\item OpenSeq2Seq:由NVIDIA团队开发的\cite{KuchaievMixed}基于Tensorflow的模块化架构,用于序列到序列的模型,允许从可用组件中组装新模型,支持混合精度训练,利用NVIDIA Volta Turing GPU中的Tensor核心,基于Horovod的快速分布式训练,支持多GPU,多节点多模式。\url{https://nvidia.github.io/OpenSeq2Seq/html/index.html}
\item OpenSeq2Seq:由NVIDIA团队开发的\cite{KuchaievMixed}基于Tensorflow的模块化架构,用于序列到序列的模型,允许从可用组件中组装新模型,支持混合精度训练,利用NVIDIA Volta Turing GPU中的Tensor核心,基于Horovod的快速分布式训练,支持多GPU,多节点多模式。\url{https://nvidia.github.io/OpenSeq2Seq/html/index.html}
\parinterval 机器翻译相关评测主要有两种组织形式,一种是由政府及国家相关机构组织,权威性强,如由美国国家标准技术研究所组织的NIST评测、日本国家科学咨询系统中心主办的NACSIS Test Collections for IR(NTCIR)PatentMT、日本科学振兴机构(Japan Science and Technology Agency,简称JST)等组织联合举办的Workshop on Asian Translation(WAT)以及国内由中文信息学会主办的全国机器翻译大会(China Conference on Machine Translation,简称CCMT);另一种是由相关学术机构组织,具有领域针对性的特点,如倾向新闻领域的Workshop on Statistical Machine Translation(WMT)以及面向口语的International Workshop on Spoken Language Translation(IWSLT)。下面将针对上述评测进行详细介绍。
\parinterval 机器翻译相关评测主要有两种组织形式,一种是由政府及国家相关机构组织,权威性强。如由美国国家标准技术研究所组织的NIST评测、日本国家科学咨询系统中心主办的NACSIS Test Collections for IR(NTCIR)PatentMT、日本科学振兴机构(Japan Science and Technology Agency,简称JST)等组织联合举办的Workshop on Asian Translation(WAT)以及国内由中文信息学会主办的全国机器翻译大会(China Conference on Machine Translation,简称CCMT);另一种是由相关学术机构组织,具有领域针对性的特点,如倾向新闻领域的Workshop on Statistical Machine Translation(WMT)以及面向口语的International Workshop on Spoken Language Translation(IWSLT)。下面将针对上述评测进行详细介绍。
\item WMT由Special Interest Group for Machine Translation(SIGMT)主办,会议自2006年起每年召开一次,是一个针对机器翻译多种任务的综合性会议,包括多领域翻译评测任务、评价任务(如自动评价标准评测、翻译质量评估评测等)以及其它与机器翻译的相关任务(如文档对齐评测等)。现在WMT已经成为机器翻译领域的旗舰评测任务,很多研究工作都以WMT任务作为基准。其翻译评测任务中其涉及的语言范围较广,包括英语、德语、芬兰语、捷克语、罗马尼亚语等十多种语言,翻译方向一般以英语为核心,探索英语与其他欧洲语言翻译的性能,领域包括新闻、信息技术、生物医学。最近,也增加了无指导机器翻译等热门问题。WMT在评价方面类似于CCMT,也采用人工评价与自动评价相结合的方式,自动评价的指标一般为BLEU、NIST以及TER 等。此外,WMT公开了所有评测数据,因此也经常被机器翻译相关人员所使用。更多WMT 的机器翻译评测相关信息可参考官网:\url{http://www.sigmt.org/}。
\item WMT由Special Interest Group for Machine Translation(SIGMT)主办,会议自2006年起每年召开一次,是一个针对机器翻译多种任务的综合性会议,包括多领域翻译评测任务、评价任务(如自动评价标准评测、翻译质量评估评测等)以及其它与机器翻译的相关任务(如文档对齐评测等)。现在WMT已经成为机器翻译领域的旗舰评测任务,很多研究工作都以WMT任务作为基准。其翻译评测任务中其涉及的语言范围较广,包括英语、德语、芬兰语、捷克语、罗马尼亚语等十多种语言,翻译方向一般以英语为核心,探索英语与其他欧洲语言翻译的性能,领域包括新闻、信息技术、生物医学。最近,也增加了无指导机器翻译等热门问题。WMT在评价方面类似于CCMT,也采用人工评价与自动评价相结合的方式,自动评价的指标一般为BLEU、NIST以及TER 等。此外,WMT公开了所有评测数据,因此也经常被机器翻译相关人员所使用。更多WMT 的机器翻译评测相关信息可参考官网:\url{http://www.sigmt.org/}。
\vspace{0.5em}
\vspace{0.5em}
...
@@ -574,17 +574,17 @@ His house is on the south bank of the river.
...
@@ -574,17 +574,17 @@ His house is on the south bank of the river.
\parinterval 《Foundations of Statistical Natural Language Processing》\cite{SIDDHARTHANChristopher}中文译名《自然语言处理基础》,作者是自然语言处理领域的权威Chris Manning教授和Hinrich Sch$\ddot{\textrm{u}}$tze教授。该书对统计自然语言处理方法进行了全面介绍。书中讲解了必要的语言学和概率论基础知识,介绍了机器翻译评价、语言建模、判别式训练以及整合语言学信息等基础方法。其中包含了构建NLP工具所需的基本理论和算法,提供了对数学和语言学基础内容广泛而严格的覆盖,以及统计方法的详细讨论。
\parinterval 《Foundations of Statistical Natural Language Processing》\cite{SIDDHARTHANChristopher}中文译名《自然语言处理基础》\cite{曼宁2005《统计自然语言处理基础》},作者是自然语言处理领域的权威Chris Manning教授和Hinrich Sch$\ddot{\textrm{u}}$tze教授。该书对统计自然语言处理方法进行了全面介绍。书中讲解了必要的语言学和概率论基础知识,介绍了机器翻译评价、语言建模、判别式训练以及整合语言学信息等基础方法。其中包含了构建NLP工具所需的基本理论和算法,提供了对数学和语言学基础内容广泛而严格的覆盖,以及统计方法的详细讨论。
\parinterval Ian Goodfellow、Yoshua Bengio,Aaron Courville三位机器学习领域的学者所写的《深度学习》\cite{HeatonIan}也是值得一读的参考书。其讲解了有关深度学习常用的方法,其中很多都会在深度学习模型设计和使用中用到。同时在《深度学习》应用一章中也简单讲解了神经机器翻译的任务定义和发展过程。
\parinterval Ian Goodfellow、Yoshua Bengio,Aaron Courville三位机器学习领域的学者所写的《深度学习》\cite{HeatonIan}也是值得一读的参考书。其讲解了有关深度学习常用的方法,其中很多都会在深度学习模型设计和使用中用到。同时在《深度学习》应用一章中也简单讲解了神经机器翻译的任务定义和发展过程。
\parinterval 《Neural Network Methods for Natural Language Processing》是Yoav Goldberg编写的面向自然语言处理的深度学习参考书({\color{red} 参考文献!})。相比《深度学习》,该书聚焦在自然语言处理中的深度学习方法,内容更加易读。
\parinterval 《Neural Network Methods in Natural Language Processing》\cite{Goldberg2017Neural}是Yoav Goldberg编写的面向自然语言处理的深度学习参考书。相比《深度学习》,该书聚焦在自然语言处理中的深度学习方法,内容更加易读。