Commit 8181d07d by 曹润柘

update append

parent ce1e056c
......@@ -8,13 +8,126 @@
%----------------------------------------------------------------------------------------
\renewcommand\figurename{}%将figure改为图
\renewcommand\tablename{}%将figure改为图
\chapterimage{fig-NEU-9.jpg} % Chapter heading image
\chapterimage{fig-NEU-1.jpg} % Chapter heading image
%------------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%第一章附录
\begin{appendices}
\chapter{附录A}
\label{appendix-A}
\parinterval 在构建机器翻译系统的过程中,数据是必不可少的,尤其是现在主流的神经机器翻译系统,系统的性能往往受限于语料库规模和质量。所幸的是,随着语料库语言学的发展,一些主流语种的相关语料资源已经十分丰富。
\parinterval 为了方便读者进行相关研究,我们汇总了几个常用的基准数据集,这些数据集已经在机器翻译领域中被广泛使用,有很多之前的相关工作可以进行复现和对比。同时,我们收集了一下常用的平行语料,方便读者进行一些探索。
%%%%%%%%%%%%%%%%%%%%%
\section{基准数据集}
%----------------------------------------------
% 表1.1-1
\begin{table}[htp]{
\footnotesize
\begin{center}
\caption{基准数据集}
\label{tab:Reference-data-set}
\begin{tabular}{p{1.6cm} | p{1.2cm} p{1.6cm} p{2.6cm} p{3.9cm}}
{任务} & {语种} &{领域} &{描述} &{数据集地址} \\
\hline
\rule{0pt}{15pt}WMT & En Zh& 新闻、医学 & 以英语为核心的多& {http://www.statmt.org/wmt19/} \\
& De Ru等 & 、翻译 & 语种机器翻译数据 & \\
& & & 集,涉及多种任务 & \\
\rule{0pt}{15pt}IWSLT & En De Fr & 口语翻译 & 文本翻译数据集来 & {https://wit3.fbk.eu/} \\
& Cs Zh等 & &自TED演讲,数 & \\
& & & 据规模较小 & \\
\rule{0pt}{15pt}NIST & Zh-En等 & 新闻翻译 & 评测集包括4句参 & {https://www.ldc.upenn.edu/coll} \\
& Cs Zh等 & & 考译文,质量较高 & aborations/evaluations/nist \\
\end{tabular}
\end{center}
}\end{table}
%-------------------------------------------
%----------------------------------------------
% 表1.1-2
\begin{table}[htp]{
\footnotesize
\begin{center}
\begin{tabular}{p{1.6cm} | p{1.2cm} p{1.6cm} p{2.6cm} p{3.9cm}}
\rule{0pt}{15pt}{任务} & {语种} &{领域} &{描述} &{数据集地址} \\
\hline
\rule{0pt}{15pt}TVsub & Zh-En & 字幕翻译 & 数据抽取自电视剧 & {https://github.com/longyuewan} \\
& & & 字幕,用于对话中 & gdcu/tvsub \\
& & & 长距离上下文研究 & \\
\rule{0pt}{15pt}Flickr30K & En-De & 多模态翻译 & 31783张图片,每 & {http://shannon.cs.illinois.edu/D} \\
& & & 张图片5个语句标 & enotationGraph/ \\
& & && \\
\rule{0pt}{15pt}Multi30K & En-De & 多模态翻译 & 31014张图片,每 & {http://www.statmt.org/wmt16/} \\
& En-Fr & & 张图片5个语句标 & multimodal-task.html \\
& & && \\
\rule{0pt}{15pt}IAPRTC-12 & En-De & 多模态翻译 & 20000张图片及对 & {https://www.imageclef.org} \\
& & & 应标注 & /photodata \\
\rule{0pt}{15pt}IKEA & En-De & 多模态翻译 & 3600张图片及对应 & {https://github.com/sampalomad} \\
& En-Fr & & 标注 & /IKEA-Dataset.git \\
\end{tabular}
\end{center}
}\end{table}
%-------------------------------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{平行语料}
\parinterval 神经机器翻译系统的训练需要大量的双语数据,这里我们汇总了一些公开的平行语料,方便读者获取。
\vspace{0.5em}
\begin{itemize}
\item News Commentary Corpus:包括汉语、英语等12个语种,64个语言对的双语数据,爬取自Project Syndicate网站的政治、经济评论。URL:\url{http://www.casmacat.eu/corpus/news-commentary.html}
\vspace{0.5em}
\item CWMT Corpus:中国计算机翻译研讨会社区收集和共享的中英平行语料,涵盖多种领域,例如新闻、电影字幕、小说和政府文档等。URL:\url{http://nlp.nju.edu.cn/cwmt-wmt/}
\vspace{0.5em}
\item Common Crawl corpus:包括捷克语、德语、俄语、法语4种语言到英语的双语数据,爬取自互联网网页。URL:\url{http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz}
\vspace{0.5em}
\item Europarl Corpus:包括保加利亚语、捷克语等20种欧洲语言到英语的双语数据,来源于欧洲议会记录。URL:\url{http://www.statmt.org/europarl/}
\vspace{0.5em}
\item ParaCrawl Corpus:包括23种欧洲语言到英语的双语语料,数据来源于网络爬取。URL:\url{https://www.paracrawl.eu/index.php}
\vspace{0.5em}
\item United Nations Parallel Corpus:包括阿拉伯语、英语、西班牙语、法语、俄语、汉语6种联合国正式语言,30种语言对的双语数据,来源自联合国公共领域的官方记录和其他会议文件。URL:\url{https://conferences.unite.un.org/UNCorpus/}
\vspace{0.5em}
\item TED Corpus:TED大会演讲在其网站公布了自2007年以来的演讲字幕,以及超过100种语言的翻译版本。WIT收集整理了这些数据,以方便科研工作者使用,同时,会为每年的IWSLT评测比赛提供评测数据集。URL:\url{https://wit3.fbk.eu/}
\vspace{0.5em}
\item OpenSubtile:由P. Lison和J. Tiedemann收集自opensubtiles电影字幕网站,包含62种语言、1782个语种对的平行语料,资源相对比较丰富。URL:\url{http://opus.nlpl.eu/OpenSubtitles2018.php}
\vspace{0.5em}
\item Wikititles Corpus:包括古吉拉特语等14个语种,11个语言对的双语数据,数据来源自维基百科的标题。URL:\url{http://data.statmt.org/wikititles/v1/}
\vspace{0.5em}
\item CzEng:捷克语和英语的平行语料,数据来源于欧洲法律、信息技术和小说领域。URL:\url{ http://ufal.mff.cuni.cz/czeng/czeng17}
\vspace{0.5em}
\item Yandex Corpus:俄语和英语的平行语料,爬取自互联网网页。URL:\url{https://translate.yandex.ru/corpus}
\vspace{0.5em}
\item Tilde MODEL Corpus:欧洲语言的多语言开放数据,包含多个数据集,数据来自于经济、新闻、政府、旅游等门户网站。URL:\url{https://tilde-model.s3-eu-west-1.amazonaws.com/Tilde_MODEL_Corpus.html}
