Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
T
Toy-MT-Introduction
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
Toy-MT-Introduction
Commits
a744eab3
Commit
a744eab3
authored
Apr 12, 2020
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
minor updates of sections 2-3
parent
d8921642
隐藏空白字符变更
内嵌
并排
正在显示
6 个修改的文件
包含
826 行增加
和
73 行删除
+826
-73
Book/Chapter2/Figures/figure-probability-values-corresponding-to-different-derivations.tex
+1
-1
Book/Chapter2/chapter2.tex
+8
-8
Book/Chapter3/Figures/figure-processes-SMT.tex
+1
-1
Book/mt-book-xelatex.idx
+263
-27
Book/mt-book-xelatex.ptc
+547
-30
Book/mt-book-xelatex.tex
+6
-6
没有找到文件。
Book/Chapter2/Figures/figure-probability-values-corresponding-to-different-derivations.tex
查看文件 @
a744eab3
...
@@ -66,7 +66,7 @@
...
@@ -66,7 +66,7 @@
\end{scope}
\end{scope}
\draw
[->,thick,ublue] ([xshift=-2em]sent.south) ..controls + (south:2em) and +(north:2em).. ([xshift=-8em,yshift=-2em]sent.south);
\draw
[->,thick,ublue] ([xshift=-2em]sent.south) ..controls + (south:2em) and +(north:2em).. ([xshift=-8em,yshift=-2em]sent.south);
\draw
[->,thick,ublue] ([xshift=-1em]sent.south) ..controls + (south:2em) and +(north:2em).. ([xshift=-2em,yshift=-
3
em]sent.south);
\draw
[->,thick,ublue] ([xshift=-1em]sent.south) ..controls + (south:2em) and +(north:2em).. ([xshift=-2em,yshift=-
2
em]sent.south);
\draw
[->,thick,ublue] ([xshift=0em]sent.south) ..controls + (south:2em) and +(north:2em).. ([xshift=6.5em,yshift=-2em]sent.south);
\draw
[->,thick,ublue] ([xshift=0em]sent.south) ..controls + (south:2em) and +(north:2em).. ([xshift=6.5em,yshift=-2em]sent.south);
\draw
[->,thick,ublue,dotted] ([xshift=1em]sent.south) ..controls + (south:1.5em) and +(north:2.5em).. ([xshift=12.5em,yshift=-2em]sent.south);
\draw
[->,thick,ublue,dotted] ([xshift=1em]sent.south) ..controls + (south:1.5em) and +(north:2.5em).. ([xshift=12.5em,yshift=-2em]sent.south);
...
...
Book/Chapter2/chapter2.tex
查看文件 @
a744eab3
...
@@ -227,9 +227,9 @@ F(X)=\int_{-\infty}^x f(x)dx
...
@@ -227,9 +227,9 @@ F(X)=\int_{-\infty}^x f(x)dx
\parinterval
举个例子,小张从家到公司有三条路分别为
$
a
$
,
$
b
$
,
$
c
$
,选择每条路的概率分别为0.5,0.3,0.2。令:
\parinterval
举个例子,小张从家到公司有三条路分别为
$
a
$
,
$
b
$
,
$
c
$
,选择每条路的概率分别为0.5,0.3,0.2。令:
\begin{itemize}
\begin{itemize}
\item
$
S
_
a
$
:小张选择
a
路去上班
\item
$
S
_
a
$
:小张选择
$
a
$
路去上班
\item
$
S
_
b
$
:小张选择
b
路去上班
\item
$
S
_
b
$
:小张选择
$
b
$
路去上班
\item
$
S
_
c
$
:小张选择
c
路去上班
\item
$
S
_
c
$
:小张选择
$
c
$
路去上班
\item
$
S
$
:小张去上班
\item
$
S
$
:小张去上班
\end{itemize}
\end{itemize}
...
@@ -308,7 +308,7 @@ F(X)=\int_{-\infty}^x f(x)dx
...
@@ -308,7 +308,7 @@ F(X)=\int_{-\infty}^x f(x)dx
\subsubsection
{
KL距离
}
\index
{
Chapter2.2.5.2
}
\subsubsection
{
KL距离
}
\index
{
Chapter2.2.5.2
}
\parinterval
如果同一个随机变量
$
X
$
上有两个独立的概率分布P
$
(
x
)
$
和Q
$
(
x
)
$
,那么可以使用KL距离(
"Kullback-Leibler"
散度)来衡量这两个分布的不同,这种度量就是
{
\small\bfnew
{
相对熵
}}
(Relative Entropy)。其公式如下:
\parinterval
如果同一个随机变量
$
X
$
上有两个独立的概率分布P
$
(
x
)
$
和Q
$
(
x
)
$
,那么可以使用KL距离(
``Kullback-Leibler''
散度)来衡量这两个分布的不同,这种度量就是
{
\small\bfnew
{
相对熵
}}
(Relative Entropy)。其公式如下:
\begin{eqnarray}
\begin{eqnarray}
\textrm
{
D
}_{
\textrm
{
KL
}}
(
\textrm
{
P
}
\parallel
\textrm
{
Q
}
)
&
=
&
\sum
_{
x
\in
\textrm
{
X
}}
[
\textrm
{
P
}
(x)
\log
\frac
{
\textrm
{
P
}
(x)
}{
\textrm
{
Q
}
(x)
}
]
\nonumber
\\
\textrm
{
D
}_{
\textrm
{
KL
}}
(
\textrm
{
P
}
\parallel
\textrm
{
Q
}
)
&
=
&
\sum
_{
x
\in
\textrm
{
X
}}
[
\textrm
{
P
}
(x)
\log
\frac
{
\textrm
{
P
}
(x)
}{
\textrm
{
Q
}
(x)
}
]
\nonumber
\\
&
=
&
\sum
_{
x
\in
\textrm
{
X
}
}
[
\textrm
{
P
}
(x)(
\log\textrm
{
P
}
(x)-
\log
\textrm
{
Q
}
(x))]
&
=
&
\sum
_{
x
\in
\textrm
{
X
}
}
[
\textrm
{
P
}
(x)(
\log\textrm
{
P
}
(x)-
\log
\textrm
{
Q
}
(x))]
...
