/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: Xu Chen (email: hello_master1954@163.com) 2018-07-06 */ #include "TSumByColumnTV.h" namespace nts { // namespace nts(NiuTrans.Tensor) /* case 1: test SumByColumnTV function sum of a tensor and a vector (column vector) in a column by column manner */ bool TestSumByColumnTV1() { /* a tensor of size (2, 4) */ int aOrder = 2; int * aDimSize = new int[aOrder]; aDimSize[0] = 2; aDimSize[1] = 4; int aUnitNum = 1; for (int i = 0; i < aOrder; i++) aUnitNum *= aDimSize[i]; /* a tensor of size (2, 1) */ int bOrder = 2; int * bDimSize = new int[bOrder]; bDimSize[0] = 2; bDimSize[1] = 1; int bUnitNum = 1; for (int i = 0; i < bOrder; i++) bUnitNum *= bDimSize[i]; /* a tensor of size (2, 4) */ int cOrder = 2; int * cDimSize = new int[cOrder]; cDimSize[0] = 2; cDimSize[1] = 4; int cUnitNum = 1; for (int i = 0; i < cOrder; i++) cUnitNum *= cDimSize[i]; DTYPE aData[2][4] = { {0.0F, 1.0F, 2.0F, 3.0F}, {4.0F, 5.0F, 6.0F, 7.0F} }; DTYPE bData[2][1] = { {1.0F}, {0.0F} }; DTYPE answer[2][4] = { {1.0F, 2.0F, 3.0F, 4.0F}, {4.0F, 5.0F, 6.0F, 7.0F} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * a = NewTensor(aOrder, aDimSize); XTensor * b = NewTensor(bOrder, bDimSize); XTensor * c = NewTensor(cOrder, cDimSize); /* initialize variables */ a->SetData(aData, aUnitNum); b->SetData(bData, bUnitNum); /* call SumByColumnTV function */ _SumByColumnTV(a, b, c); /* check results */ cpuTest = c->CheckData(answer, cUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensor */ XTensor * aGPU = NewTensor(aOrder, aDimSize, X_FLOAT, 1.0F, 0); XTensor * bGPU = NewTensor(bOrder, bDimSize, X_FLOAT, 1.0F, 0); XTensor * cGPU = NewTensor(cOrder, cDimSize, X_FLOAT, 1.0F, 0); /* Initialize variables */ aGPU->SetData(aData, aUnitNum); bGPU->SetData(bData, bUnitNum); cGPU->SetZeroAll(); /* call SumByColumnTV function */ _SumByColumnTV(aGPU, bGPU, cGPU); /* check results */ gpuTest = cGPU->CheckData(answer, cUnitNum); /* destroy variables */ delete a; delete b; delete c; delete aGPU; delete bGPU; delete cGPU; delete[] aDimSize; delete[] bDimSize; delete[] cDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete a; delete b; delete c; delete[] aDimSize; delete[] bDimSize; delete[] cDimSize; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for SumByColumnTV Function */ bool TestSumByColumnTV() { XPRINT(0, stdout, "[TEST SumByColumnTV] sum of a tensor and a vector (column vector) in a column by column manner \n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestSumByColumnTV1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* other cases test */ /* TODO!! */ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)