\vspace{0.5em}
\item Setimes Corpus:包括克罗地亚语、阿尔巴尼亚等9种巴尔干语言,72种个语言对的双语数据,来源于东南欧时报的新闻报道。URL:\url{http://www.statmt.org/setimes/}
\vspace{0.5em}
\item TVsub:收集自电视剧集字幕的中英文对话语料库,包含超过200万的句对,可用于对话领域和长距离上下文信息的研究。URL:\url{https://github.com/longyuewangdcu/tvsub}
\vspace{0.5em}
\item Recipe Corpus:由Cookpad公司创建的日英食谱语料库,包含10万多的句对。URL:\url{http://lotus.kuee.kyoto-u.ac.jp/WAT/recipe-corpus/}
\end{itemize}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{相关工具}
\subsection{数据预处理工具}
\parinterval 数据处理是搭建神经机器翻译系统的重要步骤,这里我们提供了一些开源工具供读者进行使用。
\vspace{0.5em}
\begin{itemize}
\item Moses:Moses 提供了很多数据预处理的脚本和工具,被机器翻译研究者广泛使用。其中包括符号标准化、分词、大小写转换和长度过滤等。URL:\url{https://github.com/moses-smt/mosesdecoder/tree/master/scripts}
\vspace{0.5em}
\item Jieba:常用的中文分词工具。URL:\url{https://github.com/fxsjy/jieba}
\vspace{0.5em}
\item Subword-nmt:基于BPE算法的子词切分工具。URL:\url{https://github.com/rsennrich/subword-nmt}
\end{itemize}
\subsection{评价工具}
\parinterval 机器翻译领域已经有多种自动评价指标,包括BLEU、TER和METEOR等,这里我们提供了一些自动评价指标的工具,方便读者使用。
\vspace{0.5em}
\begin{itemize}
\item Moses:其中包括了通用的BLEU评测脚本。URL:\url{https://github.com/moses-smt/mosesdecoder/tree/master/scripts/generic}
\vspace{0.5em}
\item Tercom:自动评价指标TER的计算工具,只有java版本。URL:\url{http://www.cs.umd.edu/~snover/tercom/}
\vspace{0.5em}
\item Meteor:自动评价指标METEOR的实现。URL:\url{https://www.cs.cmu.edu/~alavie/METEOR/}
\end{itemize}
\end{appendices}
......
......@@ -8,15 +8,15 @@
\indexentry{Chapter4.2.2.2|hyperpage}{16}
\indexentry{Chapter4.2.2.3|hyperpage}{17}
\indexentry{Chapter4.2.3|hyperpage}{18}
\indexentry{Chapter4.2.3.1|hyperpage}{18}
\indexentry{Chapter4.2.3.2|hyperpage}{19}
\indexentry{Chapter4.2.3.3|hyperpage}{20}
\indexentry{Chapter4.2.3.1|hyperpage}{19}
\indexentry{Chapter4.2.3.2|hyperpage}{20}
\indexentry{Chapter4.2.3.3|hyperpage}{21}
\indexentry{Chapter4.2.4|hyperpage}{22}
\indexentry{Chapter4.2.4.1|hyperpage}{22}
\indexentry{Chapter4.2.4.2|hyperpage}{23}
\indexentry{Chapter4.2.4.3|hyperpage}{24}
\indexentry{Chapter4.2.4.3|hyperpage}{25}
\indexentry{Chapter4.2.5|hyperpage}{25}
\indexentry{Chapter4.2.6|hyperpage}{25}
\indexentry{Chapter4.2.6|hyperpage}{26}
\indexentry{Chapter4.2.7|hyperpage}{29}
\indexentry{Chapter4.2.7.1|hyperpage}{30}
\indexentry{Chapter4.2.7.2|hyperpage}{30}
......@@ -24,32 +24,32 @@
\indexentry{Chapter4.2.7.4|hyperpage}{32}
\indexentry{Chapter4.3|hyperpage}{33}
\indexentry{Chapter4.3.1|hyperpage}{36}
\indexentry{Chapter4.3.1.1|hyperpage}{36}
\indexentry{Chapter4.3.1.2|hyperpage}{37}
\indexentry{Chapter4.3.1.3|hyperpage}{38}
\indexentry{Chapter4.3.1.4|hyperpage}{39}
\indexentry{Chapter4.3.2|hyperpage}{39}
\indexentry{Chapter4.3.1.1|hyperpage}{37}
\indexentry{Chapter4.3.1.2|hyperpage}{38}
\indexentry{Chapter4.3.1.3|hyperpage}{39}
\indexentry{Chapter4.3.1.4|hyperpage}{40}
\indexentry{Chapter4.3.2|hyperpage}{40}
\indexentry{Chapter4.3.3|hyperpage}{41}
\indexentry{Chapter4.3.4|hyperpage}{42}
\indexentry{Chapter4.3.5|hyperpage}{45}
\indexentry{Chapter4.4|hyperpage}{48}
\indexentry{Chapter4.4.1|hyperpage}{49}
\indexentry{Chapter4.4.2|hyperpage}{52}
\indexentry{Chapter4.3.5|hyperpage}{46}
\indexentry{Chapter4.4|hyperpage}{49}
\indexentry{Chapter4.4.1|hyperpage}{51}
\indexentry{Chapter4.4.2|hyperpage}{51}
\indexentry{Chapter4.4.2.1|hyperpage}{53}
\indexentry{Chapter4.4.2.2|hyperpage}{54}
\indexentry{Chapter4.4.2.3|hyperpage}{56}
\indexentry{Chapter4.4.3|hyperpage}{57}
\indexentry{Chapter4.4.3.1|hyperpage}{58}
\indexentry{Chapter4.4.2.2|hyperpage}{55}
\indexentry{Chapter4.4.2.3|hyperpage}{57}
\indexentry{Chapter4.4.3|hyperpage}{58}
\indexentry{Chapter4.4.3.1|hyperpage}{59}
\indexentry{Chapter4.4.3.2|hyperpage}{62}
\indexentry{Chapter4.4.3.3|hyperpage}{62}
\indexentry{Chapter4.4.3.4|hyperpage}{63}
\indexentry{Chapter4.4.3.5|hyperpage}{64}
\indexentry{Chapter4.4.4|hyperpage}{65}
\indexentry{Chapter4.4.4.1|hyperpage}{66}
\indexentry{Chapter4.4.3.3|hyperpage}{63}
\indexentry{Chapter4.4.3.4|hyperpage}{64}
\indexentry{Chapter4.4.3.5|hyperpage}{65}
\indexentry{Chapter4.4.4|hyperpage}{66}
\indexentry{Chapter4.4.4.1|hyperpage}{67}
\indexentry{Chapter4.4.4.2|hyperpage}{67}
\indexentry{Chapter4.4.5|hyperpage}{69}
\indexentry{Chapter4.4.5|hyperpage}{70}
