Commit 1c5d7a7d by 孟霞

合并分支 'master' 到 'mengxia'

Master

查看合并请求 !239
parents c9098e86 9b701b35
......@@ -34,13 +34,10 @@
\node[anchor=north west] (original4-2) at ([yshift=0.3em]original4-1.south west) {\scriptsize{!''``我帮不了你。你全身都湿透了,会弄坏我这漂亮的小船的。''悲哀来了,爱向他求助:``}};
\node[anchor=north west] (original4-3) at ([yshift=0.3em]original4-2.south west) {\scriptsize{悲哀,让我跟你去吧!''``哦,……爱,我实在太悲哀了,想自己一个人呆一会儿!''悲哀答}};
\node[anchor=north west] (original4-4) at ([yshift=0.3em]original4-3.south west) {\scriptsize{道。快乐走近爱的身边,但是她太快乐了,竟然没有听见爱在叫她!}};
%机器翻译--------------
\node [anchor=north west] (mt4) at ([xshift=-3.5em,yshift=0.3em]original4-4.south west) {\scriptsize{机器翻译:At this time, Richness {\color{red}\underline{passed by}} in a big ship. Love said, ``Rich, can you take me away?'' Richness}};
\node [anchor=north west] (mt4-1) at ([xshift=3.5em,yshift=0.4em]mt4.south west) {\scriptsize{replied, ``No, {\color{red}\underline{there are many treasures}} of gold and silver in my ship,and there is no place for you.''}};
\begin{pgfonlayer}{background}
{
\node[rectangle,draw=ublue, inner sep=0mm] [fit =(original1)(ht1)(mt1)(mt4-1)] {};
\node[rectangle,draw=ublue, inner sep=0mm] [fit =(original1)(ht1)(mt1)(original4-4)] {};
}
\end{pgfonlayer}
......
......@@ -4,8 +4,10 @@
%%% outline
%-------------------------------------------------------------------------
\begin{tikzpicture}
\node [pos=0.4,left,xshift=-0.4em,yshift=2.0em,,opacity=0.0] (original1) {\scriptsize{\qquad 文:从前有一个小岛,上面住着快乐、悲哀、知识和爱,还有其他各种情感。一天,情感们得知}};
\node [anchor=north west] (mt4-2) at ([xshift=3.5em,yshift=0.3em]original1.south west) {\scriptsize{ Love saw vanity in a magnificent boat and said, ``Vanity, help me!'' ``I can't help you. You are {\color{red}\underline{soak}}}};
%机器翻译--------------
\node [pos=0.4,left,xshift=-0.4em,yshift=2.0em] (mt4) {\scriptsize{机器翻译:At this time, Richness {\color{red}\underline{passed by}} in a big ship. Love said, ``Rich, can you take me away?'' Richness}};
\node [anchor=north west] (mt4-1) at ([xshift=3.5em,yshift=0.4em]mt4.south west) {\scriptsize{replied, ``No, {\color{red}\underline{there are many treasures}} of gold and silver in my ship,and there is no place for you.''}};
\node [anchor=north west] (mt4-2) at ([xshift=0em,yshift=0.3em]mt4-1.south west) {\scriptsize{ Love saw vanity in a magnificent boat and said, ``Vanity, help me!'' ``I can't help you. You are {\color{red}\underline{soak}}}};
\node [anchor=north west] (mt4-3) at ([yshift=0.4em]mt4-2.south west) {\scriptsize{{\color{red}\underline{-ed to the skin}} and will damage my beautiful boat.'' When sorrow came, love asked him for help: ``}};
\node [anchor=north west] (mt4-4) at ([yshift=0.4em]mt4-3.south west) {\scriptsize{sorrow, let me go with you!'' ``Oh,...love, I am so sad that I want to be alone for a while!'' Sadly rep}};
......@@ -48,7 +50,7 @@
\begin{pgfonlayer}{background}
{
\node[rectangle,draw=ublue, inner sep=0mm] [fit = (mt4-2)(ht4)(ht8-4)] {};
\node[rectangle,draw=ublue, inner sep=0mm] [fit = (mt4)(ht4)(ht8-4)] {};
}
\end{pgfonlayer}
......