@@ -773,7 +773,7 @@ r^* = (r + 1)\frac{n_{r + 1}}{n_r}
...
@@ -773,7 +773,7 @@ r^* = (r + 1)\frac{n_{r + 1}}{n_r}
\parinterval
基于这个公式,就可以估计所有0次
$
n
$
-gram的频次
$
n
_
0
r
^
*=(
r
+
1
)
n
_
1
=
n
_
1
$
。要把这个重新估计的统计数转化为概率,需要进行归一化处理:对于每个统计数为
$
r
$
的事件,其概率为
\parinterval
基于这个公式,就可以估计所有0次
$
n
$
-gram的频次
$
n
_
0
r
^
*=(
r
+
1
)
n
_
1
=
n
_
1
$
。要把这个重新估计的统计数转化为概率,需要进行归一化处理:对于每个统计数为
$
r
$
的事件,其概率为
\begin{eqnarray}
\begin{eqnarray}
\textrm
{
P
}_
r=
r
^
*/N
\textrm
{
P
}_
r=
\frac
{
r
^
*
}{
N
}
\end{eqnarray}
\end{eqnarray}
其中
其中
...
@@ -784,7 +784,7 @@ N & = & \sum_{r=0}^{\infty}{r^{*}n_r} \nonumber \\
...
@@ -784,7 +784,7 @@ N & = & \sum_{r=0}^{\infty}{r^{*}n_r} \nonumber \\
\label
{
eq:2.4-10
}
\label
{
eq:2.4-10
}
\end{eqnarray}
\end{eqnarray}
也就是说,
$
N
$
仍然为这个整个样本分布最初的计数。
这样
样本中所有事件的概率之和为:
也就是说,
$
N
$
仍然为这个整个样本分布最初的计数。样本中所有事件的概率之和为:
\begin{eqnarray}
\begin{eqnarray}
\textrm
{
P
}
(r>0)
&
=
&
\sum
_{
r>0
}{
\textrm
{
P
}_
r
}
\nonumber
\\
\textrm
{
P
}
(r>0)
&
=
&
\sum
_{
r>0
}{
\textrm
{
P
}_
r
}
\nonumber
\\
...
@@ -1152,7 +1152,7 @@ r_6: & & \textrm{VP} \to \textrm{VV}\ \textrm{NN} \nonumber
...
@@ -1152,7 +1152,7 @@ r_6: & & \textrm{VP} \to \textrm{VV}\ \textrm{NN} \nonumber
\end{figure}
\end{figure}
%-------------------------------------------
%-------------------------------------------
\parinterval
图
\ref
{
fig:2.5-9
}
展示了基于统计的句法分析的流程。首先,通过树库上的统计,获得各个规则的概率,这样就得到了一个上下文无关句法分析模型
$
\textrm
{
P
}
(
\cdot
)
$
。对于任意句法分析结果
$
d
=
r
_
1
\c
dot
r
_
2
\cdot
...
\cdot
r
_
n
$
,都能通过如下公式计算其概率值:
\parinterval
图
\ref
{
fig:2.5-9
}
展示了基于统计的句法分析的流程。首先,通过树库上的统计,获得各个规则的概率,这样就得到了一个上下文无关句法分析模型
$
\textrm
{
P
}
(
\cdot
)
$
。对于任意句法分析结果
$
d
=
r
_
1
\c
irc
r
_
2
\circ
...
\circ
r
_
n
$
,都能通过如下公式计算其概率值:
\begin{equation}
\begin{equation}
\textrm
{
P
}
(d)=
\prod
_{
i=1
}^{
n
}
\textrm
{
P
}
(r
_
i)
\textrm
{
P
}
(d)=
\prod
_{
i=1
}^{
n
}
\textrm
{
P
}
(r
_
i)
...
@@ -1182,7 +1182,7 @@ r_6: & & \textrm{VP} \to \textrm{VV}\ \textrm{NN} \nonumber
...
