Commit 2518ac4f by zengxin

chapter7 cite

parent a3a7c1da
......@@ -297,7 +297,7 @@
\subsubsection{子词}
\parinterval 一种解决开放词表翻译问题的方法是改造输出层结构\cite{garciamartinez:hal-01433161}\cite{DBLP:conf/acl/JeanCMB15},比如,替换原始的Softmax层,用更加高效的神经网络结构进行超大规模词表上的预测。不过这类方法往往需要对系统进行修改,由于模型结构和训练方法的调整使得系统开发与调试的工作量增加。而且这类方法仍然无法解决OOV问题。因此在实用系统中并不常用。
\parinterval 一种解决开放词表翻译问题的方法是改造输出层结构\cite{garciamartinez:hal-01433161,DBLP:conf/acl/JeanCMB15},比如,替换原始的Softmax层,用更加高效的神经网络结构进行超大规模词表上的预测。不过这类方法往往需要对系统进行修改,由于模型结构和训练方法的调整使得系统开发与调试的工作量增加。而且这类方法仍然无法解决OOV问题。因此在实用系统中并不常用。
\parinterval 另一种思路是不改变机器翻译系统,而是从数据处理的角度来缓解OOV问题。既然使用单词会带来数据稀疏问题,那么自然会想到使用更小的单元。比如,把字符作为最小的翻译单元 \footnote{中文中字符可以被看作是汉字。} \ \dash \ 也就是基于字符的翻译模型\cite{DBLP:journals/tacl/LeeCH17}。以英文为例,只需要构造一个包含26个英文字母、数字和一些特殊符号的字符表,便可以表示所有的单词。
......@@ -568,7 +568,7 @@ y_{j}^{ls}=(1-\alpha) \cdot \tilde{y}_j + \alpha \cdot q
\subsection{增大模型容量}
\label{subsection-7.3.2}
\parinterval 神经机器翻译是一种典型的多层神经网络。一方面,可以通过设计合适的网络连接方式和激活函数来捕捉复杂的翻译现象;另一方面,越来越多的可用数据让模型能够得到更有效的训练。在训练数据较为充分的情况下,设计更加``复杂''的模型成为了提升系统性能的有效手段。比如,Transformer模型有两个常用配置Transformer-Base和Transformer-Big。其中,Transformer-Big比Transformer-Base使用了更多的神经元,相应的翻译品质更优\cite{vaswani2017attention}
\parinterval 神经机器翻译是一种典型的多层神经网络。一方面,可以通过设计合适的网络连接方式和激活函数来捕捉复杂的翻译现象;另一方面,越来越多的可用数据让模型能够得到更有效的训练。在训练数据较为充分的情况下,设计更加``复杂''的模型成为了提升系统性能的有效手段。比如,Transformer模型有两个常用配置Transformer-Base和Transformer-Big。其中,Transformer-Big比Transformer-Base使用了更多的神经元,相应的翻译品质更优\cite{NIPS2017_7181}
\parinterval 那么是否还有类似的方法可以改善系统性能呢?答案显然是肯定的。这里,把这类方法统称为基于大容量模型的方法。在传统机器学习的观点中,神经网络的性能不仅依赖于架构设计,同样与容量密切相关。那么什么是模型的{\small\bfnew{容量}}\index{容量}(Capacity)\index{Capacity}?简单理解,容量是指神经网络的参数量,即神经元之间连接权重的个数。另一种定义是把容量看作神经网络所能表示的假设空间大小\cite{DBLP:journals/nature/LeCunBH15},也就是神经网络能表示的不同函数所构成的空间。
......@@ -629,7 +629,7 @@ y_{j}^{ls}=(1-\alpha) \cdot \tilde{y}_j + \alpha \cdot q
