ gpuTest = tGPU1->CheckData(answer1, tUnitNum1) && tUserGPU1.CheckData(answer1, tUnitNum1) && tGPU2->CheckData(answer2, tUnitNum2) && tUserGPU2.CheckData(answer2, tUnitNum2); /* destroy variables */ delete s; delete t1; delete t2; delete sGPU; delete tGPU1; delete tGPU2; delete[] sDimSize; delete[] tDimSize1; delete[] tDimSize2; return cpuTest && gpuTest; #else /* destroy variables */ delete s; delete t1; delete t2; delete[] sDimSize; delete[] tDimSize1; delete[] tDimSize2; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for ReduceMean Function */ bool TestReduceMean() { XPRINT(0, stdout, "[TEST ReduceMean] get the mean value along a dimension of the tensor \n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestReduceMean1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); ///* other cases test */ ///* //TODO!! //*/ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)