......@@ -631,7 +631,7 @@ His house is on the south bank of the river.
\vspace{0.5em}
\item Moses。Moses\cite{Koehn2007Moses}是统计机器翻译时代最著名的系统之一,(主要)由爱丁堡大学的机器翻译团队开发。最新的Moses系统支持很多的功能,例如,它既支持基于短语的模型,也支持基于句法的模型。Moses 提供因子化翻译模型(Factored Translation Model),因此该模型可以很容易地对不同层次的信息进行建模。此外,它允许将混淆网络和字格作为输入,可缓解系统的1-best输出中的错误。Moses还提供了很多有用的脚本和工具,被机器翻译研究者广泛使用。网址:\url{http://www.statmt.org/moses/}
\vspace{0.5em}
\item Joshua。Joshua\cite{Li2010Joshua}是由约翰霍普金斯大学的语言和语音处理中心开发的层次短语翻译系统。由于Joshua是由Java语言开发,所以它在不同的平台上运行或开发时具有良好的可扩展性和可移植性。Joshua也是使用非常广泛的开源器翻译系统之一。网址:\url{http://joshua.sourceforge.net/Joshua/Welcome.html}
\item Joshua。Joshua\cite{Li2010Joshua}是由约翰霍普金斯大学的语言和语音处理中心开发的层次短语翻译系统。由于Joshua是由Java语言开发,所以它在不同的平台上运行或开发时具有良好的可扩展性和可移植性。Joshua也是使用非常广泛的开源器翻译系统之一。网址:\url{https://cwiki.apache.org/confluence/display/JOSHUA/}
\vspace{0.5em}
\item SilkRoad。SilkRoad是由五个国内机构(中科院计算所、中科院软件所、中科院自动化所、厦门大学和哈尔滨工业大学)联合开发的基于短语的统计机器翻译系统。该系统是中国乃至亚洲地区第一个开源的统计机器翻译系统。SilkRoad支持多种解码器和规则提取模块,这样可以组合成不同的系统,提供多样的选择。网址:\url{http://www.nlp.org.cn/project/project.php?projid=14}
\vspace{0.5em}
......@@ -665,7 +665,7 @@ His house is on the south bank of the river.
\vspace{0.5em}
\item ZophRNN。ZophRNN\cite{zoph2016simple}是由南加州大学的Barret Zoph 等人使用C++语言开发的系统。Zoph既可以训练序列表示模型(如语言模型),也可以训练序列到序列的模型(如神经机器翻译模型)。当训练神经机器翻译系统时,ZophRNN也支持多源输入。网址:\url{https://github.com/isi-nlp/Zoph\_RNN}
\vspace{0.5em}
\item Fairseq。Fairseq\cite{Ottfairseq}是由Facebook开发的,基于PyTorch框架的用以解决序列到序列问题的工具包,其中包括基于卷积神经网络、基于循环神经网络、基于Transformer的模型等。Fairseq是当今使用最广泛的神经机器翻译开源系统之一。网址:https://github.com/facebookresearch/fairseq
\item Fairseq。Fairseq\cite{Ottfairseq}是由Facebook开发的,基于PyTorch框架的用以解决序列到序列问题的工具包,其中包括基于卷积神经网络、基于循环神经网络、基于Transformer的模型等。Fairseq是当今使用最广泛的神经机器翻译开源系统之一。网址:\url{https://github.com/facebookresearch/fairseq}
\vspace{0.5em}
\item Tensor2Tensor。Tensor2Tensor\cite{VaswaniTensor2Tensor}是由谷歌推出的,基于TensorFlow框架的开源系统。该系统基于Transformer模型,因此可以支持大多数序列到序列任务。得益于Transformer 的网络结构,系统的训练速度较快。现在,Tensor2Tensor也是机器翻译领域广泛使用的开源系统之一。网址:\url{https://github.com/tensorflow/tensor2tensor}
\vspace{0.5em}
......