\parinterval 除了数学上的解释,深度神经网络也可以给分析、理解现实世界的问题提供有效的手段。很多时候,可以把一个多层神经网络看作是对一个复杂问题的拆解,每层(或每几层)是在处理一个子问题。例如,在人脸识别任务中,一个3层的神经网络中第一层主要提取低层次的简单特征,即边缘特征;第二层将简单的特征组合成更为复杂的特征,如器官特征;第三层针对第二层的输出进行进一步的抽象得到人脸的面部特征。这样,深网络通过不同层的逐层特征抽象可以在人脸识别数据集上超越人类的精度\cite{DBLP:journals/iet-bmt/Sepas-Moghaddam20}
\parinterval 类似的现象也出现在基于语言模型的预训练任务中。比如,研究人员通过使用{\small\bfnew{探测任务}}\index{探测任务}(Probing Task)\index{Probing Task}来分析12层的BERT模型中的不同层所表示的含义\cite{ethayarajh-2019-contextual}\cite{DBLP:conf/acl/JawaharSS19}
\parinterval 类似的现象也出现在基于语言模型的预训练任务中。比如,研究人员通过使用{\small\bfnew{探测任务}}\index{探测任务}(Probing Task)\index{Probing Task}来分析12层的BERT模型中的不同层所表示的含义\cite{ethayarajh-2019-contextual,DBLP:conf/acl/JawaharSS19}
\begin{itemize}
\vspace{0.5em}
......@@ -775,7 +775,7 @@ y_{j}^{ls}=(1-\alpha) \cdot \tilde{y}_j + \alpha \cdot q
\vspace{0.5em}
\end{itemize}
\parinterval 准确性通常是研究人员最关心的问题。作为一个搜索过程,需要依据某种指标(如模型得分)找到样本空间中的一个或者若干个样本。不过,机器翻译是一个NP难问题,对整个样本空间进行全搜索显然是十分困难的\cite{Knight1999Decoding}。因此,需要优化搜索算法,并配合剪枝等策略,最终得到一个尽可能逼近全局最优解的搜索结果。
\parinterval 准确性通常是研究人员最关心的问题。作为一个搜索过程,需要依据某种指标(如模型得分)找到样本空间中的一个或者若干个样本。不过,机器翻译是一个NP难问题,对整个样本空间进行全搜索显然是十分困难的\cite{knight1999decoding}。因此,需要优化搜索算法,并配合剪枝等策略,最终得到一个尽可能逼近全局最优解的搜索结果。
如果搜索算法没有找到全局最优解,这时称系统出现了{\small\bfnew{搜索错误}}\index{搜索错误}(Search Error)\index{Search Error}。如果模型打分不准确造成没有把最好的翻译排序到第一,这时称系统出现了{\small\bfnew{模型错误}}\index{模型错误}(Modeling Error)\index{Modeling Error}。模型错误是由建模和模型训练等因素决定的,而搜索错误一般是由搜索算法决定的。在早期的机器翻译研究中,搜索错误是机器翻译问题的主要来源之一。不过随着技术的进步,研究者逐渐发现,机器翻译系统的错误更多的集中在模型错误上\cite{DBLP:conf/emnlp/StahlbergB19}。特别是在神经机器翻译时代,绝大多数研究工作都是在解决模型错误。
......@@ -840,7 +840,7 @@ y_{j}^{ls}=(1-\alpha) \cdot \tilde{y}_j + \alpha \cdot q
\vspace{0.5em}
\item {\small\bfnew{重排序}}\index{重排序}(Re-ranking)\index{Re-ranking}。可以用一个基础模型(比如自左向右的模型)得到每个源语言句子的$n$-best结果,之后同时用基础模型的得分和自右向左模型对$n$-best结果进行重排序\cite{DBLP:conf/wmt/SennrichHB16,DBLP:conf/wmt/LiLXLLLWZXWFCLL19}。由于这种方法不会改变基础模型的翻译过程,因此相对``安全'',不会对系统性能造成副作用。特别是对于基于循环神经网络的翻译系统,利用自右向左的翻译模型进行重排序往往会取得较好的效果。
