Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
T
Toy-MT-Introduction
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
Toy-MT-Introduction
Commits
6e513a24
Commit
6e513a24
authored
May 12, 2020
by
单韦乔
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
第四章反馈后更新
parent
b82d75b5
隐藏空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
7 行增加
和
7 行删除
+7
-7
Book/Chapter4/chapter4.tex
+7
-7
没有找到文件。
Book/Chapter4/chapter4.tex
查看文件 @
6e513a24
...
...
@@ -16,7 +16,7 @@
\parinterval
机器翻译的一个问题是要定义翻译的基本单元是什么。比如,可以像第三章介绍的那样,以单词为单位进行翻译,即把句子的翻译看作是单词之间对应关系的一种组合。基于单词的模型是符合人类对翻译问题的认知的,因为单词本身就是人类加工语言的一种基本单元。另一方面,在进行翻译时也可以使用一些更``复杂''的知识。比如,很多词语间的搭配需要根据语境的变化进行调整,而且对于句子结构的翻译往往需要更上层的知识,如句法知识。因此,在对单词翻译进行建模的基础上,需要探索其他类型的翻译知识,使得搭配和结构翻译等问题可以更好地被建模。
\parinterval
本章会介绍基于短语和基于句法的翻译模型。在过去二十年中,它们一直是机器翻译的主流方法。相比于基于单词的翻译模型,基于短语和基于句法的模型可以更好
的对单词之间的依赖关系进行描述,同时可以对句子的上层结构进行有效的表示。这些方法也在相当长的一段时期内占据着机器翻译的统治地位。虽然,
近些年随着神经机器翻译的崛起,基于短语和基于句法的统计翻译模型有些``降温'',但是它仍然是机器翻译的主要框架之一,其中的思想和很多技术手段对今天的机器翻译研究仍然有很好的借鉴意义。
\parinterval
本章会介绍基于短语和基于句法的翻译模型。在过去二十年中,它们一直是机器翻译的主流方法。相比于基于单词的翻译模型,基于短语和基于句法的模型可以更好
地对单词之间的依赖关系进行描述,同时可以对句子的上层结构进行有效的表示。这些方法也在相当长的一段时期内占据着机器翻译的统治地位。虽然
近些年随着神经机器翻译的崛起,基于短语和基于句法的统计翻译模型有些``降温'',但是它仍然是机器翻译的主要框架之一,其中的思想和很多技术手段对今天的机器翻译研究仍然有很好的借鉴意义。
%----------------------------------------------------------------------------------------
% NEW SECTION
...
...
@@ -136,7 +136,7 @@
\end{figure}
%-------------------------------------------
\parinterval
使用句法信息在机器翻译中不新鲜。在基于规则和模板的翻译模型中,就大量地使用了句法等结构信息。只是由于早期句法分析技术不成熟,系统的整体效果并不突出。在统计机器翻译时代,句法可以很好
的
融合在统计建模中。通过概率化的文法设计,可以对翻译过程进行很好的描述。在本章的
\ref
{
section-4.3
}
节和
\ref
{
section-4.4
}
节中将会详细讨论句法信息在统计机器翻译中的应用。
\parinterval
使用句法信息在机器翻译中不新鲜。在基于规则和模板的翻译模型中,就大量地使用了句法等结构信息。只是由于早期句法分析技术不成熟,系统的整体效果并不突出。在统计机器翻译时代,句法可以很好
地
融合在统计建模中。通过概率化的文法设计,可以对翻译过程进行很好的描述。在本章的
\ref
{
section-4.3
}
节和
\ref
{
section-4.4
}
节中将会详细讨论句法信息在统计机器翻译中的应用。
%----------------------------------------------------------------------------------------
% NEW SECTION
...
...
