/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: XIAO Tong (email: xiaotong@mail.neu.edu.cn) 2018-04-24 */ #include "../../XName.h" #include "../math/ScaleAndShift.h" #include "ReduceSum.h" #include "ReduceVariance.h" namespace nts{ // namespace nts(NiuTrans.Tensor) /* variance of the items along a dimension of the tensor For a 1-dimensional data array a, variance = 1/n * \sum_i (a_i - mean)^2 >> input - the input tensor >> output - the output tensor >> dim - the dimension where the reduction is performed on >> mean - the mean value */ void _ReduceVariance(const XTensor * input, XTensor * output, int dim, const XTensor * mean) { int dimRDI = input->order - dim - 1; int num = input->dimSizeRDI[dimRDI]; _ReduceSum(input, output, dim, mean, 2.0F); _ScaleAndShiftMe(output, (DTYPE)1 / num, 0); } /* variance of the items along a dimension of the tensor (return a XTensor structure) make a new tensor to keep the result and return it For a 1-dimensional data array a, variance = 1/n * \sum_i (a_i - mean)^2 >> input - the input tensor >> dim - the dimension where the reduction is performed on >> mean - the mean value << return - the variance of the items along a dimension of the tensor */ XTensor ReduceVariance(const XTensor &input, int dim, const XTensor &mean) { CheckNTErrors(dim >= 0 && dim < input.order, "Illegal dimension to reduce!"); int order = input.order - 1; int * dimSize = new int[order]; for(int i = 0; i < order; i++){ if(i < dim) dimSize[i] = input.dimSize[i]; else if(i >= dim) dimSize[i] = input.dimSize[i + 1]; } float dr = (!input.isSparse) ? 1.0F : input.denseRatio; XTensor output(order, dimSize, input.dataType, dr, input.devID, input.mem); output.SetTMPFlag(); /* call _ReduceVariance function */ _ReduceVariance(&input, &output, dim, &mean); /* tensor connection */ XLink::MakeLink(&input, &mean, &output, REDUCE_REDUCEVARIANCE); XLink::AddParamToHeadInt(&output, dim); /* destroy variables */ delete[] dimSize; return output; } } // namespace nts(NiuTrans.Tensor)