@@ -1182,7 +1182,7 @@ r_6: & & \textrm{VP} \to \textrm{VV}\ \textrm{NN} \nonumber
\begin{itemize}
\begin{itemize}
\item
在建模方面,本章介绍的三个任务均采用的是基于人工先验知识进行模型设计的思路。也就是,问题所表达的现象被``一步一步''生成出来。这是一种典型的生成式建模思想,它把要解决的问题看作一些观测结果的隐含变量(比如,句子是观测结果,分词结果是隐含在背后的变量),之后通过对隐含变量生成观测结果的过程进行建模,以达到对问题进行数学描述的目的。这类模型一般需要依赖一些独立性假设,假设的合理性对最终的性能有较大影响。相对
{
\small\sffamily\bfseries
{
生成模型
}}
(Generative Model),另一类方法
{
\small\sffamily\bfseries
{
判别模型
}}
(Discriminative Model),它直接描述了从隐含变量生成观测结果的过程,这样对问题的建模更加直接,同时这类模型可以更加灵活的引入不同的特征。判别式模型在自然语言处理中也有广泛应用
\cite
{
shannon1948mathematical
}
\cite
{
ng2002discriminative
}
。 在本书的第四章也会使用到判别式模型。
\item
在建模方面,本章介绍的三个任务均采用的是基于人工先验知识进行模型设计的思路。也就是,问题所表达的现象被``一步一步''生成出来。这是一种典型的生成式建模思想,它把要解决的问题看作一些观测结果的隐含变量(比如,句子是观测结果,分词结果是隐含在背后的变量),之后通过对隐含变量生成观测结果的过程进行建模,以达到对问题进行数学描述的目的。这类模型一般需要依赖一些独立性假设,假设的合理性对最终的性能有较大影响。相对
{
\small\sffamily\bfseries
{
生成模型
}}
(Generative Model),另一类方法
{
\small\sffamily\bfseries
{
判别模型
}}
(Discriminative Model),它直接描述了从隐含变量生成观测结果的过程,这样对问题的建模更加直接,同时这类模型可以更加灵活的引入不同的特征。判别式模型在自然语言处理中也有广泛应用
\cite
{
shannon1948mathematical
}
\cite
{
ng2002discriminative
}
。 在本书的第四章也会使用到判别式模型。
\item
从现在自然语言处理的前沿看,基于端到端学习的深度学习方法在很多任务中都取得了领先的性能。但是,本章并没有涉及深度学习及相关方法,这是由于笔者认为:
{
\color
{
red
}
对问题的建模是自然语言处理的基础,对问题的本质刻画并不会因为方法的改变而改变
}
。因此,本章的内容没有太多的陷入到更加复杂的模型和算法设计中,相反,我们希望关注对基本问题的理解和描述。不过,一些前沿方法仍可以作为参考,包括:基于条件随机场和双向长短时记忆模型的序列标注模型
(
\cite
{
lafferty2001conditional
}
\cite
{
huang2015bidirectional
}
\cite
{
ma2016end
}
、神经语言模型
\cite
{
bengio2003neural
}
\cite
{
mikolov2010recurrent
}
、神经句法分析模型
\cite
{
chen2014fast
}
\cite
{
zhu2015long
}
。
\item
从现在自然语言处理的前沿看,基于端到端学习的深度学习方法在很多任务中都取得了领先的性能。但是,本章并没有涉及深度学习及相关方法,这是由于笔者认为:
{
\color
{
red
}
对问题的建模是自然语言处理的基础,对问题的本质刻画并不会因为方法的改变而改变
}
。因此,本章的内容没有太多的陷入到更加复杂的模型和算法设计中,相反,我们希望关注对基本问题的理解和描述。不过,一些前沿方法仍可以作为参考,包括:基于条件随机场和双向长短时记忆模型的序列标注模型
\cite
{
lafferty2001conditional
}
\cite
{
huang2015bidirectional
}
\cite
{
ma2016end
}
、神经语言模型
\cite
{
bengio2003neural
}
\cite
{
mikolov2010recurrent
}
、神经句法分析模型
\cite
{
chen2014fast
}
\cite
{
zhu2015long
}
。
\item
此外,本章并没有对模型的推断方法进行深入介绍。比如,对于一个句子如何有效的找到概率最大的分词结果?显然,简单枚举是不可行的。对于这类问题比较简单的解决方法是使用动态规划
\cite
{
huang2008advanced
}
。如果使用动态规划的条件不满足,可以考虑使用更加复杂的搜索策略,并配合一定剪枝方法。实际上,无论是
$
n
$
-gram语言模型还是简单的上下文无关文法都有高效的推断方法。比如,
$
n
$
-gram语言模型可以被视为概率有限状态自动机,因此可以直接使用成熟的自动机工具。对于更复杂的句法分析问题,可以考虑使用移进-规约方法来解决推断问题
\cite
{
aho1972theory
}
。
\item
此外,本章并没有对模型的推断方法进行深入介绍。比如,对于一个句子如何有效的找到概率最大的分词结果?显然,简单枚举是不可行的。对于这类问题比较简单的解决方法是使用动态规划
\cite
{
huang2008advanced
}
。如果使用动态规划的条件不满足,可以考虑使用更加复杂的搜索策略,并配合一定剪枝方法。实际上,无论是
$
n
$
-gram语言模型还是简单的上下文无关文法都有高效的推断方法。比如,
$
n
$
-gram语言模型可以被视为概率有限状态自动机,因此可以直接使用成熟的自动机工具。对于更复杂的句法分析问题,可以考虑使用移进-规约方法来解决推断问题
\cite
{
aho1972theory
}
。
\end{itemize}
\end{itemize}
...
...
Book/Chapter3/Figures/figure-processes-SMT.tex
查看文件 @
a744eab3
...
@@ -26,7 +26,7 @@
...
@@ -26,7 +26,7 @@
\draw
[->,very thick,ublue] ([xshift=0.2em]corpus.east) -- ([xshift=3.2em]corpus.east) node [pos=0.5, above]
{
\color
{
red
}{
\scriptsize
{
模型学习
}}}
;
\draw
[->,very thick,ublue] ([xshift=0.2em]corpus.east) -- ([xshift=3.2em]corpus.east) node [pos=0.5, above]
{
\color
{
red
}{
\scriptsize
{
模型学习
}}}
;
{
{
\draw
[->,very thick,ublue] ([xshift=0.4em]model.east) -- ([xshift=3.4em]model.east) node [inner sep=0pt,pos=0.5, above,yshift=0.3em] (decodingarrow)
{
\color
{
red
}{
\scriptsize
{
穷举
\&
计算
}}}
;
\draw
[->,very thick,ublue] ([xshift=0.4em]model.east) -- ([xshift=3.4em]model.east) node [inner sep=0pt,pos=0.5, above,yshift=0.3em] (decodingarrow)
{
\color
{
red
}{
\scriptsize
{
搜索
\&
计算
}}}
;
{
\scriptsize
{
\scriptsize
\node
[anchor=north west,inner sep=2pt] (sentlabel) at ([xshift=5.5em,yshift=-0.9em]model.north east)
{{
\color
{
ublue
}
\sffamily\bfseries
{
机器翻译引擎
}}}
;
\node
[anchor=north west,inner sep=2pt] (sentlabel) at ([xshift=5.5em,yshift=-0.9em]model.north east)
{{
\color
{
ublue
}
\sffamily\bfseries
{
机器翻译引擎
}}}
;
...