\vspace{0.5em}
\item {\small\bfnew{双向推断}}\index{双向推断}(Bidirectional Inference)\index{Bidirectional Inference}。另一种方法是,让自左向右和自右向左模型同步进行,也就是同时考虑译文左侧和右侧的上下文\cite{DBLP:journals/corr/abs-1801-05122}。 例如,可以同时对左边和右边生成的译文进行注意力计算,得到当前位置的单词预测结果。这种方法能够更加充分的融合双向翻译的优势,不过需要对训练和推断系统进行修改,因此也引入了额外的开发和调试工作。
\item {\small\bfnew{双向推断}}\index{双向推断}(Bidirectional Inference)\index{Bidirectional Inference}。另一种方法是,让自左向右和自右向左模型同步进行,也就是同时考虑译文左侧和右侧的上下文\cite{DBLP:conf/aaai/ZhangSQLJW18}。 例如,可以同时对左边和右边生成的译文进行注意力计算,得到当前位置的单词预测结果。这种方法能够更加充分的融合双向翻译的优势,不过需要对训练和推断系统进行修改,因此也引入了额外的开发和调试工作。
\vspace{0.5em}
\end{itemize}
......@@ -952,7 +952,7 @@ y_{j}^{ls}=(1-\alpha) \cdot \tilde{y}_j + \alpha \cdot q
\item 半精度运算。半精度运算是随着近几年GPU技术发展而逐渐流行的一种运算方式。简单来说,半精度的表示要比单精度需要更少的存储单元,所表示的浮点数范围也相应的变小。不过,实践中已经证明神经机器翻译中的许多运算用半精度计算就可以满足对精度的要求。因此,直接使用半精度运算可以大大加速系统的训练和推断进程,同时对翻译品质的影响很小。不过,需要注意的是,在分布式训练的时候,由于参数服务器需要对多个计算节点上的梯度进行累加,因此保存参数的部分仍然会使用单精度浮点以保证多次累加之后不会造成精度的损失。
\vspace{0.5em}
\item 整型运算。整数运算是一种比浮点运算``轻''很多的运算。无论是芯片占用面积、能耗还是处理单次运算的时钟周期数,整数运算相比浮点运算都有着明显的优势。因此,使用整数运算也是很有潜力的加速手段。不过,整数的表示和浮点数有着很大的不同。一个基本的问题是,整数是不连续的,因此无法准确的刻画浮点数中很小的小数。对于这个问题,一种解决方法是利用``量化+反量化+缩放''的策略让整数运算近似浮点运算的效果 \cite{DBLP:journals/corr/abs-1906-00532}\cite{DBLP:conf/cvpr/JacobKCZTHAK18}\cite{DBLP:journals/corr/abs-1910-10485})。所谓``量化''就是把一个浮点数离散化为一个整数,``反量化''是这个过程的逆过程。由于浮点数可能超出整数的范围,因此会引入一个缩放因子。在量化前将浮点数缩放到整数可以表示的范围,反量化前再缩放回原始浮点数的表示范围。这种方法在理论上可以带来很好的加速效果。不过由于量化和反量化的操作本身也有时间消耗,而且在不同处理器上的表现差异较大。因此不同的实现方式带来的加速效果并不相同,需要通过实验测算。
\item 整型运算。整数运算是一种比浮点运算``轻''很多的运算。无论是芯片占用面积、能耗还是处理单次运算的时钟周期数,整数运算相比浮点运算都有着明显的优势。因此,使用整数运算也是很有潜力的加速手段。不过,整数的表示和浮点数有着很大的不同。一个基本的问题是,整数是不连续的,因此无法准确的刻画浮点数中很小的小数。对于这个问题,一种解决方法是利用``量化+反量化+缩放''的策略让整数运算近似浮点运算的效果 \cite{DBLP:journals/corr/abs-1906-00532,DBLP:conf/cvpr/JacobKCZTHAK18,DBLP:journals/corr/abs-1910-10485})。所谓``量化''就是把一个浮点数离散化为一个整数,``反量化''是这个过程的逆过程。由于浮点数可能超出整数的范围,因此会引入一个缩放因子。在量化前将浮点数缩放到整数可以表示的范围,反量化前再缩放回原始浮点数的表示范围。这种方法在理论上可以带来很好的加速效果。不过由于量化和反量化的操作本身也有时间消耗,而且在不同处理器上的表现差异较大。因此不同的实现方式带来的加速效果并不相同,需要通过实验测算。
