Commit 1b087c3f by 单韦乔

合并分支 'shanweiqiao' 到 'caorunzhe'

Shanweiqiao

查看合并请求 !183
parents 278abb77 fef7b731
......@@ -38,7 +38,7 @@
\parinterval 一直以来,文字的翻译往往是由人工完成。让计算机像人一样进行翻译似乎还是电影中的桥段,因为人们很难想象语言的多样性和复杂性可以用计算机语言进行描述。但是时至今日,人工智能技术的发展已经大大超越了人类传统的认知,用计算机进行自动翻译也不再是一种梦想,它已经深入到人们生活的很多方面,并发挥着重要作用。而这种由计算机进行自动翻译的过程也被称作{\small\bfnew{机器翻译}}\index{机器翻译}(Machine Translation)\index{Machine Translation}。类似地,自动翻译、智能翻译、多语言自动转换等概念也是指同样的事情。如果将今天的机器翻译和人工翻译进行对比,可以发现机器翻译系统所生成的译文还并不完美,甚至有时翻译质量非常差,但是它的生成速度快且成本低廉,更为重要的是机器翻译系统可以从大量数据中不断学习和进化。
\parinterval 人工翻译尽管精度很高,但是费时费力。当需要翻译大量的文本且精度要求不那么高时,比如海量数据的浏览型任务,机器翻译的优势就体现出来。对于人工作业无法完成的事情,使用机器翻译可能只需花费几个小时甚至几分钟就能完成。这就类似于拿着锄头耕地种庄稼和使用现代化机器作业之间的区别。
\parinterval 人工翻译尽管精度很高,但是费时费力。当需要翻译大量的文本且精度要求不那么高时,比如海量数据的浏览型任务,机器翻译的优势就体现出来。对于人工作业无法完成的事情,使用机器翻译可能只需花费几个小时甚至几分钟就能完成。这就类似于拿着锄头耕地种庄稼和使用现代化机器作业之间的区别。
\parinterval 实现机器翻译往往需要多个学科知识的融合,如数学、语言学、计算机科学、心理学等等。而最终呈现给使用者的是一套软件系统\ \dash\ 机器翻译系统。通俗来讲,机器翻译系统就是一个可以在计算机上运行的软件工具,与人们使用的其他软件一样,只不过机器翻译系统是由``不可见的程序''组成。虽然这个系统非常复杂,但是呈现出来的展示形式却很简单,比如输入是待翻译的句子或文本,输出是译文句子或文本。
......@@ -67,7 +67,7 @@
\vspace{0.5em}
\item {\small\bfnew{自然语言翻译问题的复杂性极高}}。语言是人类进化的最高成就之一,自然语言具有高度的概括性、灵活性、多样性,这些都很难用几个简单的模型和算法进行描述。因此,翻译问题的数学建模和计算机程序实现难度很大。虽然近几年Alpha Go等人工智能系统在围棋等领域取得了令人瞩目的成绩,但是,相比翻译来说,围棋等棋类任务仍然``简单'',比如,对于一个句子,其潜在的译文几乎是不可穷尽的,即使同一句话不同人的理解也不尽相同,甚至在翻译一个句子、一个单词的时候,要考虑整个篇章的上下文语境,这些问题都不是传统棋类任务所具备的。
\vspace{0.5em}
\item {\small\bfnew{计算机的``理解''与人类的``理解''存在鸿沟}}。人类一直希望把自己翻译时所使用的知识描述出来,并用计算机程序进行实现,例如早期基于规则的机器翻译方法就源自这个思想。但是,经过实践发现,人和计算机在``理解''自然语言上存在着明显差异。首先,人类的语言能力是经过长时间多种外部环境因素共同作用形成的,这种能力很难直接准确地表达。人类的语言知识本身就很难描述,更不用说让计算机来理解;其次,人和机器翻译系统理解语言的目的不一样。人理解和使用语言是为了进行生活和工作,而机器翻译系统更多的是为了对某些数学上定义的目标函数进行优化。也就是说,机器翻译系统关注的是翻译这个单一目标,而并不是像人一样进行复杂的活动;此外,人和计算机的运行方式有着本质区别。人类语言能力的生物学机理与机器翻译系统所使用的计算模型本质上是不同的,机器翻译系统使用的是其自身能够理解的``知识'',比如,统计学上的词语表示。这种``知识''并不需要人来理解,当然从系统开发的角度,计算机也并不需要理解人是如何思考的。
