/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24 */ #include <math.h> #include "../XTensor.h" #include "Power.h" #include "Power.cuh" namespace nts { // namespace nts(NiuTrans.Tensor) /* get the power(a, p) >> a - the tensor >> power - as it is */ void Power(XTensor * a, DTYPE p) { #ifdef USE_CUDA /* run it on GPUs */ if (a->devID >= 0) { CudaPower(a, p); return; } #endif CheckNTErrors((a->dataType == DEFAULT_DTYPE), "TODO!"); DTYPE * d = (DTYPE*)a->data; if (p == 0) { for (int i = 0; i < a->unitNum; i++) d[i] = (DTYPE)1.0; } else if (p == (DTYPE)0.5) { for (int i = 0; i < a->unitNum; i++) d[i] = (DTYPE)sqrt(d[i]); } else if (p == (DTYPE)2.0) { for (int i = 0; i < a->unitNum; i++) d[i] = d[i] * d[i]; } else { for (int i = 0; i < a->unitNum; i++) d[i] = (DTYPE)pow(d[i], p); } } } // namespace nts(NiuTrans.Tensor)