\indexentry{Chapter4.4.7|hyperpage}{72}
\indexentry{Chapter4.4.7.1|hyperpage}{73}
\indexentry{Chapter4.4.7.2|hyperpage}{74}
\indexentry{Chapter4.5|hyperpage}{76}
\indexentry{Chapter4.4.5|hyperpage}{68}
\indexentry{Chapter4.4.5|hyperpage}{71}
\indexentry{Chapter4.4.7|hyperpage}{73}
\indexentry{Chapter4.4.7.1|hyperpage}{74}
\indexentry{Chapter4.4.7.2|hyperpage}{76}
\indexentry{Chapter4.5|hyperpage}{77}
\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax
\defcounter {refsection}{0}\relax
\select@language {english}
\defcounter {refsection}{0}\relax
\contentsline {part}{\@mypartnumtocformat {I}{机器翻译基础}}{11}{part.1}
\ttl@starttoc {default@1}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {1}机器翻译简介}{13}{chapter.1}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.1}机器翻译的概念}{13}{section.1.1}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.2}机器翻译简史}{16}{section.1.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.2.1}人工翻译}{16}{subsection.1.2.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.2.2}机器翻译的萌芽}{17}{subsection.1.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.2.3}机器翻译的受挫}{18}{subsection.1.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.2.4}机器翻译的快速成长}{19}{subsection.1.2.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.2.5}机器翻译的爆发}{20}{subsection.1.2.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.3}机器翻译现状}{21}{section.1.3}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.4}机器翻译方法}{22}{section.1.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.4.1}基于规则的机器翻译}{22}{subsection.1.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.4.2}基于实例的机器翻译}{24}{subsection.1.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.4.3}统计机器翻译}{25}{subsection.1.4.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.4.4}神经机器翻译}{26}{subsection.1.4.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.4.5}对比分析}{27}{subsection.1.4.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.5}翻译质量评价}{28}{section.1.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.5.1}人工评价}{28}{subsection.1.5.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.5.2}自动评价}{29}{subsection.1.5.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{BLEU}{29}{section*.15}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{TER}{31}{section*.16}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于检测点的评价}{31}{section*.17}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.6}机器翻译应用}{32}{section.1.6}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.7}开源项目与评测}{34}{section.1.7}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.7.1}开源机器翻译系统}{34}{subsection.1.7.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{统计机器翻译开源系统}{34}{section*.19}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{神经机器翻译开源系统}{36}{section*.20}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.7.2}常用数据集及公开评测任务}{38}{subsection.1.7.2}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.8}推荐学习资源}{40}{section.1.8}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {2}词法、语法及统计建模基础}{45}{chapter.2}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2.1}问题概述 }{46}{section.2.1}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2.2}概率论基础}{47}{section.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.2.1}随机变量和概率}{47}{subsection.2.2.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.2.2}联合概率、条件概率和边缘概率}{49}{subsection.2.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.2.3}链式法则}{50}{subsection.2.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.2.4}贝叶斯法则}{51}{subsection.2.2.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.2.5}KL距离和熵}{53}{subsection.2.2.5}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{信息熵}{53}{section*.27}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{KL距离}{54}{section*.29}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{交叉熵}{54}{section*.30}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2.3}中文分词}{55}{section.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.3.1}基于词典的分词方法}{56}{subsection.2.3.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.3.2}基于统计的分词方法}{57}{subsection.2.3.