\item DL4MT:由Cho Lab at NYU CS and CDS团队构建的多编码器、多解码器或多路NMT模型。该项目主要使用Theano 构建计算图,吸取了其他NMT系统搭建的经验,构建了调度器来管理调度多个数据流从而训练多个计算图,从而加快训练速度。同时该团队还提供了对应的学习材料,进一步讲解整个项目的细节。\url{https://github.com/nyu-dl/dl4mt-multi}
\item DL4MT:由Cho Lab at NYU CS and CDS团队构建的多编码器、多解码器或多路NMT模型。该项目主要使用Theano 构建计算图,吸取了其他NMT系统搭建的经验,构建了调度器来管理调度多个数据流从而训练多个计算图,从而加快训练速度。同时该团队还提供了对应的学习材料,进一步讲解整个项目的细节。\url{https://github.com/nyu-dl/dl4mt-multi}
\parinterval 《Foundations of Statistical Natural Language Processing》中文译名《自然语言处理基础》,作者是自然语言处理领域的权威Chris Manning教授和Hinrich Sch$\ddot{\textrm{u}}$tze教授。该书对统计自然语言处理方法进行了全面介绍。书中讲解了必要的语言学和概率论基础知识,介绍了机器翻译评价、语言建模、判别式训练以及整合语言学信息等基础方法。其中包含了构建NLP工具所需的基本理论和算法,提供了对数学和语言学基础内容广泛而严格的覆盖,以及统计方法的详细讨论。
\parinterval 《Foundations of Statistical Natural Language Processing》\cite{SIDDHARTHANChristopher}中文译名《自然语言处理基础》,作者是自然语言处理领域的权威Chris Manning教授和Hinrich Sch$\ddot{\textrm{u}}$tze教授。该书对统计自然语言处理方法进行了全面介绍。书中讲解了必要的语言学和概率论基础知识,介绍了机器翻译评价、语言建模、判别式训练以及整合语言学信息等基础方法。其中包含了构建NLP工具所需的基本理论和算法,提供了对数学和语言学基础内容广泛而严格的覆盖,以及统计方法的详细讨论。
\parinterval Ian Goodfellow、Yoshua Bengio,Aaron Courville三位机器学习领域的学者所写的《深度学习》也是值得一读的参考书。其讲解了有关深度学习常用的方法,其中很多都会在深度学习模型设计和使用中用到。同时在《深度学习》应用一章中也简单讲解了神经机器翻译的任务定义和发展过程。
\parinterval Ian Goodfellow、Yoshua Bengio,Aaron Courville三位机器学习领域的学者所写的《深度学习》\cite{HeatonIan}也是值得一读的参考书。其讲解了有关深度学习常用的方法,其中很多都会在深度学习模型设计和使用中用到。同时在《深度学习》应用一章中也简单讲解了神经机器翻译的任务定义和发展过程。
author={Sánchez-Martínez, Felipe and Juan Antonio Pérez-Ortiz},
volume={24},
number={3-4},
pages={273-278},
}
@article{SIDDHARTHANChristopher,
title={Christopher D. Manning and Hinrich Schutze. Foundations of Statistical Natural Language Processing. MIT Press, 2000. ISBN 0-262-13360-1. 620 pp.},
author={SIDDHARTHAN and ADVAITH},
journal={Natural Language Engineering},
volume={8},
number={01},
}
@book{宗成庆2013统计自然语言处理,
title={统计自然语言处理},
author={宗成庆},
year={2013},
}
@article{HeatonIan,
title={Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning},
title={NiuTrans: an open source toolkit for phrase-based and syntax-based machine translation},
author={Tong, Xiao and Zhu, Jingbo and Hao, Zhang and Qiang, Li},
booktitle={Proceedings of the ACL 2012 System Demonstrations},
year={2012},
}
@article{Koehn2007Moses,
title={Moses: Open Source Toolkit for Statistical Machine Translation},
author={Koehn, Philipp and Hoang, Hieu and Birch, Alexandra and Callisonburch, Chris and Federico, Marcello and Bertoldi, Nicola and Cowan, Brooke and Shen, Wade and Moran, Christine and Zens, Richard},
volume={9},
number={1},
pages={177--180},
year={2007},
}
@inproceedings{Dyer2010cdec,
title={cdec: A Decoder, Alignment, and Learning Framework for Finite-State and Context-Free Translation Models},
author={Dyer, Chris and Lopez, Adam and Ganitkevitch, Juri and Weese, Jonathan and Resnik, Philip},
booktitle={ACL 2010, Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, July 11-16, 2010, Uppsala, Sweden, System Demonstrations},
year={2010},
}
@article{SennrichNematus,
title={Nematus: a Toolkit for Neural Machine Translation},
author={Sennrich, Rico and Firat, Orhan and Cho, Kyunghyun and Birch, Alexandra and Haddow, Barry and Hitschler, Julian and Junczys-Dowmunt, Marcin and Läubli, Samuel and Barone, Antonio Valerio Miceli and Mokry, Jozef},
}
@article{Ottfairseq,
title={fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
author={Ott, Myle and Edunov, Sergey and Baevski, Alexei and Fan, Angela and Gross, Sam and Ng, Nathan and Grangier, David and Auli, Michael},
}
@article{VaswaniTensor2Tensor,
title={Tensor2Tensor for Neural Machine Translation},