...
Book/mt-book-xelatex.idx
查看文件 @
a744eab3
\indexentry{Chapter2.1|hyperpage}{8}
\indexentry{Chapter1.1|hyperpage}{13}
\indexentry{Chapter2.2|hyperpage}{9}
\indexentry{Chapter1.2|hyperpage}{16}
\indexentry{Chapter2.2.1|hyperpage}{9}
\indexentry{Chapter1.3|hyperpage}{21}
\indexentry{Chapter2.2.2|hyperpage}{11}
\indexentry{Chapter1.4|hyperpage}{22}
\indexentry{Chapter2.2.3|hyperpage}{12}
\indexentry{Chapter1.4.1|hyperpage}{22}
\indexentry{Chapter2.2.4|hyperpage}{13}
\indexentry{Chapter1.4.2|hyperpage}{24}
\indexentry{Chapter2.2.5|hyperpage}{15}
\indexentry{Chapter1.4.3|hyperpage}{25}
\indexentry{Chapter2.2.5.1|hyperpage}{15}
\indexentry{Chapter1.4.4|hyperpage}{26}
\indexentry{Chapter2.2.5.2|hyperpage}{16}
\indexentry{Chapter1.4.5|hyperpage}{27}
\indexentry{Chapter2.2.5.3|hyperpage}{16}
\indexentry{Chapter1.5|hyperpage}{28}
\indexentry{Chapter2.3|hyperpage}{17}
\indexentry{Chapter1.5.1|hyperpage}{28}
\indexentry{Chapter2.3.1|hyperpage}{18}
\indexentry{Chapter1.5.2|hyperpage}{29}
\indexentry{Chapter2.3.2|hyperpage}{19}
\indexentry{Chapter1.5.2.1|hyperpage}{29}
\indexentry{Chapter2.3.2.1|hyperpage}{19}
\indexentry{Chapter1.5.2.2|hyperpage}{31}
\indexentry{Chapter2.3.2.2|hyperpage}{20}
\indexentry{Chapter1.5.2.3|hyperpage}{31}
\indexentry{Chapter2.3.2.3|hyperpage}{22}
\indexentry{Chapter1.6|hyperpage}{32}
\indexentry{Chapter2.4|hyperpage}{24}
\indexentry{Chapter1.7|hyperpage}{34}
\indexentry{Chapter2.4.1|hyperpage}{25}
\indexentry{Chapter1.7.1|hyperpage}{34}
\indexentry{Chapter2.4.2|hyperpage}{27}
\indexentry{Chapter1.7.1.1|hyperpage}{35}
\indexentry{Chapter2.4.2.1|hyperpage}{28}
\indexentry{Chapter1.7.1.2|hyperpage}{36}
\indexentry{Chapter2.4.2.2|hyperpage}{29}
\indexentry{Chapter1.7.2|hyperpage}{38}
\indexentry{Chapter2.4.2.3|hyperpage}{30}
\indexentry{Chapter1.8|hyperpage}{40}
\indexentry{Chapter2.5|hyperpage}{32}
\indexentry{Chapter2.1|hyperpage}{46}
\indexentry{Chapter2.5.1|hyperpage}{32}
\indexentry{Chapter2.2|hyperpage}{47}
\indexentry{Chapter2.5.2|hyperpage}{34}
\indexentry{Chapter2.2.1|hyperpage}{47}
\indexentry{Chapter2.5.3|hyperpage}{38}
\indexentry{Chapter2.2.2|hyperpage}{49}
\indexentry{Chapter2.6|hyperpage}{40}
\indexentry{Chapter2.2.3|hyperpage}{50}
\indexentry{Chapter2.2.4|hyperpage}{51}
\indexentry{Chapter2.2.5|hyperpage}{53}
\indexentry{Chapter2.2.5.1|hyperpage}{53}
\indexentry{Chapter2.2.5.2|hyperpage}{54}
\indexentry{Chapter2.2.5.3|hyperpage}{54}
\indexentry{Chapter2.3|hyperpage}{55}
\indexentry{Chapter2.3.1|hyperpage}{56}
\indexentry{Chapter2.3.2|hyperpage}{57}
\indexentry{Chapter2.3.2.1|hyperpage}{57}
\indexentry{Chapter2.3.2.2|hyperpage}{58}
\indexentry{Chapter2.3.2.3|hyperpage}{60}
\indexentry{Chapter2.4|hyperpage}{62}
\indexentry{Chapter2.4.1|hyperpage}{63}
\indexentry{Chapter2.4.2|hyperpage}{65}
\indexentry{Chapter2.4.2.1|hyperpage}{66}
\indexentry{Chapter2.4.2.2|hyperpage}{67}
\indexentry{Chapter2.4.2.3|hyperpage}{68}
\indexentry{Chapter2.5|hyperpage}{70}
\indexentry{Chapter2.5.1|hyperpage}{70}
\indexentry{Chapter2.5.2|hyperpage}{72}
\indexentry{Chapter2.5.3|hyperpage}{76}
\indexentry{Chapter2.6|hyperpage}{78}
\indexentry{Chapter3.1|hyperpage}{83}
\indexentry{Chapter3.2|hyperpage}{85}
\indexentry{Chapter3.2.1|hyperpage}{85}
\indexentry{Chapter3.2.1.1|hyperpage}{85}
\indexentry{Chapter3.2.1.2|hyperpage}{86}
\indexentry{Chapter3.2.1.3|hyperpage}{87}
\indexentry{Chapter3.2.2|hyperpage}{87}
\indexentry{Chapter3.2.3|hyperpage}{88}
\indexentry{Chapter3.2.3.1|hyperpage}{88}
\indexentry{Chapter3.2.3.2|hyperpage}{89}
\indexentry{Chapter3.2.3.3|hyperpage}{90}
\indexentry{Chapter3.2.4|hyperpage}{91}
\indexentry{Chapter3.2.4.1|hyperpage}{91}
\indexentry{Chapter3.2.4.2|hyperpage}{93}
\indexentry{Chapter3.2.5|hyperpage}{94}
\indexentry{Chapter3.3|hyperpage}{97}
\indexentry{Chapter3.3.1|hyperpage}{97}
\indexentry{Chapter3.3.2|hyperpage}{100}
\indexentry{Chapter3.3.2.1|hyperpage}{101}
\indexentry{Chapter3.3.2.2|hyperpage}{102}
\indexentry{Chapter3.3.2.3|hyperpage}{103}
\indexentry{Chapter3.4|hyperpage}{104}
\indexentry{Chapter3.4.1|hyperpage}{104}
\indexentry{Chapter3.4.2|hyperpage}{106}
\indexentry{Chapter3.4.3|hyperpage}{107}
\indexentry{Chapter3.4.4|hyperpage}{108}
\indexentry{Chapter3.4.4.1|hyperpage}{108}
\indexentry{Chapter3.4.4.2|hyperpage}{109}
\indexentry{Chapter3.5|hyperpage}{114}
\indexentry{Chapter3.5.1|hyperpage}{115}
\indexentry{Chapter3.5.2|hyperpage}{117}
\indexentry{Chapter3.5.3|hyperpage}{119}
\indexentry{Chapter3.5.4|hyperpage}{120}
\indexentry{Chapter3.5.5|hyperpage}{122}
\indexentry{Chapter3.5.5|hyperpage}{124}