......@@ -379,6 +379,7 @@ F(x)=\int_{-\infty}^x f(x)dx
\parinterval 对于机器翻译系统而言,输入的是已经切分好的单词序列,而不是原始的字符串(图\ref{fig:2-7})。比如,对于一个中文句子,单词之间是没有间隔的,因此需要把一个个的单词切分出来,这样机器翻译系统可以区分不同的翻译单元。甚至,可以对语言学上的单词进行进一步切分,得到词片段序列(比如:中国人$\to$中国/人)。可以把上述过程看作是一种{\small\sffamily\bfseries{分词}}\index{分词}(Segmentation)\index{Segmentation}过程,即:将一个输入的自然语言字符串切割成单元序列(token序列),每个单元都对应可以处理的最小单位。
\vspace{0.5em}
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -397,6 +398,7 @@ F(x)=\int_{-\infty}^x f(x)dx
\vspace{0.5em}
\begin{definition}
\vspace{0.5em}
语言里最小的可以独立运用的单位。
\begin{flushright}——《新华字典》\end{flushright}
......@@ -410,8 +412,9 @@ F(x)=\int_{-\infty}^x f(x)dx
\parinterval 从语言学的角度来看,人们普遍认为词是可以单独运用的、包含意义的基本单位。这样可以使用有限的词组合出无限的句子,这也正体现出自然语言的奇妙之处。
\parinterval 不过,机器翻译并不仅仅局限在语言学定义的单词。比如,神经机器翻译中广泛使用的BPE子词切分方法(见第七章),可以被理解为将词的一部分也进行切开,也就是得到词片段送给机器翻译系统使用。比如,对如下英文字符串,可以得到如下切分结果
\parinterval 不过,机器翻译并不仅仅局限在语言学定义的单词。比如,神经机器翻译中广泛使用的BPE子词切分方法(见第七章),可以被理解为将词的一部分也进行切开,也就是得到词片段送给机器翻译系统使用。比如,对如下英文字符串,可以得到如下切分结果
\newpage
\parinterval Interesting \; $\to$ \; Interest/ing selection \hspace{0.08em} $\to$ \;se/lect/ion procession \hspace{0.43em} $\to$ \; pro/cess/ion
\parinterval Interested \hspace{0.62em} $\to$ \; Interest/ed selecting \hspace{0.34em} $\to$ \; se/lect/ing processing \hspace{0.22em} $\to$ \; pro/cess/ing
......@@ -713,6 +716,7 @@ F(x)=\int_{-\infty}^x f(x)dx
}
\end{center}
\vspace{-0.8em}
\parinterval 可以看到,1-gram语言模型只是$n$-gram语言模型的一种特殊形式。$n$-gram的优点在于,它所使用的历史信息是有限的,即$n-1$个单词。这种性质也反映了经典的马尔可夫链的思想\cite{liuke-markov-2004}\cite{resnick1992adventures},有时也被称作马尔可夫假设或者马尔可夫属性。因此$n$-gram也可以被看作是变长序列上的一种马尔可夫模型,比如,2-gram语言模型对应着1阶马尔可夫模型,3-gram语言模型对应着2阶马尔可夫模型,以此类推。
\parinterval 那么,如何计算$\textrm{P}(w_m|w_{m-n+1} ... w_{m-1})$呢?有很多种选择,比如:
......@@ -736,6 +740,7 @@ F(x)=\int_{-\infty}^x f(x)dx