\item {\small\bfnew{计算机的``理解''与人类的``理解''存在鸿沟}}。人类一直希望把自己翻译时所使用的知识描述出来,并用计算机程序进行实现,例如早期基于规则的机器翻译方法就源自这个思想。但是,经过实践发现,人和计算机在``理解''自然语言上存在着明显差异。首先,人类的语言能力是经过长时间在多种外部环境因素共同作用下形成的,这种能力很难直接准确地表达。况且人类的语言知识本身就很难描述,更不用说让计算机来理解;其次,人和机器翻译系统理解语言的目的不一样。人理解和使用语言是为了进行生活和工作,而机器翻译系统更多的是为了对某些数学上定义的目标函数进行优化。也就是说,机器翻译系统关注的是翻译这个单一目标,而并不是像人一样进行复杂的活动;此外,人和计算机的运行方式有着本质区别。人类语言能力的生物学机理与机器翻译系统所使用的计算模型本质上是不同的,机器翻译系统使用的是其自身能够理解的``知识'',比如,统计学上的词语表示。这种``知识''并不需要人来理解,当然从系统开发的角度,计算机也并不需要理解人是如何思考的。
\vspace{0.5em}
\item {\small\bfnew{单一的方法无法解决多样的翻译问题}}。首先,语种的多样性会导致任意两种语言之间的翻译实际上都是不同的翻译任务。比如,世界上存在的语言多达几千种,如果选择任意两种语言进行互译就产生上百万种翻译方向。虽然已经有研究者尝试用同一个框架甚至同一个翻译系统进行全语种的翻译,但是这类系统离真正可用还有很远的距离;其次,不同的领域,不同的应用场景对翻译也有不同的需求。比如,文学作品的翻译和新闻的翻译就有不同、口译和笔译也有不同,类似的情况不胜枚举。机器翻译要适用于多样的需求,这些又进一步增加了计算机建模的难度;再次,对于机器翻译来说,充足的高质量数据是必要的,但是不同语种、不同领域、不同应用场景所拥有的数据量有明显差异,甚至很多语种几乎没有可用的数据,这时开发机器翻译系统的难度可想而知。值得注意的是,现在的机器翻译还无法像人类一样在学习少量样例的情况下进行举一反三,因此数据稀缺情况下的机器翻译也给研究者带来了很大的挑战。
\vspace{0.5em}
......@@ -102,7 +102,7 @@
\end{figure}
%------------------------------------------
\parinterval 随后,更多的翻译工作在文化和知识传播中开展。其中一个典型代表是宗教文献的翻译。在人类的历史长河中,宗教是人类意识形态的一个重要载体。为了宣传教义,产生了大量的宗教文献。在西方,一项最早被记录的翻译活动是将旧约圣经(希伯来文及埃兰文)翻译为希腊文版本。并且迄今为止人类历史上翻译版本最多的书就是圣经。在中国唐代,有一位世界性的重量级文化人物\ \dash \ 玄奘,他不仅是佛学家、旅行家,还是翻译家。玄奘西行求法归来后把全部的心血和智慧奉献给了译经事业,在助手们的帮助下,共翻译佛教经论74部,1335卷,每卷万字左右,合计1335万字,占去整个唐代译经总数的一半以上,树立了我国古代翻译思想的光辉典范。
\parinterval 随后,更多的翻译工作在文化和知识传播中开展。其中一个典型代表是宗教文献的翻译。在人类的历史长河中,宗教是人类意识形态的一个重要载体。为了宣传教义,人们编写了大量的宗教文献。在西方,一项最早被记录的翻译活动是将旧约圣经(希伯来文及埃兰文)翻译为希腊文版本。迄今为止人类历史上翻译版本最多的书就是圣经。在中国唐代,有一位世界性的重量级文化人物\ \dash \ 玄奘,他不仅是佛学家、旅行家,还是翻译家。玄奘西行求法归来后把全部的心血和智慧奉献给了译经事业,在助手们的帮助下,共翻译佛教经论74部,1335卷,每卷万字左右,合计1335万字,占去整个唐代译经总数的一半以上,树立了我国古代翻译思想的光辉典范。
