/* NiuTrans.Tensor - an open-source tensor library * Copyright (C) 2017, Natural Language Processing Lab, Northestern University. * All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * $Created by: Xu Chen (email: hello_master1954@163.com) 2018-06-19 */ #include "../XTensor.h" #include "../XUtility.h" #include "TSoftmax.h" namespace nts { // namespace nts(NiuTrans.Tensor) /* case 1: test Softmax function. softmax function: y = e^x / \sum_{i} e^{x_i} */ bool TestSoftmax1() { /* a input tensor of size (2, 3) */ int sOrder = 2; int * sDimSize = new int[sOrder]; sDimSize[0] = 2; sDimSize[1] = 3; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; DTYPE xData[2][3] = { {0.0F, 1.0F, 2.0F}, {0.5F, 0.7F, 1.4F} }; DTYPE answer[2][3] = { {0.09003057F, 0.24472848F, 0.66524094F}, {0.21362929F, 0.2609274F , 0.52544326F} }; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * x = NewTensor(sOrder, sDimSize); XTensor * y = NewTensor(sOrder, sDimSize); /* initialize variables */ x->SetData(xData, sUnitNum); y->SetZeroAll(); /* call Softmax function */ Softmax(x, y, 1); /* check result */ cpuTest = y->CheckData(answer, sUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensors */ XTensor * xGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * yGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); /* initialize variables */ xGPU->SetData(xData, sUnitNum); yGPU->SetZeroAll(); /* call Softmax function */ Softmax(xGPU, yGPU, 1); /* check result */ gpuTest = yGPU->CheckData(answer, sUnitNum); /* destroy variables */ delete x; delete y; delete xGPU; delete yGPU; delete[] sDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete x, y; delete[] sDimSize; return cpuTest; #endif // USE_CUDA } /* case 2: test SoftmaxBackward function. SoftmaxBackward function: dE/dx_j = -gold_j + y_j */ bool TestSoftmax2() { /* a input tensor of size (2, 3) */ int sOrder = 2; int * sDimSize = new int[sOrder]; sDimSize[0] = 1; sDimSize[1] = 3; int sUnitNum = 1; for (int i = 0; i < sOrder; i++) sUnitNum *= sDimSize[i]; DTYPE xData[1][3] = { {0.0F, 1.0F, 2.0F} }; DTYPE gData[1][3] = { {0.0F, 0.0F, 1.0F} }; DTYPE dedxAnswer[3] = {0.090031F, 0.244728F, -0.334759F}; /* CPU test */ bool cpuTest = true; /* create tensors */ XTensor * x = NewTensor(sOrder, sDimSize); XTensor * y = NewTensor(sOrder, sDimSize); XTensor * g = NewTensor(sOrder, sDimSize); XTensor * dedy = NewTensor(sOrder, sDimSize); XTensor * dedx = NewTensor(sOrder, sDimSize); /* initialize variables */ x->SetData(xData, sUnitNum); g->SetData(gData, sUnitNum); y->SetZeroAll(); dedx->SetZeroAll(); dedy->SetZeroAll(); /* call Softmax function */ Softmax(x, y, 1); SoftmaxBackward(g, y, x, dedy, dedx, 1, CROSSENTROPY); /* check result */ cpuTest = dedx->CheckData(dedxAnswer, sUnitNum); #ifdef USE_CUDA /* GPU test */ bool gpuTest = true; /* create tensors */ XTensor * xGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * yGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * gGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * dedyGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); XTensor * dedxGPU = NewTensor(sOrder, sDimSize, X_FLOAT, 1.0F, 0); /* initialize variables */ xGPU->SetData(xData, sUnitNum); gGPU->SetData(gData, sUnitNum); yGPU->SetZeroAll(); dedxGPU->SetZeroAll(); dedyGPU->SetZeroAll(); /* call Softmax function */ Softmax(xGPU, yGPU, 1); /* call SoftmaxBackward function */ SoftmaxBackward(gGPU, yGPU, xGPU, dedyGPU, dedxGPU, 1, CROSSENTROPY); /* check result */ gpuTest = dedxGPU->CheckData(dedxAnswer, sUnitNum); /* destroy variables */ delete x; delete y; delete g; delete dedx; delete dedy; delete xGPU; delete yGPU; delete gGPU; delete dedxGPU; delete dedyGPU; delete[] sDimSize; return cpuTest && gpuTest; #else /* destroy variables */ delete x; delete y; delete g; delete dedx; delete dedy; delete[] sDimSize; return cpuTest; #endif // USE_CUDA } /* other cases */ /* TODO!! */ /* test for Softmax Function */ bool TestSoftmax() { XPRINT(0, stdout, "[TEST SOFTMAX] softmax function and its backward computation \n"); bool returnFlag = true, caseFlag = true; /* case 1 test */ caseFlag = TestSoftmax1(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 1 failed!\n"); } else XPRINT(0, stdout, ">> case 1 passed!\n"); /* case 2 test */ caseFlag = TestSoftmax2(); if (!caseFlag) { returnFlag = false; XPRINT(0, stdout, ">> case 2 failed!\n"); } else XPRINT(0, stdout, ">> case 2 passed!\n"); /* other cases test */ /* TODO!! */ if (returnFlag) { XPRINT(0, stdout, ">> All Passed!\n"); } else XPRINT(0, stdout, ">> Failed!\n"); XPRINT(0, stdout, "\n"); return returnFlag; } } // namespace nts(NiuTrans.Tensor)