/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: LI Yinqiao (email: li.yin.qiao.2012@hotmail.com) 2018-04-30 */ #include<math.h> #include "../core/math/ScaleAndShift.h" #include "TLoss.h" namespace nts { // namespace nts(NiuTrans.Tensor) /* case 1: test LossCompute function. In this case, Loss function name = SQUAREDERROR. loss = sum_{i} 0.5*(t_i - y_i)^2, where t_i is the gold standard and y_i is the model output. */ bool TestLoss1() { /* a tensor of size (10, 1) */ int order = 2; int * dimSize = new int[order]; dimSize[0] = 10; dimSize[1] = 1; int unitNum = 1; for (int i = 0; i < order; i++) unitNum *= dimSize[i]; /* CPU test */ bool cpuTest = true; DTYPE answer = 5.0F; DTYPE error; /* create tensors */ XTensor * output = NewTensor(order, dimSize); XTensor * gold = NewTensor(order, dimSize); /* initialize variables */ output->SetZeroAll(); gold->SetZeroAll(); _ScaleAndShiftMe(output, 1, 1); _ScaleAndShiftMe(gold, 1, 2); /* call LossCompute function */ error = _LossCompute(gold, output, SQUAREDERROR, false, 0, 0, dimSize[0], 0); /* check results */ cpuTest = (fabs(error - answer) < 1e-4); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * outputGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * goldGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); /* Initialize variables */ outputGPU->SetZeroAll(); goldGPU->SetZeroAll(); _ScaleAndShiftMe(outputGPU, 1, 1); _ScaleAndShiftMe(goldGPU, 1, 2); /* call LossCompute function */ error = _LossCompute(goldGPU, outputGPU, SQUAREDERROR, false, 0, 0, dimSize[0], 0); /* check results */ gpuTest = (fabs(error - answer) < 1e-4); /* destroy variables */ delete output; delete gold; delete outputGPU; delete goldGPU; delete[] dimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete output; delete gold; delete[] dimSize; return cpuTest; #endif // USE_CUDA } /* case 2: test LossCompute function. In this case, Loss function name = CROSSENTROPY. loss = sum_{i} (-t_i * log(y_i)) where t_i is the gold standard and y_i is the model output. */ bool TestLoss2() { /* a tensor of size (10, 1) */ int order = 2; int * dimSize = new int[order]; dimSize[0] = 10; dimSize[1] = 1; int unitNum = 1; for (int i = 0; i < order; i++) unitNum *= dimSize[i]; /* CPU test */ bool cpuTest = true; DTYPE answer = 0.0F; DTYPE error; /* create tensors */ XTensor * output = NewTensor(order, dimSize); XTensor * gold = NewTensor(order, dimSize); /* initialize variables */ output->SetZeroAll(); gold->SetZeroAll(); _ScaleAndShiftMe(output, 1, 1); _ScaleAndShiftMe(gold, 1, 2); /* call LossCompute function */ error = _LossCompute(gold, output, CROSSENTROPY, false, 0, 0, dimSize[0], 0); /* check results */ cpuTest = (fabs(error - answer) < 1e-4); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * outputGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * goldGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); /* Initialize variables */ outputGPU->SetZeroAll(); goldGPU->SetZeroAll(); _ScaleAndShiftMe(outputGPU, 1, 1); _ScaleAndShiftMe(goldGPU, 1, 2); /* call LossCompute function */ error = _LossCompute(goldGPU, outputGPU, CROSSENTROPY, false, 0, 0, dimSize[0], 0); /* check results */ gpuTest = (fabs(error - answer) < 1e-4); /* destroy variables */ delete output; delete gold; delete outputGPU; delete goldGPU; delete[] dimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete output; delete gold; delete[] dimSize; return cpuTest; #endif // USE_CUDA } /* case 3: test LossCompute function. In this case, Loss function name = ONEHOTERROR. loss = sum_{i} e_i where e_i = 0.5*(t_i - y_i)^2 if t_i = 1, e_i = 0 otherwise. */ bool TestLoss3() { /* a tensor of size (10, 1) */ int order = 2; int * dimSize = new int[order]; dimSize[0] = 5; dimSize[1] = 1; int unitNum = 1; for (int i = 0; i < order; i++) unitNum *= dimSize[i]; DTYPE outputData[5][1] = { {0.5F}, {0.5F}, {0.5F}, {0.5F}, {0.5F} }; DTYPE goldData[5][1] = { {1.0F}, {1.0F}, {0.0F}, {0.0F}, {0.0F} }; /* CPU test */ bool cpuTest = true; DTYPE answer = 0.25F; DTYPE error; /* create tensors */ XTensor * output = NewTensor(order, dimSize); XTensor * gold = NewTensor(order, dimSize); /* initialize variables */ output->SetData(outputData, unitNum); gold->SetData(goldData, unitNum); /* call LossCompute function */ error = _LossCompute(gold, output, ONEHOTERROR, false, 0, 0, dimSize[0], 0); /* check results */ cpuTest = (fabs(error - answer) < 1e-4); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * outputGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); XTensor * goldGPU = NewTensor(order, dimSize, X_FLOAT, 1.0F, 0); /* Initialize variables */ outputGPU->SetData(outputData, unitNum); goldGPU->SetData(goldData, unitNum); /* call LossCompute function */ error = _LossCompute(goldGPU, outputGPU, ONEHOTERROR, false, 0, 0, dimSize[0], 0); /* check results */ gpuTest = (fabs(error - answer) < 1e-4); /* destroy variables */ delete output; delete gold; delete outputGPU; delete goldGPU; delete[] dimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete output; delete gold; delete[] dimSize; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for Loss Function */ bool TestLoss() { XPRINT(0, stdout, "[TEST Loss] compute the loss \n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestLoss1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* case 2 test */ caseFlag = TestLoss2(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 2 failed!\n"); } else XPRINT(0, stdout, ">> case 2 passed!\n"); caseFlag = TestLoss3(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 3 failed!\n"); } else XPRINT(0, stdout, ">> case 3 passed!\n"); ///* other cases test */ ///* //TODO!! //*/ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)