\parinterval 极大似然估计方法和前面介绍的统计分词中的方法是一致的,它的核心是使用$n$-gram出现的频度进行参数估计,因此也是自然语言处理中一类经典的$n$-gram方法。基于人工神经网络的方法在近些年也非常受关注,它直接利用多层神经网络对问题的输入$(w_{m-n+1}...w_{m-1})$和输出$\textrm{P}(w_m|w_{m-n+1} ... w_{m-1})$进行建模,而模型的参数通过网络中神经元之间连接的权重进行体现。严格意义上了来说,基于人工神经网络的方法并不算基于$n$-gram的方法,或者说它并没有显性记录$n$-gram的生成概率,也不依赖$n$-gram的频度进行参数估计。为了保证内容的连贯性,本章将仍以传统$n$-gram语言模型为基础进行讨论,基于人工神经网络的方法将会在第五章和第六章进行详细介绍。
\parinterval $n$-gram语言模型的使用非常简单。可以像\ref{sec2:statistical-seg}节中一样,直接用它来对词序列出现的概率进行计算。比如,可以使用一个2-gram语言模型计算一个分词序列的概率:
\begin{eqnarray}
& &\textrm{P}_{2-gram}{(\textrm{``确实}/\textrm{现在}/\textrm{数据}/\textrm{}/\textrm{多''})} \nonumber \\
&= & \textrm{P}(\textrm{``确实''}) \times\textrm{P}(\textrm{``现在''}|\textrm{``确实''})\times\textrm{P}(\textrm{``数据''}|\textrm{``现在''}) \times \nonumber \\
......
......@@ -67,9 +67,10 @@
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\vspace{-0.3em}
%\vspace{-0.3em}
\subsection{神经机器翻译的起源}
\vspace{0.3em}
\parinterval 从广义上讲,神经机器翻译是一种基于人工神经网络的方法,它把翻译过程描述为可以用人工神经网络表示的函数。所有的训练和推断都在这些函数上进行。由于神经机器翻译中的神经网络可以用连续可微函数表示,因此这类方法也可以用基于梯度的方法进行优化,相关技术非常成熟。更为重要的是,在神经网络的设计中,研究者引入了{\small\bfnew{分布式表示}} \index{分布式表示}(Distributed Representation)\index{Distributed Representation}的概念,这也是近些年自然语言处理领域的重要成果之一。传统统计机器翻译仍然把词序列看作离散空间里的由多个特征函数描述的点,类似于$n$-gram语言模型,这类模型对数据稀疏问题非常敏感。此外,人工设计特征也在一定程度上限制了模型对问题的表示能力。神经机器翻译把文字序列表示为实数向量,一方面避免了特征工程繁重的工作,另一方面使得系统可以对文字序列的``表示''进行学习。可以说,神经机器翻译的成功很大程度上源自`` 表示学习''这种自然语言处理的新范式的出现。在表示学习的基础上,注意力机制、深度神经网络等技术都被应用于神经机器翻译,使其得以进一步发展。
\parinterval 虽然神经机器翻译中大量的使用了人工神经网络方法,但是它并不是最早在机器翻译中使用人工神经网络的框架。实际上,人工神经网络在机器翻译中应用的历史要远早于现在的神经机器翻译。 在统计机器翻译时代,也有很多研究者利用人工神经网络进行机器翻译系统模块的构建\cite{devlin-etal-2014-fast,Schwenk_continuousspace},比如,Jacob Devlin等人就成功地在统计机器翻译系统中使用了基于神经网络的联合表示模型,取得了令人振奋的结果,这项工作也获得了ACL2014的最佳论文奖(Best Paper Award)。
......@@ -97,7 +98,7 @@
%----------------------------------------------------------------------------------------
\subsection{神经机器翻译的品质 }
\vspace{0.3em}
\parinterval\ref{fig:6-2}是一个真实的机器翻译的例子。其中译文1是统计机器翻译系统的结果,译文2是神经机器翻译系统的结果。为了保证公平性,两个系统使用完全相同的数据进行训练。
%----------------------------------------------
......
