/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-13 */ #include "../XTensor.h" #include "../XList.h" #include "TMerge.h" namespace nts { // namespace nts(NiuTrans.Tensor) /* case 1: transform a tensor by merging it along with a dimension. * In this case, (3, 2) -> (6), whereToMerge=1, leadingDim=0. */ bool TestMerge1() { /* a source tensor of size (2, 3) */ int sOrder = 2; int * sDimSize = new int[sOrder]; sDimSize[0] = 2; sDimSize[1] = 3; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; /* a target tensor of size (6, ) */ int tOrder = 1; int * tDimSize = new int[tOrder]; tDimSize[0] = 6; int tUnitNum = 1; for (int i = 0; i < tOrder; i++) tUnitNum *= tDimSize[i]; DTYPE sData[2][3] = { {0.0, 1.0, 2.0}, {3.0, 4.0, 5.0} }; DTYPE answer[6] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0}; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * s = NewTensor(sOrder, sDimSize); XTensor * t = NewTensor(tOrder, tDimSize); /* initialize variables */ s->SetData(sData, sUnitNum); t->SetZeroAll(); /* call merge function */ Merge(s, t, 1, 0); /* check results */ cpuTest = t->CheckData(answer, tUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * tGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0); /* Initialize variables */ sGPU->SetData(sData, sUnitNum); tGPU->SetZeroAll(); /* call merge function */ Merge(sGPU, tGPU, 1, 0); /* check results */ gpuTest = tGPU->CheckData(answer, tUnitNum); /* destroy variables */ delete s, t, sGPU, tGPU; delete[] sDimSize, tDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete s, t; delete[] sDimSize, tDimSize; return cpuTest; #endif // USE_CUDA } /* case 2: transform a tensor by merging it along with a dimension. * In this case, (2, 2, 3) -> (4, 3), whereToMerge=1, leadingDim=0. */ bool TestMerge2() { /* a source tensor of size (2, 2, 3) */ int sOrder = 3; int * sDimSize = new int[sOrder]; sDimSize[0] = 2; sDimSize[1] = 2; sDimSize[2] = 3; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; /* a target tensor of size (4, 3) */ int tOrder = 2; int * tDimSize = new int[tOrder]; tDimSize[0] = 4; tDimSize[1] = 3; int tUnitNum = 1; for (int i = 0; i < tOrder; i++) tUnitNum *= tDimSize[i]; DTYPE sData[2][2][3] = { { {0.0, 1.0, 2.0}, {4.0, 5.0, 6.0} }, { {-1.0, 2.0, 3.0}, {-4.0, -5.0, -6.0} } }; DTYPE answer[4][3] = { {0.0, 1.0, 2.0}, {4.0, 5.0, 6.0}, {-1.0, 2.0, 3.0}, {-4.0, -5.0, -6.0} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * s = NewTensor(sOrder, sDimSize); XTensor * t = NewTensor(tOrder, tDimSize); /* initialize variables */ s->SetData(sData, sUnitNum); t->SetZeroAll(); /* call merge function */ Merge(s, t, 1, 0); /* check results */ cpuTest = t->CheckData(answer, tUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * tGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0); /* Initialize variables */ sGPU->SetData(sData, sUnitNum); tGPU->SetZeroAll(); /* call merge function */ Merge(sGPU, tGPU, 1, 0); /* check results */ gpuTest = tGPU->CheckData(answer, tUnitNum); /* destroy variables */ delete s, t, sGPU, tGPU; delete[] sDimSize, tDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete s, t; delete[] sDimSize, tDimSize; return cpuTest; #endif // USE_CUDA } /* case 3: transform a tensor by merging it along with a dimension. * In this case, (2, 3, 4) -> (3, 8), whereToMerge=0, leadingDim=2. */ bool TestMerge3() { /* a