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{统计模型的学习与推断}{57}{section*.34}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{掷骰子游戏}{58}{section*.36}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{全概率分词方法}{60}{section*.40}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2.4}$n$-gram语言模型 }{62}{section.2.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.4.1}建模}{63}{subsection.2.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.4.2}未登录词和平滑算法}{65}{subsection.2.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{加法平滑方法}{66}{section*.46}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{古德-图灵估计法}{67}{section*.48}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{Kneser-Ney平滑方法}{68}{section*.50}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2.5}句法分析(短语结构分析)}{70}{section.2.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.5.1}句子的句法树表示}{70}{subsection.2.5.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.5.2}上下文无关文法}{72}{subsection.2.5.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.5.3}规则和推导的概率}{76}{subsection.2.5.3}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2.6}小结及深入阅读}{78}{section.2.6}
\defcounter {refsection}{0}\relax
\contentsline {part}{\@mypartnumtocformat {II}{统计机器翻译}}{81}{part.2}
\ttl@stoptoc {default@1}
\ttl@starttoc {default@2}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {3}基于词的机器翻译模型}{83}{chapter.3}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.1}什么是基于词的翻译模型}{83}{section.3.1}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.2}构建一个简单的机器翻译系统}{85}{section.3.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2.1}如何进行翻译?}{85}{subsection.3.2.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{机器翻译流程}{86}{section*.63}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{人工翻译 vs. 机器翻译}{87}{section*.65}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2.2}基本框架}{87}{subsection.3.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2.3}单词翻译概率}{88}{subsection.3.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{什么是单词翻译概率?}{88}{section*.67}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{如何从一个双语平行数据中学习?}{88}{section*.69}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{如何从大量的双语平行数据中学习?}{90}{section*.70}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2.4}句子级翻译模型}{91}{subsection.3.2.4}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基础模型}{91}{section*.72}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{生成流畅的译文}{93}{section*.74}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2.5}解码}{95}{subsection.3.2.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.3}基于词的翻译建模}{98}{section.3.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.3.1}噪声信道模型}{98}{subsection.3.3.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.3.2}统计机器翻译的三个基本问题}{100}{subsection.3.3.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{词对齐}{101}{section*.83}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于词对齐的翻译模型}{101}{section*.86}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于词对齐的翻译实例}{103}{section*.88}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.4}IBM模型1-2}{104}{section.3.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.4.1}IBM模型1}{104}{subsection.3.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.4.2}IBM模型2}{106}{subsection.3.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.4.3}解码及计算优化}{107}{subsection.3.4.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.4.4}训练}{108}{subsection.3.4.4}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{目标函数}{108}{section*.93}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{优化}{109}{section*.95}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.5}IBM模型3-5及隐马尔可夫模型}{115}{section.3.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5.1}基于产出率的翻译模型}{115}{subsection.3.5.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5.2}IBM 模型3}{118}{subsection.3.5.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5.3}IBM 模型4}{119}{subsection.3.5.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5.4} IBM 模型5}{121}{subsection.3.5.