\vspace{0.5em}
\item 低精度整型运算。使用更低精度的整型运算是进一步加速的手段之一。比如使用16位整数、8位整数,甚至4位整数在理论上都会带来速度的提升(表\ref{tab:7-4})。不过,并不是所有处理器都支持低精度整数的运算。开发这样的系统,一般需要硬件和特殊低精度整数计算库的支持。而且相关计算大多是在CPU上实现,应用会受到一定的限制。
......@@ -1019,7 +1019,7 @@ y_{j}^{ls}=(1-\alpha) \cdot \tilde{y}_j + \alpha \cdot q
\vspace{0.5em}
\item 需要大量自生成数据的情况。比如,需要利用机器翻译生成大量的伪数据的情况。在无指导神经机器翻译训练中,数据的生成也非常频繁。
\vspace{0.5em}
\item 交互式翻译。机器翻译的一个应用场景就是交互式机器翻译\cite{Domingo2017Segment}\cite{Alvaro2017Interactive}\cite{DBLP:conf/emnlp/NepveuLLF04},即机器翻译会根据用户的行为实时进行调整,这时机器翻译的延时会影响用户体验。
\item 交互式翻译。机器翻译的一个应用场景就是交互式机器翻译\cite{Domingo2017Segment,Alvaro2017Interactive,DBLP:conf/emnlp/NepveuLLF04},即机器翻译会根据用户的行为实时进行调整,这时机器翻译的延时会影响用户体验。
\vspace{0.5em}
\item 互联网机器翻译服务和产品。在大并发时如何保证翻译的低延时也是开发这类应用中必须要考虑的。
\vspace{0.5em}
......@@ -1133,7 +1133,7 @@ b &=& \omega_{\textrm{high}}\cdot |\mathbf{x}|
\subsection{多模型集成}
\label{subsection-7.4.3}
\parinterval 在机器学习领域,把多个模型融合成一个模型是提升系统性能的一种有效的方法。比如,在经典的AdaBoost方法中\cite{DBLP:journals/jcss/FreundS97},用多个``弱''分类器构建的 ``强''分类器可以使模型在训练集上的分类错误率无限接近0。类似的思想也被应用到机器翻译\cite{DBLP:conf/acl/XiaoZZW10}\cite{DBLP:conf/icassp/SimBGSW07}\cite{DBLP:conf/acl/RostiMS07}\cite{DBLP:conf/wmt/RostiZMS08},被称为{\small\bfnew{系统融合}}\index{系统融合}(System Combination)\index{System Combination}。在各种机器翻译比赛中,系统融合已经成为经常使用的技术之一。
\parinterval 在机器学习领域,把多个模型融合成一个模型是提升系统性能的一种有效的方法。比如,在经典的AdaBoost方法中\cite{DBLP:journals/jcss/FreundS97},用多个``弱''分类器构建的 ``强''分类器可以使模型在训练集上的分类错误率无限接近0。类似的思想也被应用到机器翻译\cite{DBLP:conf/acl/XiaoZZW10,DBLP:conf/icassp/SimBGSW07,DBLP:conf/acl/RostiMS07,DBLP:conf/wmt/RostiZMS08},被称为{\small\bfnew{系统融合}}\index{系统融合}(System Combination)\index{System Combination}。在各种机器翻译比赛中,系统融合已经成为经常使用的技术之一。
\parinterval 广义上来讲,使用多个特征组合的方式都可以被看作是一种模型的融合。融合多个神经机器翻译系统的方法有很多,可以分为如下几类。