\indexentry{Chapter3.6|hyperpage}{125}
\indexentry{Chapter3.6.1|hyperpage}{125}
\indexentry{Chapter3.6.2|hyperpage}{126}
\indexentry{Chapter3.6.4|hyperpage}{127}
\indexentry{Chapter3.6.5|hyperpage}{127}
\indexentry{Chapter3.7|hyperpage}{127}
\indexentry{Chapter4.1|hyperpage}{129}
\indexentry{Chapter4.1.1|hyperpage}{131}
\indexentry{Chapter4.1.2|hyperpage}{132}
\indexentry{Chapter4.2|hyperpage}{134}
\indexentry{Chapter4.2.1|hyperpage}{134}
\indexentry{Chapter4.2.2|hyperpage}{137}
\indexentry{Chapter4.2.2.1|hyperpage}{137}
\indexentry{Chapter4.2.2.2|hyperpage}{138}
\indexentry{Chapter4.2.2.3|hyperpage}{139}
\indexentry{Chapter4.2.3|hyperpage}{140}
\indexentry{Chapter4.2.3.1|hyperpage}{140}
\indexentry{Chapter4.2.3.2|hyperpage}{141}
\indexentry{Chapter4.2.3.3|hyperpage}{142}
\indexentry{Chapter4.2.4|hyperpage}{144}
\indexentry{Chapter4.2.4.1|hyperpage}{144}
\indexentry{Chapter4.2.4.2|hyperpage}{145}
\indexentry{Chapter4.2.4.3|hyperpage}{146}
\indexentry{Chapter4.2.5|hyperpage}{147}
\indexentry{Chapter4.2.6|hyperpage}{147}
\indexentry{Chapter4.2.7|hyperpage}{151}
\indexentry{Chapter4.2.7.1|hyperpage}{152}
\indexentry{Chapter4.2.7.2|hyperpage}{152}
\indexentry{Chapter4.2.7.3|hyperpage}{153}
\indexentry{Chapter4.2.7.4|hyperpage}{154}
\indexentry{Chapter4.3|hyperpage}{155}
\indexentry{Chapter4.3.1|hyperpage}{158}
\indexentry{Chapter4.3.1.1|hyperpage}{159}
\indexentry{Chapter4.3.1.2|hyperpage}{160}
\indexentry{Chapter4.3.1.3|hyperpage}{161}
\indexentry{Chapter4.3.1.4|hyperpage}{162}
\indexentry{Chapter4.3.2|hyperpage}{162}
\indexentry{Chapter4.3.3|hyperpage}{164}
\indexentry{Chapter4.3.4|hyperpage}{165}
\indexentry{Chapter4.3.5|hyperpage}{168}
\indexentry{Chapter4.4|hyperpage}{170}
\indexentry{Chapter4.4.1|hyperpage}{173}
\indexentry{Chapter4.4.2|hyperpage}{175}
\indexentry{Chapter4.4.2.1|hyperpage}{176}
\indexentry{Chapter4.4.2.2|hyperpage}{177}
\indexentry{Chapter4.4.2.3|hyperpage}{179}
\indexentry{Chapter4.4.3|hyperpage}{180}
\indexentry{Chapter4.4.3.1|hyperpage}{181}
\indexentry{Chapter4.4.3.2|hyperpage}{184}
\indexentry{Chapter4.4.3.3|hyperpage}{185}
\indexentry{Chapter4.4.3.4|hyperpage}{187}
\indexentry{Chapter4.4.3.5|hyperpage}{188}
\indexentry{Chapter4.4.4|hyperpage}{189}
\indexentry{Chapter4.4.4.1|hyperpage}{190}
\indexentry{Chapter4.4.4.2|hyperpage}{191}
\indexentry{Chapter4.4.5|hyperpage}{191}
\indexentry{Chapter4.4.5|hyperpage}{193}
\indexentry{Chapter4.4.7|hyperpage}{197}
\indexentry{Chapter4.4.7.1|hyperpage}{198}
\indexentry{Chapter4.4.7.2|hyperpage}{198}
\indexentry{Chapter4.5|hyperpage}{200}
\indexentry{Chapter5.1|hyperpage}{206}
\indexentry{Chapter5.1.1|hyperpage}{206}
\indexentry{Chapter5.1.1.1|hyperpage}{206}
\indexentry{Chapter5.1.1.2|hyperpage}{207}
\indexentry{Chapter5.1.1.3|hyperpage}{208}
\indexentry{Chapter5.1.2|hyperpage}{209}
\indexentry{Chapter5.1.2.1|hyperpage}{209}
\indexentry{Chapter5.1.2.2|hyperpage}{210}
\indexentry{Chapter5.2|hyperpage}{210}
\indexentry{Chapter5.2.1|hyperpage}{210}
\indexentry{Chapter5.2.1.1|hyperpage}{211}
\indexentry{Chapter5.2.1.2|hyperpage}{212}
\indexentry{Chapter5.2.1.3|hyperpage}{212}
\indexentry{Chapter5.2.1.4|hyperpage}{213}
\indexentry{Chapter5.2.1.5|hyperpage}{214}
\indexentry{Chapter5.2.1.6|hyperpage}{215}
\indexentry{Chapter5.2.2|hyperpage}{216}
\indexentry{Chapter5.2.2.1|hyperpage}{217}
\indexentry{Chapter5.2.2.2|hyperpage}{217}
\indexentry{Chapter5.2.2.3|hyperpage}{218}
\indexentry{Chapter5.2.2.4|hyperpage}{219}
\indexentry{Chapter5.2.3|hyperpage}{220}
\indexentry{Chapter5.2.3.1|hyperpage}{220}
\indexentry{Chapter5.2.3.2|hyperpage}{222}
\indexentry{Chapter5.2.4|hyperpage}{224}
\indexentry{Chapter5.3|hyperpage}{227}
\indexentry{Chapter5.3.1|hyperpage}{227}
\indexentry{Chapter5.3.1.1|hyperpage}{227}
\indexentry{Chapter5.3.1.2|hyperpage}{229}
\indexentry{Chapter5.3.1.3|hyperpage}{230}
\indexentry{Chapter5.3.2|hyperpage}{231}
\indexentry{Chapter5.3.3|hyperpage}{232}
\indexentry{Chapter5.3.4|hyperpage}{236}
\indexentry{Chapter5.3.5|hyperpage}{237}
\indexentry{Chapter5.4|hyperpage}{238}
\indexentry{Chapter5.4.1|hyperpage}{239}
\indexentry{Chapter5.4.2|hyperpage}{240}
\indexentry{Chapter5.4.2.1|hyperpage}{241}
\indexentry{Chapter5.4.2.2|hyperpage}{243}
\indexentry{Chapter5.4.2.3|hyperpage}{245}
\indexentry{Chapter5.4.3|hyperpage}{248}
\indexentry{Chapter5.4.4|hyperpage}{250}
\indexentry{Chapter5.4.4.1|hyperpage}{250}
\indexentry{Chapter5.4.4.2|hyperpage}{251}
\indexentry{Chapter5.4.4.3|hyperpage}{251}
\indexentry{Chapter5.4.5|hyperpage}{253}
\indexentry{Chapter5.4.6|hyperpage}{254}
