/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2018, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: XIAO Tong (xiaotong@mail.neu.edu.cn) 2018-07-31 */ #ifndef __T2TFNN_H__ #define __T2TFNN_H__ #include "../../tensor/XTensor.h" using namespace nts; namespace transformer { /* a fnn: y = max(0, x * w1 + b1) * w2 + b2 */ class T2TFNN { public: /* device id */ int devID; /* memory pool */ XMem * mem; /* size of input vector */ int inSize; /* size of output vector */ int outSize; /* size of hidden layers */ int hSize; /* matrix of transformation 1 */ XTensor w1; /* bias of transformation 1 */ XTensor b1; /* matrix of transformation 2 */ XTensor w2; /* bias of transformation 2 */ XTensor b2; /* dropout probability */ DTYPE dropoutP; public: /* constructor */ T2TFNN(); /* deconstructor */ ~T2TFNN(); /* initialize the model */ void InitModel(int argc, char ** argv, int myDevID = -1, XMem * myMem = NULL); /* make the network */ XTensor Make(XTensor &input, bool isTraining); }; } #endif