author={Vaswani, Ashish and Bengio, Samy and Brevdo, Eugene and Chollet, Francois and Gomez, Aidan N. and Gouws, Stephan and Jones, Llion and Kaiser, Łukasz and Kalchbrenner, Nal and Parmar, Niki},
}
@article{KleinOpenNMT,
title={OpenNMT: Open-Source Toolkit for Neural Machine Translation},
author={Klein, Guillaume and Kim, Yoon and Deng, Yuntian and Senellart, Jean and Rush, Alexander M.},
}
@article{ZhangTHUMT,
title={THUMT: An Open Source Toolkit for Neural Machine Translation},
author={Zhang, Jiacheng and Ding, Yanzhuo and Shen, Shiqi and Cheng, Yong and Sun, Maosong and Luan, Huanbo and Liu, Yang},
}
@article{WangCytonMT,
title={CytonMT: an Efficient Neural Machine Translation Open-source Toolkit Implemented in C++},
author={Wang, Xiaolin and Utiyama, Masao and Sumita, Eiichiro},
}
@article{Germann2016Modern,
title={Modern MT: A New Open-Source Machine Translation Platform for the Translation Industry},
author={Germann, Ulrich and Barbu, E and Bentivoglio, M and Bogoychev, Nikolay and Buck, C and Caroselli, D and Carvalho, L and Cattelan, A and Cattoni, R and Cettolo, M},
year={2016},
abstract={Modern MT (www.modernmt.eu) is a three-year Horizon 2020 innovation action(2015–2017) to develop new open-source machine translation technology for use in translation production environments, both fully automatic and as a back-end in interactive post-editing scenarios. Led by Translated srl, the project consortium also includes the Fondazione Bruno Kessler (FBK), the University of Edinburgh, and TAUS B.V. Modern MT has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 645487 (call ICT-17-2014).},
}
@article{JunczysMarian,
title={Marian: Fast Neural Machine Translation in C++},
author={Junczys-Dowmunt, Marcin and Grundkiewicz, Roman and Dwojak, Tomasz and Hoang, Hieu and Heafield, Kenneth and Neckermann, Tom and Seide, Frank and Germann, Ulrich and Aji, Alham Fikri and Bogoychev, Nikolay},
}
@article{hieber2017sockeye,
title={Sockeye: A Toolkit for Neural Machine Translation.},
author={Hieber, Felix and Domhan, Tobias and Denkowski, Michael and Vilar, David and Sokolov, Artem and Clifton, Ann and Post, Matt},
journal={arXiv: Computation and Language},
year={2017}}
@article{KuchaievMixed,
title={Mixed-Precision Training for NLP and Speech Recognition with OpenSeq2Seq},
author={Kuchaiev, Oleksii and Ginsburg, Boris and Gitman, Igor and Lavrukhin, Vitaly and Li, Jason and Nguyen, Huyen and Case, Carl and Micikevicius, Paulius},
}
@inproceedings{肖桐2011CWMT2011,
title={CWMT2011东北大学参评系统NiuTrans介绍(英文)},
author={肖桐 and 张浩 and 李强 and 路琦 and 朱靖波 and 任飞亮 and 王会珍},
booktitle={机器翻译研究进展——第七届全国机器翻译研讨会论文集},
year={2011},
}
@article{luong2016achieving,
title={Achieving Open Vocabulary Neural Machine Translation with Hybrid Word-Character Models},
author={Luong, Minhthang and Manning, Christopher D},
journal={arXiv: Computation and Language},
year={2016}}
@article{luong2015effective,
title={Effective Approaches to Attention-based Neural Machine Translation},
author={Luong, Minhthang and Pham, Hieu and Manning, Christopher D},
journal={arXiv: Computation and Language},
year={2015}}
@article{see2016compression,
title={Compression of Neural Machine Translation Models via Pruning},
author={See, Abigail and Luong, Minhthang and Manning, Christopher D},
journal={arXiv: Artificial Intelligence},
year={2016}}
@article{bahdanau2015neural,
title={Neural Machine Translation by Jointly Learning to Align and Translate},
author={Bahdanau, Dzmitry and Cho, Kyunghyun and Bengio, Yoshua},