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5.5}隐马尔可夫模型}{122}{subsection.3.5.5}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{隐马尔可夫模型}{123}{section*.107}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{词对齐模型}{124}{section*.109}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5.6}解码和训练}{125}{subsection.3.5.6}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.6}问题分析}{125}{section.3.6}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.6.1}词对齐及对称化}{125}{subsection.3.6.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.6.2}Deficiency}{126}{subsection.3.6.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.6.3}句子长度}{127}{subsection.3.6.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.6.4}其他问题}{128}{subsection.3.6.4}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.7}小结及深入阅读}{128}{section.3.7}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {4}基于短语和句法的机器翻译模型}{131}{chapter.4}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4.1}翻译中的结构信息}{131}{section.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.1.1}更大粒度的翻译单元}{132}{subsection.4.1.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.1.2}句子的结构信息}{134}{subsection.4.1.2}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4.2}基于短语的翻译模型}{136}{section.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.1}机器翻译中的短语}{136}{subsection.4.2.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.2}数学建模及判别式模型}{139}{subsection.4.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于翻译推导的建模}{139}{section*.121}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{对数线性模型}{140}{section*.122}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{搭建模型的基本流程}{141}{section*.123}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.3}短语抽取}{142}{subsection.4.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{与词对齐一致的短语}{143}{section*.126}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{获取词对齐}{144}{section*.130}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{度量双语短语质量}{145}{section*.132}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.4}调序}{146}{subsection.4.2.4}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于距离的调序}{146}{section*.136}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于方向的调序}{147}{section*.138}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于分类的调序}{149}{section*.141}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.5}特征}{149}{subsection.4.2.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.6}最小错误率训练}{150}{subsection.4.2.6}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.7}栈解码}{153}{subsection.4.2.7}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{翻译候选匹配}{154}{section*.146}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{翻译假设扩展}{154}{section*.148}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{剪枝}{155}{section*.150}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{解码中的栈结构}{156}{section*.152}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4.3}基于层次短语的模型}{157}{section.4.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3.1}同步上下文无关文法}{160}{subsection.4.3.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{文法定义}{161}{section*.157}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{推导}{162}{section*.158}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{胶水规则}{163}{section*.159}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{处理流程}{164}{section*.160}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3.2}层次短语规则抽取}{164}{subsection.4.3.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3.3}翻译模型及特征}{165}{subsection.4.3.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3.4}CYK解码}{166}{subsection.4.3.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3.5}立方剪枝}{170}{subsection.4.3.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4.4}基于语言学句法的模型}{173}{section.4.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.1}基于句法的翻译模型分类}{175}{subsection.4.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.2}基于树结构的文法}{175}{subsection.4.