\parinterval 翻译在人类历史长河中起到了重要的作用。一方面,由于语言文字、文化和地理位置的差异性,使得翻译成为一个重要的需求;另一方面,翻译也加速了不同文明的融会贯通,促进了世界的发展。今天,翻译已经成为重要的行业之一,包括各个高校也都设立了翻译及相关专业,相关人才不断涌现。据《2019年中国语言服务行业发展报告》统计:全球语言服务产值预计将首次接近500亿美元;中国涉及语言服务的在营企业360,000余家,语言服务为主营业务的在营企业近万家,总产值超过300亿元,年增长3\%以上;全国开设外语类专业的高校数量多达上千所,其中设立有翻译硕士(MTI)和翻译本科(BTI)专业的院校分别有250余所和280余所,MTI累计招生数达6万余人\cite{赵军峰2019深化改革}。当然,面对着巨大的需求,如何使用技术手段提高人工翻译效率,比如:机器辅助翻译,也是人工翻译和机器翻译领域需要共同探索的方向。
......@@ -289,7 +289,7 @@
\subsection{统计机器翻译}
\parinterval 统计机器翻译兴起于上世纪90年代\cite{brown1990statistical,koehn2003statistical}它利用统计模型从单/双语语料中自动学习翻译知识。具体来说,可以使用单语语料学习语言模型,使用双语平行语料学习翻译模型,并使用这些统计模型完成对翻译过程的建模。整个过程不需要人工编写规则,也不需要从实例中构建翻译模板。无论是词还是短语,甚至是句法结构,统计机器翻译系统都可以自动学习。人更多的是参与定义翻译所需的特征和基本翻译单元的形式,而翻译知识都保存在模型的参数中。
\parinterval 统计机器翻译兴起于上世纪90年代\cite{brown1990statistical,koehn2003statistical}它利用统计模型从单/双语语料中自动学习翻译知识。具体来说,可以使用单语语料学习语言模型,使用双语平行语料学习翻译模型,并使用这些统计模型完成对翻译过程的建模。整个过程不需要人工编写规则,也不需要从实例中构建翻译模板。无论是词还是短语,甚至是句法结构,统计机器翻译系统都可以自动学习。人更多的是定义翻译所需的特征和基本翻译单元的形式,而翻译知识都保存在模型的参数中。
%----------------------------------------------
\begin{figure}[htp]
......@@ -302,7 +302,7 @@
\parinterval\ref{fig:1-11}展示了一个统计机器翻译系统运行的简单实例。整个系统需要两个模型:翻译模型和语言模型。其中,翻译模型从双语平行语料中学习翻译知识,得到短语表,其中包含各种词汇的翻译及其概率,这样可以度量源语言和目标语言片段之间互为翻译的可能性大小;语言模型从单语语料中学习目标语的词序列生成规律,来衡量目标语言译文的流畅性。最后,将这两种模型联合使用,翻译引擎来搜索尽可能多的翻译结果,并计算不同翻译结果的可能性大小,最后将概率最大的译文作为最终结果输出。这个过程并没有显性使用人工翻译规则和模板,译文的生成仅仅依赖翻译模型和语言模型中的统计参数。
\parinterval 由于没有对翻译过程进行过多的限制,统计机器翻译有很灵活的译文生成方式,因此系统可以处理更加多样的句子。但是这种方法也带来了一些问题:首先,虽然并不需要人工定义翻译规则或模板,统计机器翻译系统仍然需要人工定义翻译特征。提升翻译品质往往需要大量的特征工程,导致人工特征设计的好坏会对系统产生决定性影响;其次,统计机器翻译的模块较多,系统研发比较复杂;再次,随着训练数据增多,统计机器翻译的模型(比如短语翻译表)会明显增大,在系统存储资源受限的情况下,不利于系统的正常使用。
\parinterval 由于没有对翻译过程进行过多的限制,统计机器翻译有很灵活的译文生成方式,因此系统可以处理更加多样的句子。但是这种方法也带来了一些问题:首先,虽然并不需要人工定义翻译规则或模板,但统计机器翻译系统仍然需要人工定义翻译特征。提升翻译品质往往需要大量的特征工程,这导致人工特征设计的好坏会对系统产生决定性影响;其次,统计机器翻译的模块较多,系统研发比较复杂;再次,随着训练数据增多,统计机器翻译的模型(比如短语翻译表)会明显增大,在系统存储资源受限的情况下,这种模型不利于系统的正常使用。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -310,7 +310,7 @@
\subsection{神经机器翻译}