......@@ -407,7 +407,7 @@
%----------------------------------------------------------------------------------------
% NEW SECTION
%----------------------------------------------------------------------------------------
\vspace{-0.5em}
\sectionnewpage
\section{建模与训练}
......@@ -462,7 +462,7 @@ y = f(x)
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
\vspace{-0.5em}
\subsubsection{L1/L2正则化}
\parinterval L1/L2正则化是常用的正则化方法。它们分别对应正则项是L1和L2范数的情况。具体来说,L1正则化是指
......@@ -572,7 +572,7 @@ y_{j}^{ls}=(1-\alpha) \cdot \tilde{y}_j + \alpha \cdot q
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\vspace{-0.5em}
\subsection{增大模型容量}
\label{subsection-7.3.2}
......@@ -591,13 +591,12 @@ y_{j}^{ls}=(1-\alpha) \cdot \tilde{y}_j + \alpha \cdot q
\item 增加网络的整体层数:即增加网络深度,利用更多的线性和非线性变换来获得更复杂的特征抽取能力。
\vspace{0.5em}
\item 增大输入层和输出层的维度:即增强模型对词表中每个词的表示能力。
\vspace{0.5em}
\end{itemize}
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
\vspace{-0.5em}
\subsubsection{宽网络}
\parinterval 宽网络通常指隐藏层维度更大的网络,目前在图像处理领域和自然语言处理领域被广泛地使用。第五章已经验证了包含足够多神经元的多层前馈神经网络可以无限逼近任意复杂的连续函数\cite{Hornic1989Multilayer},这也在一定程度上说明了神经网络建模中神经元数目的重要性。
......@@ -709,7 +708,7 @@ y_{j}^{ls}=(1-\alpha) \cdot \tilde{y}_j + \alpha \cdot q
\end{figure}
%----------------------------------------------
\parinterval 此外,前人工作表明,使用大批量训练复杂网络结构时要配合略大一些的学习率,加快模型在梯度方向上的更新速度,进而达到更优的翻译性能\cite{DBLP:conf/wmt/OttEGA18}。例如,深层网络也需要对学习率进行适当的调整才能发挥较好的性能。表\ref{tab:7-3}展示了30层网络在不同批次大小和学习率峰值的条件下的BLEU值(WMT14 En-De)\footnote{学习率峰值是指Transformer模型训练的预热阶段,学习率所到达的最高值。}。可以发现,在固定学习率峰值的条件下增大批次大小并不能带来性能上的增益,必须同时调整学习率的峰值。也有研究团队验证了Transformer-Big模型在128张GPU上进行分布式训练时,适当的增大学习率会带来明显的BLEU提升\cite{DBLP:conf/wmt/OttEGA18}
\parinterval 此外,前人工作表明,使用大批量训练复杂网络结构时要配合略大一些的学习率,加快模型在梯度方向上的更新速度,进而达到更优的翻译性能\cite{DBLP:conf/wmt/OttEGA18}。例如,深层网络也需要对学习率进行适当的调整才能发挥较好的性能。表\ref{tab:7-3}展示了30层网络在不同批次大小和学习率峰值的条件下的BLEU值(WMT14 En-De)\footnote{学习率峰值是指Transformer模型训练的预热阶段,学习率所到达的最高值。}。可以发现,在固定学习率峰值的条件下增大批次大小并不能带来性能上的增益,必须同时调整学习率的峰值。也有研究团队验证了Transformer-Big模型在128张GPU上进行分布式训练时,适当的增大学习率会带来明显的BLEU提升\cite{DBLP:conf/wmt/OttEGA18}\\ \\ \\
%----------------------------------------------
\begin{table}[htp]