source tensor of size (2, 3, 4) */ int sOrder = 3; int * sDimSize = new int[sOrder]; sDimSize[0] = 2; sDimSize[1] = 3; sDimSize[2] = 4; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; /* a target tensor of size (8, 3) */ int tOrder = 2; int * tDimSize = new int[tOrder]; tDimSize[0] = 3; tDimSize[1] = 8; int tUnitNum = 1; for (int i = 0; i < tOrder; i++) tUnitNum *= tDimSize[i]; DTYPE sData[2][3][4] = { { {0.0, 1.0, 2.0, 3.0}, {4.0, 5.0, 6.0, 7.0}, {8.0, 9.0, 10.0, 11.0} }, { {0.0, -1.0, -2.0, -3.0}, {-4.0, -5.0, -6.0, -7.0}, {-8.0, -9.0, -10.0, -11.0} } }; DTYPE answer[3][8] = { {0.0, 1.0, 2.0, 3.0, 0.0, -1.0, -2.0, -3.0}, {4.0, 5.0, 6.0, 7.0, -4.0, -5.0, -6.0, -7.0}, {8.0, 9.0, 10.0, 11.0, -8.0, -9.0, -10.0, -11.0} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * s = NewTensor(sOrder, sDimSize); XTensor * t = NewTensor(tOrder, tDimSize); /* initialize variables */ s->SetData(sData, sUnitNum); t->SetZeroAll(); /* call merge function */ Merge(s, t, 2, 0); /* check results */ cpuTest = t->CheckData(answer, tUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * sGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * tGPU = NewTensor(tOrder, tDimSize, X_FLOAT, 1.0F, 0); /* Initialize variables */ sGPU->SetData(sData, sUnitNum); tGPU->SetZeroAll(); /* call merge function */ Merge(sGPU, tGPU, 2, 0); /* check results */ gpuTest = tGPU->CheckData(answer, tUnitNum); /* destroy variables */ delete s, t, sGPU, tGPU; delete[] sDimSize, tDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete s, t; delete[] sDimSize, tDimSize; return cpuTest; #endif // USE_CUDA } /* case 4: merge small tensors into a big tensor. In this case, 2 * (2, 4) -> (4, 4), whereToMerge=0. */ bool TestMerge4() { /* create list */ XList * smallList = new XList(); /* a small tensor of size (2, 4) */ int sOrder = 2; int * sDimSize = new int[sOrder]; sDimSize[0] = 2; sDimSize[1] = 4; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; DTYPE sData1[2][4] = { {0.0, 1.0, 2.0, 3.0}, {4.0, 5.0, 6.0, 7.0} }; DTYPE sData2[2][4] = { {0.0, -1.0, -2.0, -3.0}, {-4.0, -5.0, -6.0, -7.0} }; /* a target tensor of size (4, 4) */ int tOrder = 2; int * tDimSize = new int[tOrder]; tDimSize[0] = 4; tDimSize[1] = 4; int tUnitNum = 1; for (int i = 0; i < tOrder; i++) tUnitNum *= tDimSize[i]; DTYPE answer[4][4] = { {0.0, 1.0, 2.0, 3.0}, {4.0, 5.0, 6.0, 7.0}, {0.0, -1.0, -2.0, -3.0}, {-4.0, -5.0, -6.0, -7.0} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * s1 = NewTensor(sOrder, sDimSize); XTensor * s2 = NewTensor(sOrder, sDimSize); XTensor * t = NewTensor(tOrder, tDimSize); /* initialize variables */ s1->SetData(sData1, sUnitNum); s2->SetData(sData2, sUnitNum); t->SetZeroAll(); /* add tensors to list */ smallList->Add(s1); smallList->Add(s2); /* call merge function */ Merge(smallList, t, 0); /* check results */ cpuTest = t->CheckData(answer, tUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* clear list */ smallList->Clear(); /* create tensors */ XTensor * sGPU1 = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * sGPU2 = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * tGPU = NewTensor(tOrder, tDimSize); /* initialize variables */ sGPU1->SetData(sData1, sUnitNum); sGPU2->SetData(sData2, sUnitNum); tGPU->SetZeroAll(); /* add tensors to list*/ smallList->Add(sGPU1); smallList->Add(sGPU2); /* call merge