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{树到树翻译规则}{177}{section*.176}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于树结构的翻译推导}{179}{section*.178}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{树到串翻译规则}{181}{section*.181}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.3}树到串翻译规则抽取}{182}{subsection.4.4.3}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{树的切割与最小规则}{183}{section*.183}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{空对齐处理}{186}{section*.189}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{组合规则}{187}{section*.191}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{SPMT规则}{188}{section*.193}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{句法树二叉化}{189}{section*.195}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.4}树到树翻译规则抽取}{190}{subsection.4.4.4}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于节点对齐的规则抽取}{191}{section*.199}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于对齐矩阵的规则抽取}{191}{section*.202}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.5}句法翻译模型的特征}{192}{subsection.4.4.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.6}基于超图的推导空间表示}{195}{subsection.4.4.6}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.7}基于树的解码 vs 基于串的解码}{197}{subsection.4.4.7}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于树的解码}{198}{section*.209}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于串的解码}{200}{section*.212}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4.5}小结及深入阅读}{201}{section.4.5}
\defcounter {refsection}{0}\relax
\contentsline {part}{\@mypartnumtocformat {III}{神经机器翻译}}{205}{part.3}
\ttl@stoptoc {default@2}
\ttl@starttoc {default@3}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {5}人工神经网络和神经语言建模}{207}{chapter.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5.1}深度学习与人工神经网络}{208}{section.5.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.1.1}发展简史}{208}{subsection.5.1.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{早期的人工神经网络和第一次寒冬}{208}{section*.214}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{神经网络的第二次高潮和第二次寒冬}{209}{section*.215}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{深度学习和神经网络方法的崛起}{210}{section*.216}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.1.2}为什么需要深度学习}{211}{subsection.5.1.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{端到端学习和表示学习}{211}{section*.218}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{深度学习的效果}{212}{section*.220}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5.2}神经网络基础}{212}{section.5.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.2.1}线性代数基础}{212}{subsection.5.2.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{标量、向量和矩阵}{213}{section*.222}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{矩阵的转置}{214}{section*.223}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{矩阵加法和数乘}{214}{section*.224}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{矩阵乘法和矩阵点乘}{215}{section*.225}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{线性映射}{216}{section*.226}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{范数}{217}{section*.227}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.2.2}人工神经元和感知机}{218}{subsection.5.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{感知机\ \raisebox {0.5mm}{------}\ 最简单的人工神经元模型}{219}{section*.230}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{神经元内部权重}{220}{section*.233}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{神经元的输入\ \raisebox {0.5mm}{------}\ 离散 vs 连续}{221}{section*.235}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{神经元内部的参数学习}{221}{section*.237}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.2.3}多层神经网络}{222}{subsection.5.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{线性变换和激活函数}{222}{section*.239}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{单层神经网络$\rightarrow $多层神经网络}{224}{section*.246}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.2.4}函数拟合能力}{225}{subsection.5.2.4}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5.3}神经网络的张量实现}{229}{section.5.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3.1} 张量及其计算}{230}{subsection.5.3.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{张量}{230}{section*.256}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{张量的矩阵乘法}{232}{section*.259}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{张量的单元操作}{233}{section*.261}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3.2}张量的物理存储形式}{234}{subsection.5.3.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3.3}使用开源框架实现张量计算}{234}{subsection.5.3.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3.4}前向传播与计算图}{236}{subsection.5.3.