/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: Xu Chen (email: hello_master1954@163.com) 2018-08-14 */ #include "TDivDim.h" #include "../core/arithmetic/DivDim.h" #include "../XTensor.h" namespace nts { // namespace nts(NiuTrans.Tensor) /* case 1: tensor division c = a/b + \alpha * c where the size of b is equal to the n-th dimension of a, i.e., a is divided with b by broadcasting. In this case, (2, 4) / (2) = (2, 4), n = 0, alpha = 0.0. */ bool TestDivDim1() { /* a tensor of size (2, 4) */ int aOrder = 2; int * aDimSize = new int[aOrder]; aDimSize[0] = 2; aDimSize[1] = 4; int aUnitNum = 1; for (int i = 0; i < aOrder; i++) aUnitNum *= aDimSize[i]; /* a tensor of size (2) */ int bOrder = 1; int * bDimSize = new int[bOrder]; bDimSize[0] = 2; int bUnitNum = 1; for (int i = 0; i < bOrder; i++) bUnitNum *= bDimSize[i]; DTYPE aData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F}, {4.0F, 5.0F, 6.0F, 7.0F} }; DTYPE bData[2] = {1.0F, -1.0F}; DTYPE answer[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F}, {-4.0F, -5.0F, -6.0F, -7.0F} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * a = NewTensor(aOrder, aDimSize); XTensor * b = NewTensor(bOrder, bDimSize); XTensor * c = NewTensor(aOrder, aDimSize); XTensor * cMe = NewTensor(aOrder, aDimSize); XTensor cUser; /* initialize variables */ a->SetData(aData, aUnitNum); cMe->SetData(aData, aUnitNum); b->SetData(bData, bUnitNum); c->SetZeroAll(); /* call DivDim function */ _DivDim(a, b, c, 0); _DivDim(cMe, b, 0); cUser = DivDim(*a, *b, 0); /* check results */ cpuTest = c->CheckData(answer, aUnitNum) && cMe->CheckData(answer, aUnitNum) && cUser.CheckData(answer, aUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * aGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0); XTensor * bGPU = NewTensor(bOrder, bDimSize, X_FLOAT, 1.0F, 0); XTensor * cGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0); XTensor * cMeGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0); XTensor cUserGPU; /* Initialize variables */ aGPU->SetData(aData, aUnitNum); cMeGPU->SetData(aData, aUnitNum); bGPU->SetData(bData, bUnitNum); cGPU->SetZeroAll(); /* call sum function */ _DivDim(aGPU, bGPU, cGPU, 0); _DivDim(cMeGPU, bGPU, 0); cUserGPU = DivDim(*aGPU, *bGPU, 0); /* check results */ gpuTest = cGPU->CheckData(answer, aUnitNum) && cMeGPU->CheckData(answer, aUnitNum) && cUserGPU.CheckData(answer, aUnitNum); /* destroy variables */ delete a; delete b; delete c; delete cMe; delete aGPU; delete bGPU; delete cGPU; delete cMeGPU; delete[] aDimSize; delete[] bDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete a; delete b; delete c; delete cMe; delete[] aDimSize; delete[] bDimSize; return cpuTest; #endif // USE_CUDA } /* case 2: tensor division c = a/b + \alpha * c where the size of b is equal to the n-th dimension of a, i.e., a is divided with b by broadcasting. In this case, (2, 4) / (2, 2) = (2, 4), n = 1. */ bool TestDivDim2() { /* a tensor of size (2, 4) */ int aOrder = 2; int * aDimSize = new int[aOrder]; aDimSize[0] = 2; aDimSize[1] = 4; int aUnitNum = 1; for (int i = 0; i < aOrder; i++) aUnitNum *= aDimSize[i]; /* a tensor of size (2, 2) */ int bOrder = 2; int * bDimSize = new int[bOrder]; bDimSize[0] = 2; bDimSize[1] = 2; int bUnitNum = 1; for (int i = 0; i < bOrder; i++) bUnitNum *= bDimSize[i]; DTYPE aData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F}, {4.0F, 5.0F, 6.0F, 7.0F} }; DTYPE bData[2][2] = { {1.0F, -1.0F}, {-1.0F, 1.0F} }; DTYPE answer[2][4] = { {0.0F, -1.0F, -2.0F, 3.0F}, {4.0F, -5.0F, -6.0F, 7.0F} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * a = NewTensor(aOrder, aDimSize); XTensor * b = NewTensor(bOrder, bDimSize); XTensor * c = NewTensor(aOrder, aDimSize); XTensor * cMe = NewTensor(aOrder, aDimSize); XTensor cUser; /* initialize variables */ a->SetData(aData, aUnitNum); cMe->SetData(aData, aUnitNum); b->SetData(bData, bUnitNum); c->SetZeroAll(); /* call DivDim function */ _DivDim(a, b, c, 1); _DivDim(cMe, b, 1); cUser = DivDim(*a, *b, 1); /* check results */ cpuTest = c->CheckData(answer, aUnitNum) && cMe->CheckData(answer, aUnitNum) && cUser.CheckData(answer, aUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * aGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0); XTensor * bGPU = NewTensor(bOrder, bDimSize, X_FLOAT, 1.0F, 0); XTensor * cGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0); XTensor * cMeGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0); XTensor cUserGPU; /* Initialize variables */ aGPU->SetData(aData, aUnitNum); cMeGPU->SetData(aData, aUnitNum); bGPU->SetData(bData, bUnitNum); cGPU->SetZeroAll(); /* call sum function */ _DivDim(aGPU, bGPU, cGPU, 1); _DivDim(cMeGPU, bGPU, 1); cUserGPU = DivDim(*aGPU, *bGPU, 1); /* check results */ gpuTest = cGPU->CheckData(answer, aUnitNum) && cMeGPU->CheckData(answer, aUnitNum) && cUserGPU.CheckData(answer, aUnitNum); /* destroy variables */ delete a; delete b; delete c; delete cMe; delete aGPU; delete bGPU; delete cGPU; delete cMeGPU; delete[] aDimSize; delete[] bDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete a; delete b; delete c; delete cMe; delete[] aDimSize; delete[] bDimSize; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for DivDim Function */ bool TestDivDim() { XPRINT(0, stdout, "[TEST DIVDIM] tensor division c(i) = a/b + \\alpha * c by broadcasting\n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestDivDim1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* case 2 test */ caseFlag = TestDivDim2(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 2 failed!\n"); } else XPRINT(0, stdout, ">> case 2 passed!\n"); /* other cases test */ /* TODO!! */ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)