......@@ -1251,7 +1251,7 @@ b &=& \omega_{\textrm{high}}\cdot |\mathbf{x}|
\subsection{深层模型}
\label{subsection-7.5.1}
\parinterval \ref{subsection-7.3.2}节已经指出:增加神经网络的深度有助于对句子进行更充分的表示、同时增加模型的容量。但是,简单地堆叠很多层Transformer网络并不能带来性能上的提升,反而会面临更加严重的梯度消失/梯度爆炸的问题。这是由于伴随神经网络变深,梯度无法有效地从输出层回传到底层网络,造成网络浅层部分的参数无法得到充分训练\cite{WangLearning}\cite{DBLP:conf/cvpr/YuYR18}。针对这些问题,已经有研究者开始尝试进行求解,并取得了很好的效果。比如,设计更有利于深层信息传递的网络连接和恰当的参数初始化方法等\cite{DBLP:conf/emnlp/BapnaCFCW18,WangLearning,DBLP:conf/emnlp/ZhangTS19}
\parinterval \ref{subsection-7.3.2}节已经指出:增加神经网络的深度有助于对句子进行更充分的表示、同时增加模型的容量。但是,简单地堆叠很多层Transformer网络并不能带来性能上的提升,反而会面临更加严重的梯度消失/梯度爆炸的问题。这是由于伴随神经网络变深,梯度无法有效地从输出层回传到底层网络,造成网络浅层部分的参数无法得到充分训练\cite{WangLearning,DBLP:conf/cvpr/YuYR18}。针对这些问题,已经有研究者开始尝试进行求解,并取得了很好的效果。比如,设计更有利于深层信息传递的网络连接和恰当的参数初始化方法等\cite{DBLP:conf/emnlp/BapnaCFCW18,WangLearning,DBLP:conf/emnlp/ZhangTS19}
\parinterval 但是,如何设计一个足够``深''的机器翻译模型仍然是业界关注的热点问题之一。此外,伴随着网络的继续变深,将会面临一些新的问题,例如,如何加速深层网络的训练,如何解决深层网络的过拟合问题等。下面将会对以上问题展开讨论。
......@@ -1275,14 +1275,14 @@ b &=& \omega_{\textrm{high}}\cdot |\mathbf{x}|
\parinterval$x_l$$x_{l+1}$表示第$l$子层的输入和输出\footnote[13]{这里沿用Transformer中的定义,每一层(Layer)包含多个子层(Sub-layer)。比如,对于Transformer编码器,每一层包含一个自注意力子层和一个前馈神经网络子层。所有子层都需要进行层归一化和残差连接。}$y_l$表示中间的临时输出;$\textrm{LN}(\cdot)$表示层归一化操作\cite{ba2016layer},帮助减少子层输出分布的方差。从而让训练变得更稳定;$\mathcal{F}(\cdot)$表示子层所对应的函数,比如前馈神经网络、自注意力网络等。下面分别对Post-Norm和Pre-Norm进行简单的描述。
\begin{itemize}
\vspace{0.5em}
\item Post-Norm:早期的Transformer遵循的是Post-Norm结构\cite{vaswani2017attention}。也就是,层正则化作用于 每一子层的输入和输出的残差结果上,如图\ref{fig:7-28}(a)所示。可以表示如下:
\item Post-Norm:早期的Transformer遵循的是Post-Norm结构\cite{NIPS2017_7181}。也就是,层正则化作用于 每一子层的输入和输出的残差结果上,如图\ref{fig:7-28}(a)所示。可以表示如下:
\begin{eqnarray}
x_{l+1}=\textrm{LN}(x_l+\mathcal{F}(x_l;\theta_l))
\label{eq:7-16}
\end{eqnarray}
其中,$\theta_l$是子层$l$的参数。
\vspace{0.5em}