\indexentry{Chapter5.4.6.1|hyperpage}{255}
\indexentry{Chapter5.4.6.2|hyperpage}{257}
\indexentry{Chapter5.4.6.3|hyperpage}{258}
\indexentry{Chapter5.5|hyperpage}{260}
\indexentry{Chapter5.5.1|hyperpage}{260}
\indexentry{Chapter5.5.1.1|hyperpage}{261}
\indexentry{Chapter5.5.1.2|hyperpage}{263}
\indexentry{Chapter5.5.1.3|hyperpage}{264}
\indexentry{Chapter5.5.1.4|hyperpage}{265}
\indexentry{Chapter5.5.2|hyperpage}{266}
\indexentry{Chapter5.5.2.1|hyperpage}{266}
\indexentry{Chapter5.5.2.2|hyperpage}{266}
\indexentry{Chapter5.5.3|hyperpage}{268}
\indexentry{Chapter5.5.3.1|hyperpage}{268}
\indexentry{Chapter5.5.3.2|hyperpage}{270}
\indexentry{Chapter5.5.3.3|hyperpage}{270}
\indexentry{Chapter5.5.3.4|hyperpage}{271}
\indexentry{Chapter5.5.3.5|hyperpage}{272}
\indexentry{Chapter5.6|hyperpage}{272}
\indexentry{Chapter6.1|hyperpage}{275}
\indexentry{Chapter6.1.1|hyperpage}{277}
\indexentry{Chapter6.1.2|hyperpage}{279}
\indexentry{Chapter6.1.3|hyperpage}{282}
\indexentry{Chapter6.2|hyperpage}{284}
\indexentry{Chapter6.2.1|hyperpage}{284}
\indexentry{Chapter6.2.2|hyperpage}{285}
\indexentry{Chapter6.2.3|hyperpage}{286}
\indexentry{Chapter6.2.4|hyperpage}{287}
\indexentry{Chapter6.3|hyperpage}{288}
\indexentry{Chapter6.3.1|hyperpage}{290}
\indexentry{Chapter6.3.2|hyperpage}{292}
\indexentry{Chapter6.3.3|hyperpage}{296}
\indexentry{Chapter6.3.3.1|hyperpage}{296}
\indexentry{Chapter6.3.3.2|hyperpage}{296}
\indexentry{Chapter6.3.3.3|hyperpage}{298}
\indexentry{Chapter6.3.3.4|hyperpage}{299}
\indexentry{Chapter6.3.3.5|hyperpage}{301}
\indexentry{Chapter6.3.4|hyperpage}{301}
\indexentry{Chapter6.3.4.1|hyperpage}{302}
\indexentry{Chapter6.3.4.2|hyperpage}{303}
\indexentry{Chapter6.3.4.3|hyperpage}{306}
\indexentry{Chapter6.3.5|hyperpage}{308}
\indexentry{Chapter6.3.5.1|hyperpage}{309}
\indexentry{Chapter6.3.5.2|hyperpage}{309}
\indexentry{Chapter6.3.5.3|hyperpage}{310}
\indexentry{Chapter6.3.5.4|hyperpage}{310}
\indexentry{Chapter6.3.5.5|hyperpage}{311}
\indexentry{Chapter6.3.5.5|hyperpage}{312}
\indexentry{Chapter6.3.6|hyperpage}{313}
\indexentry{Chapter6.3.6.1|hyperpage}{315}
\indexentry{Chapter6.3.6.2|hyperpage}{316}
\indexentry{Chapter6.3.6.3|hyperpage}{317}
\indexentry{Chapter6.3.7|hyperpage}{318}
\indexentry{Chapter6.4|hyperpage}{320}
\indexentry{Chapter6.4.1|hyperpage}{321}
\indexentry{Chapter6.4.2|hyperpage}{322}
\indexentry{Chapter6.4.3|hyperpage}{325}
\indexentry{Chapter6.4.4|hyperpage}{327}
\indexentry{Chapter6.4.5|hyperpage}{328}
\indexentry{Chapter6.4.6|hyperpage}{329}
\indexentry{Chapter6.4.7|hyperpage}{331}
\indexentry{Chapter6.4.8|hyperpage}{332}
\indexentry{Chapter6.4.9|hyperpage}{333}
\indexentry{Chapter6.4.10|hyperpage}{336}
\indexentry{Chapter6.5|hyperpage}{336}
\indexentry{Chapter6.5.1|hyperpage}{337}
\indexentry{Chapter6.5.2|hyperpage}{337}
\indexentry{Chapter6.5.3|hyperpage}{338}
\indexentry{Chapter6.5.4|hyperpage}{338}
\indexentry{Chapter6.5.5|hyperpage}{339}
\indexentry{Chapter6.6|hyperpage}{340}
Book/mt-book-xelatex.ptc
查看文件 @
a744eab3
\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax
\boolfalse {citerequest}\boolfalse {citetracker}\boolfalse {pagetracker}\boolfalse {backtracker}\relax
\babel@toc {english}{}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {part}{\@mypartnumtocformat {I}{机器翻译基础}}{5}{part.1}%
\select@language {english}
\defcounter {refsection}{0}\relax
\contentsline {part}{\@mypartnumtocformat {I}{机器翻译基础}}{11}{part.1}
\ttl@starttoc {default@1}
\ttl@starttoc {default@1}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {1}机器翻译简介}{7}{chapter.1}%
\contentsline {chapter}{\numberline {1}机器翻译简介}{13}{chapter.1}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.1}机器翻译的概念}{13}{section.1.1}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.2}机器翻译简史}{16}{section.1.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.2.1}人工翻译}{16}{subsection.1.2.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.2.2}机器翻译的萌芽}{17}{subsection.1.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.2.3}机器翻译的受挫}{18}{subsection.1.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.2.4}机器翻译的快速成长}{19}{subsection.1.2.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.2.5}机器翻译的爆发}{20}{subsection.1.2.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.3}机器翻译现状}{21}{section.1.3}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.4}机器翻译方法}{22}{section.1.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.4.1}基于规则的机器翻译}{22}{subsection.1.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.4.2}基于实例的机器翻译}{24}{subsection.1.