Commit 4ba72cbb by xiaotong

update

parent 90dbce0f
......@@ -311,7 +311,7 @@ y = f(w \cdot x + b)
\begin{center}
\begin{tikzpicture}
\begin{scope}
\node [anchor=center,circle,draw,ublue,very thick,minimum size=3.5em,fill=white,drop shadow] (neuron) at (0,0) {};
\node [anchor=center,circle,draw,ublue,very thick,minimum size=3.5em,fill=white,drop shadow={shadow xshift=0.1em,shadow yshift=-0.1em}] (neuron) at (0,0) {};
\node [anchor=east] (x1) at ([xshift=-6em]neuron.west) {\Large{$x_1$}};
\node [anchor=center] (x0) at ([yshift=3em]x1.center) {\Large{$x_0$}};
\node [anchor=center] (x2) at ([yshift=-3em]x1.center) {\Large{$x_2$}};
......@@ -388,7 +388,7 @@ y = f(w \cdot x + b)
\begin{center}
\begin{tikzpicture}
\begin{scope}
\node [anchor=center,circle,draw,ublue,very thick,minimum size=3.5em,fill=white,drop shadow] (neuron) at (0,0) {};
\node [anchor=center,circle,draw,ublue,very thick,minimum size=3.5em,fill=white,drop shadow={shadow xshift=0.1em,shadow yshift=-0.1em}] (neuron) at (0,0) {};
\node [anchor=east] (x1) at ([xshift=-6em]neuron.west) {$x_1$:票价够低?};
\node [anchor=center] (x0) at ([yshift=3em]x1.center) {$x_0$:距离够近?};
\node [anchor=center] (x2) at ([yshift=-3em]x1.center) {$x_2$:女友喜欢?};
......@@ -490,7 +490,7 @@ y = f(w \cdot x + b)
\begin{center}
\begin{tikzpicture}
\begin{scope}
\node [anchor=center,circle,draw,ublue,very thick,minimum size=3.5em,fill=white,drop shadow] (neuron) at (0,0) {};
\node [anchor=center,circle,draw,ublue,very thick,minimum size=3.5em,fill=white,drop shadow={shadow xshift=0.1em,shadow yshift=-0.1em}] (neuron) at (0,0) {};
\node [anchor=east] (x1) at ([xshift=-6em]neuron.west) {$x_1$:便宜程度\ \ \ \ };
\node [anchor=center] (x0) at ([yshift=3em]x1.center) {$x_0$:远近程度\ \ \ \ };
\node [anchor=center] (x2) at ([yshift=-3em]x1.center) {$x_2$:女友喜欢?};
......@@ -530,7 +530,7 @@ y = f(w \cdot x + b)
\item<2-> \textbf{当然},你是一个勇于实践的人
\begin{itemize}
\item 方法很简单:不断地尝试,根据结构不断地调整权重
\item<10-> 在进行了很多次实验后,发现了相对好的一组决策模型
\item<10-> 在进行了很多次实验后,发现了相对好的一组权重
\end{itemize}
\end{itemize}
......@@ -628,6 +628,74 @@ y = f(w \cdot x + b)
%%%------------------------------------------------------------------------------------------------------------
%%% 感知机 - 一个例子 - 总结
\begin{frame}{一个例子 - 总结}
\begin{itemize}
\item 即便对于一个简单问题,如何设计一种合理方法的准确的进行决策并不简单。在上面这个模型中,还有一些\alert{问题}需要回答
\begin{itemize}
\item<2-> 对问题建模,即:定义输入$\{x_i\}$的形式
\item<3-> 设计有效的决策模型,即:定义$y$
\item<4-> 决定模型所涉及的参数(如权重$\{w_i\}$)的最优值
\end{itemize}
\end{itemize}
\vspace{-2em}
\begin{center}
\begin{tikzpicture}
\begin{scope}
\node [anchor=center,circle,draw,ublue,very thick,minimum size=3.5em,fill=white,drop shadow={shadow xshift=0.1em,shadow yshift=-0.1em}] (neuron) at (0,0) {};
\visible<2->{
\node [anchor=east] (x1) at ([xshift=-6em]neuron.west) {$x_1$:便宜程度\ \ \ \ };
\node [anchor=center] (x0) at ([yshift=3em]x1.center) {$x_0$:远近程度\ \ \ \ };
\node [anchor=center] (x2) at ([yshift=-3em]x1.center) {$x_2$:女友喜欢?};
}
\visible<3->{
\node [anchor=west] (y) at ([xshift=2em]neuron.east) {$y$:去?还是不去?};
\node [anchor=center] (neuronmath) at (neuron.center) {\small{$\sum \ge \sigma$}};
}
\draw [->,thick] (neuron.east) -- (y.west);
\draw [->,thick] (x0.east) -- (neuron.150);
\draw [->,thick] (x1.east) -- (neuron.180);
\draw [->,thick] (x2.east) -- (neuron.210);
\visible<4->{
\draw [->,thick] (x0.east) -- (neuron.150) node [pos=0.5,above,yshift=0.2em] {$w_0$};
\draw [->,thick] (x1.east) -- (neuron.180) node [pos=0.5,above,yshift=-0.1em] {$w_1$};
\draw [->,thick] (x2.east) -- (neuron.210) node [pos=0.5,above,yshift=0.1em] {$w_2$};
}
\end{scope}
\end{tikzpicture}
\end{center}
\vspace{-0.5em}
\begin{itemize}
\item<5-> \textbf{当然},后面的内容会涉及上面的问题,而且不止这些 :)
\end{itemize}
\end{frame}
%%%------------------------------------------------------------------------------------------------------------
%%% outline
\begin{frame}{入门神经网络(深度学习)的三个基本问题}
\begin{center}
\begin{tikzpicture}
{\Large
\node [anchor=west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow={shadow xshift=0.2em,shadow yshift=-0.2em}] (p1) at (0,0) {\black{\textbf{1. 人工神经网络的数学描述是什么?}}\\\black{\textbf{\hspace{0.9em} 如何实现这种数学模型?}}};
\node [anchor=north west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow={shadow xshift=0.2em,shadow yshift=-0.2em}] (p21) at ([yshift=-1em]p1.south west) {\black{\textbf{2. 如何将简单的网络单元组合成更}}\\\black{\textbf{\hspace{0.9em} 强大的模型?}}};
\node [anchor=north west,draw,ublue,very thick,rounded corners=4pt,text width=18em,align=left,fill=white,drop shadow={shadow xshift=0.2em,shadow yshift=-0.2em}] (p22) at ([yshift=-1em]p21.south west) {\black{\textbf{3. 如何对模型中的参数进行学习?}}\\\black{\textbf{\hspace{0.9em} 如何使用学习到的模型进行推断?}}};
}
\end{tikzpicture}
\end{center}
\end{frame}
%%%------------------------------------------------------------------------------------------------------------
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论