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3.5}神经网络实例}{239}{subsection.5.3.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5.4}神经网络的参数训练}{240}{section.5.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4.1}损失函数}{241}{subsection.5.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4.2}基于梯度的参数优化}{241}{subsection.5.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{梯度下降}{242}{section*.279}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{梯度获取}{244}{section*.281}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于梯度的方法的变种和改进}{247}{section*.285}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4.3}参数更新的并行化策略}{250}{subsection.5.4.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4.4}梯度消失、梯度爆炸和稳定性训练}{252}{subsection.5.4.4}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{易于优化的激活函数}{252}{section*.288}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{梯度裁剪}{253}{section*.292}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{稳定性训练}{254}{section*.293}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4.5}过拟合}{255}{subsection.5.4.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4.6}反向传播}{256}{subsection.5.4.6}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{输出层的反向传播}{257}{section*.296}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{隐藏层的反向传播}{259}{section*.300}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{程序实现}{260}{section*.303}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5.5}神经语言模型}{261}{section.5.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.5.1}基于神经网络的语言建模}{262}{subsection.5.5.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于前馈神经网络的语言模型}{263}{section*.306}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于循环神经网络的语言模型}{265}{section*.309}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于自注意力机制的语言模型}{266}{section*.311}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{语言模型的评价}{267}{section*.313}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.5.2}单词表示模型}{268}{subsection.5.5.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{One-hot编码}{268}{section*.314}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{分布式表示}{268}{section*.316}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.5.3}句子表示模型及预训练}{270}{subsection.5.5.3}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{简单的上下文表示模型}{270}{section*.320}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{ELMO模型}{272}{section*.323}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{GPT模型}{272}{section*.325}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{BERT模型}{273}{section*.327}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{为什么要预训练?}{274}{section*.329}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5.6}小结及深入阅读}{275}{section.5.6}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {6}神经机器翻译模型}{277}{chapter.6}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6.1}神经机器翻译的发展简史}{277}{section.6.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.1.1}神经机器翻译的起源}{279}{subsection.6.1.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.1.2}神经机器翻译的品质 }{281}{subsection.6.1.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.1.3}神经机器翻译的优势 }{284}{subsection.6.1.3}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6.2}编码器-解码器框架}{286}{section.6.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.2.1}框架结构}{286}{subsection.6.2.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.2.2}表示学习}{287}{subsection.6.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.2.3}简单的运行实例}{288}{subsection.6.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.2.4}机器翻译范式的对比}{289}{subsection.6.2.4}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6.3}基于循环神经网络的翻译模型及注意力机制}{290}{section.6.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.1}建模}{291}{subsection.6.3.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.2}输入(词嵌入)及输出(Softmax)}{294}{subsection.6.3.