@@ -389,7 +389,7 @@ d = {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)} \c
\subsection
{
短语抽取
}
\label
{
subsection-4.2.3
}
\parinterval
在基于短语的模型中,学习短语翻译是重要的步骤之一。获得短语翻译的方法有很多种,最常用的方法是从双语平行语料中进行
{
\small\bfnew
{
短语抽取
}}
\index
{
短语抽取
}
(Phrase Extraction)
\index
{
Phrase Extraction
}
。前面已经介绍过短语的概念,句子中任意的连续子串都被称为短语。例如在图
\ref
{
fig:4-12
}
中,用点阵的形式来表示双语之间的对应关系,那么图中任意一个矩形框都可以构成一个双语短语(或短语对),例如``什么
\
都
\
没''对应``learn nothing ?''。
\parinterval
在基于短语的模型中,学习短语翻译是重要的步骤之一。获得短语翻译的方法有很多种,最常用的方法是从双语平行语料中进行
{
\small\bfnew
{
短语抽取
}}
\index
{
短语抽取
}
(Phrase Extraction)
\index
{
Phrase Extraction
}
。前面已经介绍过短语的概念,句子中任意的连续子串都被称为短语。例如在图
\ref
{
fig:4-12
}
中,用点阵的形式来表示双语之间的对应关系,那么图中任意一个矩形框都可以构成一个双语短语(或短语对),例如``什么
\
都
\
没''对应``learn
ed
nothing ?''。
%----------------------------------------------
\begin{figure}
[htp]
...
...
@@ -400,7 +400,7 @@ d = {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)} \c
\end{figure}
%-------------------------------------------
\parinterval
按照上述抽取短语的方式可以找到所有可能的双语短语,但是这种不加限制的抽取是非常十分低效的。一是可抽取的短语数量爆炸,二是抽取得到的大部分短语是没有意义的,如上面的例子中抽取到``到
\
?''对应``Have you learn nothing?''这样的短语对在翻译中并没有什么意义。对于这个问题,一种解决方法是基于词对齐进行短语抽取,或者是抽取与词对齐相一致的短语。
\parinterval
按照上述抽取短语的方式可以找到所有可能的双语短语,但是这种不加限制的抽取是非常十分低效的。一是可抽取的短语数量爆炸,二是抽取得到的大部分短语是没有意义的,如上面的例子中抽取到``到
\
?''对应``Have you learn
ed
nothing?''这样的短语对在翻译中并没有什么意义。对于这个问题,一种解决方法是基于词对齐进行短语抽取,或者是抽取与词对齐相一致的短语。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
...
...
@@ -1079,7 +1079,7 @@ d = {r_1} \circ {r_2} \circ {r_3} \circ {r_4}
\textrm
{
S
}
&
\to
&
\langle\ \textrm
{
X
}_
1,
\ \textrm
{
X
}_
1
\ \rangle
\nonumber
\end{eqnarray}
\parinterval
胶水规则引入了一个新的非终结符S,S只能和X进行顺序拼接,或者S由X生成。如果把S看作文法的起始符,使用胶水规则后,相当于把句子划分为若干个部分,每个部分都被归纳为X。之后,顺序地把这些X拼接到一起,得到最终的译文。比如,最极端的情况,整个句子会生成一个X,之后再归纳为S,这时并不需要进行胶水规则的顺序拼接;另一种极端的情况,每个单词都是独立的被翻译,被归纳为X,之后先把最左边的X归纳为S,再依次把剩下的X
顺序
拼到一起。这样的推导形式如下:
\parinterval
胶水规则引入了一个新的非终结符S,S只能和X进行顺序拼接,或者S由X生成。如果把S看作文法的起始符,使用胶水规则后,相当于把句子划分为若干个部分,每个部分都被归纳为X。之后,顺序地把这些X拼接到一起,得到最终的译文。比如,最极端的情况,整个句子会生成一个X,之后再归纳为S,这时并不需要进行胶水规则的顺序拼接;另一种极端的情况,每个单词都是独立的被翻译,被归纳为X,之后先把最左边的X归纳为S,再依次把剩下的X
依次
拼到一起。这样的推导形式如下:
\begin{eqnarray}
\textrm
{
S
}
&
\to
&
\langle\ \textrm
{
S
}_
1
\ \textrm
{
X
}_
2,
\ \textrm
{
S
}_
1
\ \textrm
{
X
}_
2
\ \rangle
\nonumber
\\
&
\to
&
\langle\ \textrm
{
S
}_
3
\ \textrm
{
X
}_
4
\ \textrm
{
X
}_
2,
\ \textrm
{
S
}_
3
\ \textrm
{
X
}_
4
\ \textrm
{
X
}_
2
\ \rangle
\nonumber
\\
...