function */ Merge(smallList, tGPU, 0); /* check results */ cpuTest = tGPU->CheckData(answer, tUnitNum); delete s1, s2, t, sGPU1, sGPU2, tGPU; delete[] sDimSize, tDimSize; delete smallList; return cpuTest && gpuTest; #else /* destroy variables */ delete s1, s2, t; delete[] sDimSize, tDimSize; return cpuTest; #endif // USE_CUDA } /* case 5: merge small tensors into a big tensor. In this case, 2 * (2, 4) -> (2, 8), whereToMerge=1. */ bool TestMerge5() { /* create list */ XList * smallList = new XList(); /* a small tensor of size (2, 4) */ int sOrder = 2; int * sDimSize = new int[sOrder]; sDimSize[0] = 2; sDimSize[1] = 4; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; DTYPE sData1[2][4] = { {0.0, 1.0, 2.0, 3.0}, {4.0, 5.0, 6.0, 7.0} }; DTYPE sData2[2][4] = { {0.0, -1.0, -2.0, -3.0}, {-4.0, -5.0, -6.0, -7.0} }; /* a target tensor of size (4, 4) */ int tOrder = 2; int * tDimSize = new int[tOrder]; tDimSize[0] = 2; tDimSize[1] = 8; int tUnitNum = 1; for (int i = 0; i < tOrder; i++) tUnitNum *= tDimSize[i]; DTYPE answer[2][8] = { {0.0, 1.0, 2.0, 3.0, 0.0, -1.0, -2.0, -3.0}, {4.0, 5.0, 6.0, 7.0, -4.0, -5.0, -6.0, -7.0} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * s1 = NewTensor(sOrder, sDimSize); XTensor * s2 = NewTensor(sOrder, sDimSize); XTensor * t = NewTensor(tOrder, tDimSize); /* initialize variables */ s1->SetData(sData1, sUnitNum); s2->SetData(sData2, sUnitNum); t->SetZeroAll(); /* add tensors to list */ smallList->Add(s1); smallList->Add(s2); /* call merge function */ Merge(smallList, t, 1); /* check results */ cpuTest = t->CheckData(answer, tUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* clear list */ smallList->Clear(); /* create tensors */ XTensor * sGPU1 = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * sGPU2 = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * tGPU = NewTensor(tOrder, tDimSize); /* initialize variables */ sGPU1->SetData(sData1, sUnitNum); sGPU2->SetData(sData2, sUnitNum); tGPU->SetZeroAll(); /* add tensors to list*/ smallList->Add(sGPU1); smallList->Add(sGPU2); /* call merge function */ Merge(smallList, tGPU, 1); /* check results */ cpuTest = tGPU->CheckData(answer, tUnitNum); delete s1, s2, t, sGPU1, sGPU2, tGPU; delete[] sDimSize, tDimSize; delete smallList; return cpuTest && gpuTest; #else /* destroy variables */ delete s1, s2, t; delete[] sDimSize, tDimSize; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for Merge Function */ extern "C" bool TestMerge() { XPRINT(0, stdout, "[TEST MERGE] -------------\n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestMerge1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* case 2 test */ caseFlag = TestMerge2(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 2 failed!\n"); } else XPRINT(0, stdout, ">> case 2 passed!\n"); /* case 3 test */ caseFlag = TestMerge3(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 3 failed!\n"); } else XPRINT(0, stdout, ">> case 3 passed!\n"); /* case 4 test */ caseFlag = TestMerge4(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 4 failed!\n"); } else XPRINT(0, stdout, ">> case 4 passed!\n"); /* case 5 test */ caseFlag = TestMerge5(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 5 failed!\n"); } else XPRINT(0, stdout, ">> case 5 passed!\n"); /* other cases test */ /* TODO!! */ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)