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.4.3}统计机器翻译}{25}{subsection.1.4.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.4.4}神经机器翻译}{26}{subsection.1.4.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.4.5}对比分析}{27}{subsection.1.4.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.5}翻译质量评价}{28}{section.1.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.5.1}人工评价}{28}{subsection.1.5.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.5.2}自动评价}{29}{subsection.1.5.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{BLEU}{29}{section*.15}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{TER}{31}{section*.16}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于检测点的评价}{31}{section*.17}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.6}机器翻译应用}{32}{section.1.6}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.7}开源项目与评测}{34}{section.1.7}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.7.1}开源机器翻译系统}{34}{subsection.1.7.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{统计机器翻译开源系统}{35}{section*.19}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{神经机器翻译开源系统}{36}{section*.20}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {1.7.2}常用数据集及公开评测任务}{38}{subsection.1.7.2}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.8}推荐学习资源}{40}{section.1.8}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {2}词法、语法及统计建模基础}{45}{chapter.2}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2.1}问题概述 }{46}{section.2.1}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2.2}概率论基础}{47}{section.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.2.1}随机变量和概率}{47}{subsection.2.2.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.2.2}联合概率、条件概率和边缘概率}{49}{subsection.2.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.2.3}链式法则}{50}{subsection.2.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.2.4}贝叶斯法则}{51}{subsection.2.2.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.2.5}KL距离和熵}{53}{subsection.2.2.5}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{信息熵}{53}{section*.27}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{KL距离}{54}{section*.29}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{交叉熵}{54}{section*.30}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2.3}中文分词}{55}{section.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.3.1}基于词典的分词方法}{56}{subsection.2.3.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.3.2}基于统计的分词方法}{57}{subsection.2.3.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{统计模型的学习与推断}{57}{section*.34}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{掷骰子游戏}{58}{section*.36}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{全概率分词方法}{60}{section*.40}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2.4}$n$-gram语言模型 }{62}{section.2.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.4.1}建模}{63}{subsection.2.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.4.2}未登录词和平滑算法}{65}{subsection.2.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{加法平滑方法}{66}{section*.46}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{古德-图灵估计法}{67}{section*.48}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{Kneser-Ney平滑方法}{68}{section*.50}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2.5}句法分析(短语结构分析)}{70}{section.2.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.5.1}句子的句法树表示}{70}{subsection.2.5.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.5.2}上下文无关文法}{72}{subsection.2.5.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {2.5.3}规则和推导的概率}{76}{subsection.2.5.3}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {2.6}小结及深入阅读}{78}{section.2.6}
\defcounter {refsection}{0}\relax
\contentsline {part}{\@mypartnumtocformat {II}{统计机器翻译}}{81}{part.2}
\ttl@stoptoc {default@1}
\ttl@starttoc {default@2}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {3}基于词的机器翻译模型}{83}{chapter.3}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.1}什么是基于词的翻译模型}{83}{section.3.1}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.2}构建一个简单的机器翻译系统}{85}{section.3.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2.1}如何进行翻译?}{85}{subsection.3.2.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)机器翻译流程}{86}{section*.63}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(三)人工 vs. 机器}{87}{section*.65}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2.2}基本框架}{87}{subsection.3.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2.3}单词翻译概率}{88}{subsection.3.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)什么是单词翻译概率?}{88}{section*.67}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)如何从一个双语平行数据中学习?