/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northeastern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-19 */ #include "../XTensor.h" #include "../XUtility.h" #include "../core/utilities/CheckData.h" #include "TSoftmax.h" namespace nts { // namespace nts(NiuTrans.Tensor) /* case 1: test Softmax function. softmax function: y = e^x / \sum_{i} e^{x_i} */ bool TestSoftmax1() { /* a tensor of size (2, 3) */ int order = 2; int * dimSize = new int[order]; dimSize[0] = 2; dimSize[1] = 3; int unitNum = 1; for (int i = 0; i < order; i++) unitNum *= dimSize[i]; DTYPE xData[2][3] = { {0.0F, 1.0F, 2.0F}, {0.5F, 0.7F, 1.4F} }; DTYPE answer[2][3] = { {0.0900F, 0.2447F, 0.6652F}, {0.2136F, 0.2609F, 0.5254F} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * x = NewTensorV2(order, dimSize); XTensor * y = NewTensorV2(order, dimSize); XTensor yUser; /* initialize variables */ x->SetData(xData, unitNum); y->SetZeroAll(); /* call Softmax function */ _Softmax(x, y, 1); yUser = Softmax(*x, 1); /* check result */ cpuTest = _CheckData(y, answer, unitNum, 1e-4F) && _CheckData(&yUser, answer, unitNum, 1e-4F); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensors */ XTensor * xGPU = NewTensorV2(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * yGPU = NewTensorV2(order, dimSize, X_FLOAT, 1.0F, 0); XTensor yUserGPU; /* initialize variables */ xGPU->SetData(xData, unitNum); yGPU->SetZeroAll(); /* call Softmax function */ _Softmax(xGPU, yGPU, 1); yUserGPU = Softmax(*xGPU, 1); /* check result */ gpuTest = _CheckData(yGPU, answer, unitNum, 1e-4F) && _CheckData(&yUserGPU, answer, unitNum, 1e-4F); /* destroy variables */ delete x; delete y; delete xGPU; delete yGPU; delete[] dimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete x; delete y; delete[] dimSize; return cpuTest; #endif // USE_CUDA } /* case 2: test SoftmaxBackward function. SoftmaxBackward function: dE/dx_j = -gold_j + y_j In this case, LossName=CROSSENTROPY. */ bool TestSoftmax2() { /* a input tensor of size (2, 3) */ int order = 2; int * dimSize = new int[order]; dimSize[0] = 1; dimSize[1] = 3; int unitNum = 1; for (int i = 0; i < order; i++) unitNum *= dimSize[i]; DTYPE xData[1][3] = { {0.0F, 1.0F, 2.0F} }; DTYPE gData[1][3] = { {0.0F, 0.0F, 1.0F} }; DTYPE yAnswer[1][3] = { {0.0900F, 0.2447F, 0.6652F} }; DTYPE dedxAnswer[1][3] = {0.0900F, 0.2447F, -0.3347F}; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * x = NewTensorV2(order, dimSize); XTensor * y = NewTensorV2(order, dimSize); XTensor * g = NewTensorV2(order, dimSize); XTensor * dedy = NewTensorV2(order, dimSize); XTensor * dedx = NewTensorV2(order, dimSize); /* initialize variables */ x->SetData(xData, unitNum); g->SetData(gData, unitNum); y->SetZeroAll(); dedx->SetZeroAll(); dedy->SetZeroAll(); /* call Softmax function */ _Softmax(x, y, 1); /* call SoftmaxBackward function */ _SoftmaxBackward(g, y, x, dedy, dedx, NULL, 1, CROSSENTROPY); /* check result */ cpuTest = _CheckData(y, yAnswer, unitNum, 1e-4F) && _CheckData(dedx, dedxAnswer, unitNum, 1e-4F); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensors */ XTensor * xGPU = NewTensorV2(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * yGPU = NewTensorV2(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * gGPU = NewTensorV2(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * dedyGPU = NewTensorV2(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * dedxGPU = NewTensorV2(order, dimSize, X_FLOAT, 1.0F, 0); /* initialize variables */ xGPU->SetData(xData, unitNum); gGPU->SetData(gData, unitNum); yGPU->SetZeroAll(); dedxGPU->SetZeroAll(); dedyGPU->SetZeroAll(); /* call Softmax function */ _Softmax(xGPU, yGPU, 1); /* call SoftmaxBackward function */ _SoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, NULL, 1, CROSSENTROPY); /* check result */ gpuTest = _CheckData(yGPU, yAnswer, unitNum, 1e-4F) && _CheckData(dedxGPU, dedxAnswer, unitNum, 1e-4F); /* destroy variables */ delete x; delete y; delete g; delete dedx; delete dedy; delete xGPU; delete yGPU; delete gGPU; delete dedxGPU; delete dedyGPU; delete[] dimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete x; delete y; delete g; delete dedx; delete dedy; delete[] dimSize; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for Softmax Function */ bool TestSoftmax() { XPRINT(0, stdout, "[TEST SOFTMAX] softmax function and its backward computation \n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestSoftmax1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* case 2 test */ caseFlag = TestSoftmax2(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 2 failed!\n"); } else XPRINT(0, stdout, ">> case 2 passed!\n"); /* other cases test */ /* TODO!! */ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)