\parinterval 随着机器学习技术的发展,基于深度学习的神经机器翻译逐渐开始兴起。自2014年开始,它在短短几年内已经在大部分任务上取得了明显的优势\cite{NIPS2014_5346,bahdanau2014neural}。在神经机器翻译中,词串被表示成实数向量,即分布式向量表示。这样,翻译过程并不是在离散化的单词和短语上进行,而是在实数向量空间上计算,因此它对词序列表示的方式产生了本质的改变。通常,机器翻译可以被看作一个序列到另一个序列的转化。在神经机器翻译中,序列到序列的转化过程可以由{\small\bfnew{编码器-解码器}}\index{编码器-解码器}(encoder-decoder)\index{encoder-decoder}框架实现。其中,编码器把源语言序列进行编码,并提取源语言中信息进行分布式表示,之后解码器再把这种信息转换为另一种语言的表达。
\parinterval 随着机器学习技术的发展,基于深度学习的神经机器翻译逐渐兴起。自2014年开始,它在短短几年内已经在大部分任务上取得了明显的优势\cite{NIPS2014_5346,bahdanau2014neural}。在神经机器翻译中,词串被表示成实数向量,即分布式向量表示。这样,翻译过程并不是在离散化的单词和短语上进行,而是在实数向量空间上计算,因此它对词序列表示的方式产生了本质的改变。通常,机器翻译可以被看作一个序列到另一个序列的转化。在神经机器翻译中,序列到序列的转化过程可以由{\small\bfnew{编码器-解码器}}\index{编码器-解码器}(encoder-decoder)\index{encoder-decoder}框架实现。其中,编码器把源语言序列进行编码,并提取源语言中信息进行分布式表示,之后解码器再把这种信息转换为另一种语言的表达。
%----------------------------------------------
\begin{figure}[htp]
......@@ -323,7 +323,7 @@
\parinterval\ref{fig:1-12}展示了一个神经机器翻译的实例。首先,通过编码器,源语言序列``我对你感到满意''经过多层神经网络编码生成一个向量表示,即图中的向量(0.2,-1,6,5,0.7,-2)。再将该向量作为输入送到解码器中,解码器把这个向量解码成目标语言序列。注意,目标语言序列的生成是逐词进行的(虽然图中展示的是解码器生成整个序列,但是在具体实现时是逐个单词生成目标语译文),产生某个词的时候依赖之前生成的目标语言的历史信息,直到产生句子结束符为止。
\parinterval 相比统计机器翻译,神经机器翻译的优势体现在其不需要特征工程,所有信息由神经网络自动从原始输入中提取。而且,相比离散化的表示,词和句子的分布式连续空间表示可以为建模提供更为丰富的信息,同时可以使用相对成熟的基于梯度的方法优化模型。此外,神经网络的存储需求较小,天然适合小设备上的应用。但是,神经机器翻译也存在问题。首先,虽然脱离了特征工程,神经网络的结构需要人工设计,即使设计好结构,系统的调优、超参数的设置等仍然依赖大量的实验;其次,神经机器翻译现在缺乏可解释性,其过程和人的认知差异很大,通过人的先验知识干预的程度差;再次,神经机器翻译对数据的依赖很大,数据规模、质量对性能都有很大影响,特别是在数据稀缺的情况下,充分训练神经网络具有挑战。
\parinterval 相比统计机器翻译,神经机器翻译的优势体现在其不需要特征工程,所有信息由神经网络自动从原始输入中提取。而且,相比离散化的表示,词和句子的分布式连续空间表示可以为建模提供更为丰富的信息,同时可以使用相对成熟的基于梯度的方法优化模型。此外,神经网络的存储需求较小,天然适合小设备上的应用。但是,神经机器翻译也存在问题。首先,虽然脱离了特征工程,神经网络的结构需要人工设计,即使设计好结构,系统的调优、超参数的设置等仍然依赖大量的实验;其次,神经机器翻译现在缺乏可解释性,其过程和人的认知差异很大,通过人的先验知识干预的程度差;再次,神经机器翻译对数据的依赖很大,数据规模、质量对性能都有很大影响,特别是在数据稀缺的情况下,充分训练神经网络具有挑战。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -547,7 +547,7 @@ His house is on the south bank of the river.