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.3}循环神经网络结构}{297}{subsection.6.3.3}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{循环神经单元(RNN)}{297}{section*.351}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{长短时记忆网络(LSTM)}{298}{section*.352}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{门控循环单元(GRU)}{299}{section*.355}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{双向模型}{301}{section*.357}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{多层循环神经网络}{302}{section*.359}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.4}注意力机制}{302}{subsection.6.3.4}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{翻译中的注意力机制}{304}{section*.362}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{上下文向量的计算}{305}{section*.365}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{注意力机制的解读}{308}{section*.370}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.5}训练}{310}{subsection.6.3.5}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{损失函数}{310}{section*.373}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{长参数初始化}{311}{section*.374}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{优化策略}{311}{section*.375}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{梯度裁剪}{312}{section*.377}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{学习率策略}{312}{section*.378}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{并行训练}{313}{section*.381}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.6}推断}{315}{subsection.6.3.6}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{贪婪搜索}{317}{section*.385}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{束搜索}{318}{section*.388}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{长度惩罚}{318}{section*.390}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.7}实例-GNMT}{320}{subsection.6.3.7}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6.4}Transformer}{320}{section.6.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4.1}自注意力模型}{322}{subsection.6.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4.2}Transformer架构}{324}{subsection.6.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4.3}位置编码}{326}{subsection.6.4.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4.4}基于点乘的注意力机制}{328}{subsection.6.4.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4.5}掩码操作}{330}{subsection.6.4.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4.6}多头注意力}{331}{subsection.6.4.6}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4.7}残差网络和层正则化}{332}{subsection.6.4.7}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4.8}前馈全连接网络子层}{333}{subsection.6.4.8}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4.9}训练}{334}{subsection.6.4.9}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.4.10}推断}{337}{subsection.6.4.10}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6.5}序列到序列问题及应用}{337}{section.6.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.5.1}自动问答}{338}{subsection.6.5.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.5.2}自动文摘}{338}{subsection.6.5.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.5.3}文言文翻译}{339}{subsection.6.5.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.5.4}对联生成}{339}{subsection.6.5.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.5.5}古诗生成}{340}{subsection.6.5.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6.6}小结及深入阅读}{341}{section.6.6}
\defcounter {refsection}{0}\relax
\contentsline {part}{\@mypartnumtocformat {IV}{附录}}{343}{part.4}
\ttl@stoptoc {default@3}
\ttl@starttoc {default@4}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {A}附录A}{345}{Appendix.1.A}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {B}附录B}{347}{Appendix.2.B}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {B.1}IBM模型3训练方法}{347}{section.2.B.1}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {B.2}IBM模型4训练方法}{349}{section.2.B.2}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {B.3}IBM模型5训练方法}{351}{section.2.B.3}
\contentsfinish
......@@ -110,14 +110,14 @@
% CHAPTERS
%----------------------------------------------------------------------------------------
\include{Chapter1/chapter1}
\include{Chapter2/chapter2}
\include{Chapter3/chapter3}
%\include{Chapter1/chapter1}
%\include{Chapter2/chapter2}
%\include{Chapter3/chapter3}
\include{Chapter4/chapter4}
\include{Chapter5/chapter5}
\include{Chapter6/chapter6}
%\include{Chapter5/chapter5}
%\include{Chapter6/chapter6}
%\include{Chapter7/chapter7}
\include{ChapterAppend/chapterappend}
%\include{ChapterAppend/chapterappend}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论