...
@@ -1087,7 +1087,7 @@ d = {r_1} \circ {r_2} \circ {r_3} \circ {r_4}
&
\to
&
\langle\ \textrm
{
X
}_
n
\
...
\ \textrm
{
X
}_
4
\ \textrm
{
X
}_
2,
\ \textrm
{
X
}_
n
\
...
\ \textrm
{
X
}_
4
\ \textrm
{
X
}_
2
\ \rangle
\nonumber
\end{eqnarray}
\parinterval
实际上,胶水规则在很大程度上模拟了基于短语的系统中对字符串顺序翻译的操作
。
而且在实践中发现,这个步骤是十分必要的。特别是对法-英翻译这样的任务,由于语言的结构基本上是顺序翻译的,因此引入顺序拼接的操作符合翻译的整体规律。同时,这种拼接给翻译增加了灵活性,系统会更加健壮。
\parinterval
实际上,胶水规则在很大程度上模拟了基于短语的系统中对字符串顺序翻译的操作
,
而且在实践中发现,这个步骤是十分必要的。特别是对法-英翻译这样的任务,由于语言的结构基本上是顺序翻译的,因此引入顺序拼接的操作符合翻译的整体规律。同时,这种拼接给翻译增加了灵活性,系统会更加健壮。
\parinterval
需要说明的是,使用同步文法进行翻译时由于单词的顺序是内嵌在翻译规则内的,因此这种模型并不依赖额外的调序模型。一旦文法确定下来,系统就可以进行翻译。
...
...
@@ -2151,7 +2151,7 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\end{figure}
%-------------------------------------------
\parinterval
不难发现,超图提供了一种非常紧凑的数据结构来表示多个推导,因为不同推导之间可以共享节点。如果把图
\ref
{
fig:4-64
}
中的蓝色和红色部分看作是两个推导,那么它们就共享了同一个节点NN[1,2]。能够想象,简单枚举一个句子所有的推导几乎是不可能的,但是用超图的方式却可以很有效
的
对指数级数量的推导进行表示。另一方面,超图上的运算常常被看作是一种基于半环的代数系统,而且人们发现许多句法分析和机器翻译问题本质上都是
{
\small\bfnew
{
半环分析
}}
\index
{
半环分析
}
(Semi-ring Parsing)
\index
{
Semi-ring Parsing
}
。不过,由于篇幅有限,这里不会对半环等结构展开讨论。感兴趣的读者可以查阅相关文献
\cite
{
goodman1999semiring,eisner2002parameter
}
。
\parinterval
不难发现,超图提供了一种非常紧凑的数据结构来表示多个推导,因为不同推导之间可以共享节点。如果把图
\ref
{
fig:4-64
}
中的蓝色和红色部分看作是两个推导,那么它们就共享了同一个节点NN[1,2]。能够想象,简单枚举一个句子所有的推导几乎是不可能的,但是用超图的方式却可以很有效
地
对指数级数量的推导进行表示。另一方面,超图上的运算常常被看作是一种基于半环的代数系统,而且人们发现许多句法分析和机器翻译问题本质上都是
{
\small\bfnew
{
半环分析
}}
\index
{
半环分析
}
(Semi-ring Parsing)
\index
{
Semi-ring Parsing
}
。不过,由于篇幅有限,这里不会对半环等结构展开讨论。感兴趣的读者可以查阅相关文献
\cite
{
goodman1999semiring,eisner2002parameter
}
。
\parinterval
从句法分析的角度看,超图最大程度地复用了局部的分析结果,使得分析可以``结构化''。比如,有两个推导:
\begin{eqnarray}
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论