\parinterval (一)网页翻译
\parinterval 进入信息爆炸的时代之后,互联网上海量的数据随处可得,然而由于国家和地区语言的不同,网络上的数据也呈现出多语言的特性。当人们在遇到包含不熟悉语言的网页时,无法及时有效地获取其中的信息。因此,对不同语言的网页进行翻译是必不可少的一步。由于网络上网页的数量数不胜数,依靠人工对网页进行翻译是不切实际的,相反,机器翻译十分适合这个任务。目前,市场上有很多浏览器提供网页翻译的服务,极大地简化了人们从网络上获获取不同语言信息的方式
\parinterval 进入信息爆炸的时代之后,互联网上海量的数据随处可得,然而由于国家和地区语言的不同,网络上的数据也呈现出多语言的特性。当人们在遇到包含不熟悉语言的网页时,无法及时有效地获取其中的信息。因此,对不同语言的网页进行翻译是必不可少的一步。由于网络上网页的数量数不胜数,依靠人工对网页进行翻译是不切实际的,相反,机器翻译十分适合这个任务。目前,市场上有很多浏览器提供网页翻译的服务,极大地简化了人们从网络上获取不同语言信息的难度
\parinterval (二)科技文献翻译
......@@ -569,7 +569,7 @@ His house is on the south bank of the river.
\parinterval (四)社交
\parinterval 社交是人们的重要社会活动。人们可以通过各种各样的社交软件做到即时通讯,进行协作或者分享自己的观点。然而受限于语言问题,人们的社交范围往往不会超出自己所掌握的语种范围,很难方便地进行跨语言社交。随着机器翻译技术的发展,越来越多的社交软件开始支持自动翻译,用户可以轻易地将各种语言的内容翻译成自己的母语,方便了人们的交流,让语言问题不再社交的障碍。
\parinterval 社交是人们的重要社会活动。人们可以通过各种各样的社交软件做到即时通讯,进行协作或者分享自己的观点。然而受限于语言问题,人们的社交范围往往不会超出自己所掌握的语种范围,很难方便地进行跨语言社交。随着机器翻译技术的发展,越来越多的社交软件开始支持自动翻译,用户可以轻易地将各种语言的内容翻译成自己的母语,方便了人们的交流,让语言问题不再成为社交的障碍。
\parinterval (五)同声传译
......@@ -577,7 +577,7 @@ His house is on the south bank of the river.
\parinterval (六)医药领域翻译
\parinterval 在医药领域中,从药品研发、临床试验到药品注册,都有着大量的翻译需求。比如,在新药注册阶段,限定申报时间的同时,更是对翻译质量有着极高的要求。由于医药领域专业词汇量庞大、单词冗长复杂、术语准确且文体专业性强,翻译难度明显高于其他领域,人工翻译的方式代价大且很难满足效率的要求。为此,机器翻译近几年在医药领域取得广泛应用。在针对医药领域进行优化后,机器翻译质量可以很好地满足翻译的要求。
\parinterval 在医药领域中,从药品研发、临床试验到药品注册,都有着大量的翻译需求。比如,在新药注册阶段,限定申报时间的同时,更是对翻译质量有着极高的要求。由于医药领域专业词汇量庞大、单词冗长复杂、术语准确且文体专业性强,翻译难度明显高于其他领域,人工翻译的方式代价大且很难满足效率的要求。为此,机器翻译近几年在医药领域取得广泛应用。在针对医药领域进行优化后,机器翻译质量可以很好地满足翻译的要求。
\parinterval (七)中国传统语言文化的翻译
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论