\item Pre-Norm:通过调整层正则化的位置,将其放置于每一子层的输入之前,得到了Pre-Norm结构,如图\ref{fig:7-28}(b)所示。其思想与He等人的思想一致\cite{DBLP:conf/eccv/HeZRS16},也被广泛应用于最新的Transformer开源系统中\cite{VaswaniTensor2Tensor}\cite{Ottfairseq}\cite{KleinOpenNMT},公式如下:
\item Pre-Norm:通过调整层正则化的位置,将其放置于每一子层的输入之前,得到了Pre-Norm结构,如图\ref{fig:7-28}(b)所示。其思想与He等人的思想一致\cite{DBLP:conf/eccv/HeZRS16},也被广泛应用于最新的Transformer开源系统中\cite{VaswaniTensor2Tensor,Ottfairseq,KleinOpenNMT},公式如下:
\begin{eqnarray}
x_{l+1}=x_l+\mathcal{F}(\textrm{LN}(x_l);\theta_l)
\label{eq:7-17}
......@@ -1329,7 +1329,7 @@ x_{l+1}=x_l+\mathcal{F}(\textrm{LN}(x_l);\theta_l)
\subsubsection{层聚合}
\parinterval 尽管使用Pre-Norm结构可以很容易地训练深层Transformer模型,但从信息传递的角度看,Transformer模型中第$n$层的输入仅仅依赖于前一层的输出。虽然残差连接可以将信息跨层传递,但是对于很深的网络,整个模型的输入和输出之间仍需要很多次残差连接才能进行有效的传递。为了使上层的网络可以更加方便地访问下层网络的信息,一种方法是直接引入更多跨层的连接。最简单的一种方法是直接将所有层的输出都连接到最上层,达到聚合多层信息的目的\cite{DBLP:conf/emnlp/BapnaCFCW18}\cite{wang-etal-2018-multi-layer}。另一种更加有效的方式是使用{\small\bfnew{动态线性层聚合方法}}\index{动态线性层聚合方法}(Dynamic Linear Combination of Layers,DLCL)\index{Dynamic Linear Combination of Layers,DLCL}。在每一层的输入中不仅考虑前一层的输出,而是将前面所有层的中间结果(包括词嵌入)进行线性聚合,理论上等价于常微分方程中的高阶求解方法\cite{WangLearning}。以Pre-Norm结构为例,具体做法如下:
\parinterval 尽管使用Pre-Norm结构可以很容易地训练深层Transformer模型,但从信息传递的角度看,Transformer模型中第$n$层的输入仅仅依赖于前一层的输出。虽然残差连接可以将信息跨层传递,但是对于很深的网络,整个模型的输入和输出之间仍需要很多次残差连接才能进行有效的传递。为了使上层的网络可以更加方便地访问下层网络的信息,一种方法是直接引入更多跨层的连接。最简单的一种方法是直接将所有层的输出都连接到最上层,达到聚合多层信息的目的\cite{DBLP:conf/emnlp/BapnaCFCW18,wang-etal-2018-multi-layer}。另一种更加有效的方式是使用{\small\bfnew{动态线性层聚合方法}}\index{动态线性层聚合方法}(Dynamic Linear Combination of Layers,DLCL)\index{Dynamic Linear Combination of Layers,DLCL}。在每一层的输入中不仅考虑前一层的输出,而是将前面所有层的中间结果(包括词嵌入)进行线性聚合,理论上等价于常微分方程中的高阶求解方法\cite{WangLearning}。以Pre-Norm结构为例,具体做法如下:
\begin{itemize}
\vspace{0.5em}
\item 对于每一层的输出$x_{l+1}$,对其进行层正则化,得到每一层的信息的表示
......@@ -1395,7 +1395,7 @@ $g_l$会作为输入的一部分送入第$l+1$层。其网络的结构图\ref{fi
\subsubsection{分组稠密连接}
