/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24 */ #ifndef __MATRIXMUL2D_CUH__ #define __MATRIXMUL2D_CUH__ #include "MatrixMul2D.h" namespace nts { // namespace nts(NiuTrans.Tensor) #ifdef USE_CUDA /* mutilication of a dense matrix with a sparse vector c = a * b * \alpha */ __global__ void KernelMatrixMulDenseMSparseMV2(DTYPE * a, MATRIX_TRANS_TYPE transposedA, int aColSize, int aRowSize, void * b, MATRIX_TRANS_TYPE transposedB, int bNonZeroNum, int bColSize, int bRowSize, DTYPE * c, int cColSize, int cRowSize, DTYPE alpha); /* matrix multiplication (for 2d tensors) (cuda version) c = trans(a) * trans(b) * alpha + c * beta where trans() return the transposed matrix if the flag is fired */ void _CudaMatrixMul2D(const XTensor * a, MATRIX_TRANS_TYPE transposedA, const XTensor * b, MATRIX_TRANS_TYPE transposedB, XTensor * c, DTYPE alpha = (DTYPE)1.0, DTYPE beta = 0, XStream * stream = NULL); #endif // USE_CUDA } // namespace nts(NiuTrans.Tensor) #endif // __MATRIXMUL2D_CUH__