/* NiuTrans.NMT - an open-source neural machine translation system. * Copyright (C) 2020 NiuTrans Research. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2018-07-31 * $Modified by: HU Chi (huchinlp@gmail.com) 2020-04 */ #ifndef __DECODER_H__ #define __DECODER_H__ #include "Encoder.h" #include "Utility.h" namespace nmt { class AttDecoder { public: /* device id */ int devID; /* layer number */ int nlayer; /* hidden layer size of the FNN layer */ int hSize; /* embedding size */ int eSize; /* vocabulary size */ int vSize; /* dropout probability */ DTYPE dropoutP; /* embedding of word at each position */ Embedder embedder; /* FNN model of each layer */ FNN* fnns; /* attention model of each layer */ Attention* selfAtt; /* layer normalization for attention */ LN* selfAttLayerNorms; /* layer normalization for fnn */ LN* fnnLayerNorms; /* layer normalization for decoder */ LN* decoderLayerNorm; /* encoder-decoder attention model of each layer */ Attention* enDeAtt; /* layer normalization for encoder-decoder attention */ LN* enDeAttLayerNorms; /* layer cache list */ Cache* selfAttCache; /* layer cache list */ Cache* enDeAttCache; /* the location of layer normalization */ bool preNorm; public: /* constructor */ AttDecoder(); /* de-constructor */ ~AttDecoder(); /* initialize the model */ void InitModel(Config& config); /* make the decoding network */ XTensor Make(XTensor& inputDec, XTensor& outputEnc, XTensor* mask, XTensor* maskEncDec, int nstep, bool isTraining); /* make the decoding network (pre norm) */ XTensor MakeFast(XTensor& inputDec, XTensor& outputEnc, XTensor* mask, XTensor* maskEncDec, int nstep, bool isTraining); }; } #endif