\parinterval 很多研究者已经发现深层网络不同层之间的稠密连接能够很明显地提高信息传递的效率\cite{WangLearning}\cite{DBLP:conf/cvpr/HuangLMW17}\cite{DBLP:conf/emnlp/DouTWSZ18}\cite{DBLP:conf/acl/WuWXTGQLL19}。与此同时,对之前层信息的不断复用有助于得到更好的表示,但随之而来的是网络计算代价过大的问题。由于动态线性层聚合方法(DLCL)在每一次聚合时都需要重新计算之前每一层表示对当前层网络输入的贡献度,因此伴随着编码端整体深度的不断增加,这部分的计算代价变的不可忽略。例如,一个基于动态层聚合的48层Transformer模型的训练时间比不使用动态层聚合慢近1.9倍。同时,缓存中间结果也增加了显存的使用量,尽管使用了FP16计算,每张12G显存的GPU上计算的词也不能超过2048个,这导致训练开销急剧增大。
\parinterval 很多研究者已经发现深层网络不同层之间的稠密连接能够很明显地提高信息传递的效率\cite{WangLearning,DBLP:conf/cvpr/HuangLMW17,DBLP:conf/emnlp/DouTWSZ18,DBLP:conf/acl/WuWXTGQLL19}。与此同时,对之前层信息的不断复用有助于得到更好的表示,但随之而来的是网络计算代价过大的问题。由于动态线性层聚合方法(DLCL)在每一次聚合时都需要重新计算之前每一层表示对当前层网络输入的贡献度,因此伴随着编码端整体深度的不断增加,这部分的计算代价变的不可忽略。例如,一个基于动态层聚合的48层Transformer模型的训练时间比不使用动态层聚合慢近1.9倍。同时,缓存中间结果也增加了显存的使用量,尽管使用了FP16计算,每张12G显存的GPU上计算的词也不能超过2048个,这导致训练开销急剧增大。
%----------------------------------------------
\begin{figure}[htp]
......@@ -1406,7 +1406,7 @@ $g_l$会作为输入的一部分送入第$l+1$层。其网络的结构图\ref{fi
\end{figure}
%-------------------------------------------
\parinterval 缓解这个问题的一种方法是使用更稀疏的层间连接方式。其核心思想与动态线性层聚合是类似的,不同点在于可以通过调整层之间连接的稠密程度来降低训练代价。比如,可以将每$p$层分为一组,之后动态线性层聚合只在不同组之间进行。这样,通过调节$p$值的大小可以控制网络中连接的稠密程度,作为一种训练代价与翻译性能之间的权衡。显然,标准的Transformer模型\cite{vaswani2017attention}和DLCL模型\cite{WangLearning}都可以看作是该方法的一种特例。如图\ref{fig:7-31}所示:当$p=1$时,每一个单独的块被看作一个独立的组,这等价于基于动态层聚合的DLCL模型;当$p=\infty$时,这等价于正常的Transformer模型。值得注意的是,如果配合渐进式训练。在分组稠密连接中可以设置$p=h$
\parinterval 缓解这个问题的一种方法是使用更稀疏的层间连接方式。其核心思想与动态线性层聚合是类似的,不同点在于可以通过调整层之间连接的稠密程度来降低训练代价。比如,可以将每$p$层分为一组,之后动态线性层聚合只在不同组之间进行。这样,通过调节$p$值的大小可以控制网络中连接的稠密程度,作为一种训练代价与翻译性能之间的权衡。显然,标准的Transformer模型\cite{NIPS2017_7181}和DLCL模型\cite{WangLearning}都可以看作是该方法的一种特例。如图\ref{fig:7-31}所示:当$p=1$时,每一个单独的块被看作一个独立的组,这等价于基于动态层聚合的DLCL模型;当$p=\infty$时,这等价于正常的Transformer模型。值得注意的是,如果配合渐进式训练。在分组稠密连接中可以设置$p=h$
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -1478,7 +1478,7 @@ x_{l+1}=M \cdot \mathcal{F}(\textrm{LN}(x_l))+x_l