......@@ -1261,7 +1260,7 @@ b &=& \omega_{\textrm{high}}\cdot |\mathbf{x}|
\parinterval \ref{subsection-7.3.2}节已经指出:增加神经网络的深度有助于对句子进行更充分的表示、同时增加模型的容量。但是,简单地堆叠很多层Transformer网络并不能带来性能上的提升,反而会面临更加严重的梯度消失/梯度爆炸的问题。这是由于伴随神经网络变深,梯度无法有效地从输出层回传到底层网络,造成网络浅层部分的参数无法得到充分训练\cite{WangLearning,DBLP:conf/cvpr/YuYR18}。针对这些问题,已经有研究者开始尝试进行求解,并取得了很好的效果。比如,设计更有利于深层信息传递的网络连接和恰当的参数初始化方法等\cite{DBLP:conf/emnlp/BapnaCFCW18,WangLearning,DBLP:conf/emnlp/ZhangTS19}
\parinterval 但是,如何设计一个足够``深''的机器翻译模型仍然是业界关注的热点问题之一。此外,伴随着网络的继续变深,将会面临一些新的问题,例如,如何加速深层网络的训练,如何解决深层网络的过拟合问题等。下面将会对以上问题展开讨论。\\ \\
\parinterval 但是,如何设计一个足够``深''的机器翻译模型仍然是业界关注的热点问题之一。此外,伴随着网络的继续变深,将会面临一些新的问题,例如,如何加速深层网络的训练,如何解决深层网络的过拟合问题等。下面将会对以上问题展开讨论。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......
......@@ -48,7 +48,7 @@
\vspace{0.5em}
\end{itemize}
其中,第一章是对机器翻译的整体介绍。第二章和第五章是对统计建模和深度学习方法的介绍,分别建立了两个机器翻译范式的基础知识体系 \ \dash \ 统计机器翻译和神经机器翻译。统计机器翻译部分(第三、四章)涉及早期的基于单词的翻译模型,以及本世纪初流行的基于短语和句法的翻译模型。神经机器翻译(第六、七章)代表了当今机器翻译的前沿,内容主要涉及了基于端到端表示学习的机器翻译建模方法。特别,第七章对一些最新的神经机器翻译方法进行了讨论,为相关科学问题的研究和实用系统的开发提供了可落地的思路。图\ref{fig:preface}展示了本书各个章节及核心概念之间的关系。
其中,第一章是对机器翻译的整体介绍。第二章和第五章是对统计建模和深度学习方法的介绍,分别建立了两个机器翻译范式的基础知识体系 \ \dash \ 统计机器翻译和神经机器翻译。统计机器翻译部分(第三、四章)涉及早期的基于单词的翻译模型,以及本世纪初流行的基于短语和句法的翻译模型。神经机器翻译(第六、七章)代表了当今机器翻译的前沿,内容主要涉及了基于端到端表示学习的机器翻译建模方法。特别,第七章对一些最新的神经机器翻译方法进行了讨论,为相关科学问题的研究和实用系统的开发提供了可落地的思路。图\ref{fig:preface}展示了本书各个章节及核心概念之间的关系。
{\red 用最简单的方式阐述机器翻译的基本思想}是笔者所期望达到的目标。但是,书中不可避免会使用一些形式化定义和算法的抽象描述,因此,笔者尽所能通过图例进行解释(本书共320张插图)。不过,本书所包含的内容较为广泛,难免会有疏漏,望读者海涵,并指出不当之处。
......@@ -57,8 +57,6 @@
\centering
\centering
\input{./ChapterPreface/Figures/figure-preface}
\caption{本书各章节及核心概念关系图}
\label{fig:preface}
\end{figure}
%-------------------------------------------
......
......@@ -107,5 +107,8 @@
\draw [->,very thick] ([yshift=0.2em]sec6.north) -- ([yshift=-0.2em]sec7.south);
\draw [->,very thick,dotted] ([yshift=0.2em,xshift=-3em]sec4.north) .. controls +(north:7.0em) and +(west:6em) .. ([xshift=-0.2em]sec7.west);
%caption
\node [anchor=north] (caption) at ([xshift=0.4em,yshift=-1em]sec1.south) {\footnotesize{本书各章节及核心概念关系图}};
\end{tikzpicture}
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论