\end{eqnarray}
$M=0$代表该子层被丢弃,而$M=1$代表正常进行当前子层的计算。图ref{fig:7-34}展示了这个方法与标准Transformer之间的区别。
\parinterval 除此之外,有研究者已经发现残差网络中底层的子网络通过对输入进行抽象得到的表示对最终的输出有很大的影响,上层网络是通过对底层网络得到的表示不断修正来拟合训练目标\cite{journals/corr/GreffSS16}。该结论同样适用于Transformer模型,比如,在训练中,残差支路以及底层的梯度范数通常比较大,这也间接表明底层网络在整个优化的过程中需要更大的更新。考虑到这个因素,在设计每一个子层被丢弃的概率时可以采用自底向上线性增大的策略,保证底层的网络相比于顶层更容易保留下来。这里用$L$来代表编码端块的个数,$l$代表当前的子层的编号,那么$M$可以通过以下的方式得到:
\parinterval 除此之外,有研究者已经发现残差网络中底层的子网络通过对输入进行抽象得到的表示对最终的输出有很大的影响,上层网络是通过对底层网络得到的表示不断修正来拟合训练目标\cite{DBLP:journals/corr/GreffSS16}。该结论同样适用于Transformer模型,比如,在训练中,残差支路以及底层的梯度范数通常比较大,这也间接表明底层网络在整个优化的过程中需要更大的更新。考虑到这个因素,在设计每一个子层被丢弃的概率时可以采用自底向上线性增大的策略,保证底层的网络相比于顶层更容易保留下来。这里用$L$来代表编码端块的个数,$l$代表当前的子层的编号,那么$M$可以通过以下的方式得到:
\begin{eqnarray}
M = \left\{\begin{array}{ll}
0&P \leqslant p_l\\
......@@ -1538,7 +1538,7 @@ p_l=\frac{l}{2L}\cdot \varphi
\vspace{0.5em}
\end{itemize}
\parinterval 使用单语数据构建(双语)伪数据属于后者,它也是一种典型的{\small\bfnew{数据增强}}\index{数据增强}(Data Augmentation)\index{Data Augmentation}方法。一种常用做法是{\small\bfnew{回译}}\index{回译}(Back Translation)\index{Back Translation}\cite{DBLP:conf/acl/SennrichHB16}\cite{DBLP:conf/emnlp/EdunovOAG18}:训练一个从目标语翻译到源语的系统,也就是一个反向翻译系统;之后,用这个系统翻译目标语言单语数据;最后将单语数据(目标语言)和翻译的结果(源语言)作为训练数据,送入源语言到目标语言的翻译系统。这种做法不需要更改任何模型结构,就能很好的利用单语数据,因此也被广泛采用。图\ref{fig:7-35}给出了回译方法的一个简要流程。
\parinterval 使用单语数据构建(双语)伪数据属于后者,它也是一种典型的{\small\bfnew{数据增强}}\index{数据增强}(Data Augmentation)\index{Data Augmentation}方法。一种常用做法是{\small\bfnew{回译}}\index{回译}(Back Translation)\index{Back Translation}\cite{DBLP:conf/acl/SennrichHB16,DBLP:conf/emnlp/EdunovOAG18}:训练一个从目标语翻译到源语的系统,也就是一个反向翻译系统;之后,用这个系统翻译目标语言单语数据;最后将单语数据(目标语言)和翻译的结果(源语言)作为训练数据,送入源语言到目标语言的翻译系统。这种做法不需要更改任何模型结构,就能很好的利用单语数据,因此也被广泛采用。图\ref{fig:7-35}给出了回译方法的一个简要流程。
%----------------------------------------------
\begin{figure}[htp]
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论