}{89}{section*.69}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(三)如何从大量的双语平行数据中学习?}{90}{section*.70}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2.4}句子级翻译模型}{91}{subsection.3.2.4}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)句子级翻译的基础模型}{91}{section*.72}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)生成流畅的译文}{93}{section*.74}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.2.5}解码}{94}{subsection.3.2.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.3}基于词的翻译建模}{97}{section.3.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.3.1}噪声信道模型}{97}{subsection.3.3.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.3.2}统计机器翻译的三个基本问题}{100}{subsection.3.3.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{词对齐}{101}{section*.83}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于词对齐的翻译模型}{102}{section*.86}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于词对齐的翻译实例}{103}{section*.88}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.4}IBM模型1-2}{104}{section.3.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.4.1}IBM模型1}{104}{subsection.3.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.4.2}IBM模型2}{106}{subsection.3.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.4.3}解码及计算优化}{107}{subsection.3.4.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.4.4}训练}{108}{subsection.3.4.4}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)目标函数}{108}{section*.93}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)优化}{109}{section*.95}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.5}IBM模型3-5及隐马尔可夫模型}{114}{section.3.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5.1}基于产出率的翻译模型}{115}{subsection.3.5.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5.2}IBM 模型3}{117}{subsection.3.5.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5.3}IBM 模型4}{119}{subsection.3.5.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5.4} IBM 模型5}{120}{subsection.3.5.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5.5}隐马尔可夫模型}{122}{subsection.3.5.5}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{隐马尔可夫模型}{122}{section*.107}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{词对齐模型}{123}{section*.109}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.5.6}解码和训练}{124}{subsection.3.5.6}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.6}问题分析}{125}{section.3.6}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.6.1}词对齐及对称化}{125}{subsection.3.6.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.6.2}Deficiency}{126}{subsection.3.6.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.6.3}句子长度}{127}{subsection.3.6.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {3.6.4}其它问题}{127}{subsection.3.6.4}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {3.7}小结及深入阅读}{127}{section.3.7}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {4}基于短语和句法的机器翻译模型}{129}{chapter.4}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4.1}翻译中的结构信息}{129}{section.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.1.1}更大粒度的翻译单元}{131}{subsection.4.1.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.1.2}句子的结构信息}{132}{subsection.4.1.2}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4.2}基于短语的翻译模型}{134}{section.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.1}机器翻译中的短语}{134}{subsection.4.2.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.2}数学建模及判别式模型}{137}{subsection.4.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于翻译推导的建模}{137}{section*.121}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{对数线性模型}{138}{section*.122}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{搭建模型的基本流程}{139}{section*.123}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.3}短语抽取}{140}{subsection.4.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{与词对齐一致的短语}{140}{section*.126}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{获取词对齐}{141}{section*.130}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{度量双语短语质量}{142}{section*.132}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.4}调序}{144}{subsection.4.2.4}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于距离的调序}{144}{section*.136}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于方向的调序}{145}{section*.138}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于分类的调序}{146}{section*.141}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.5}特征}{147}{subsection.4.2.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.6}最小错误率训练}{147}{subsection.4.2.6}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.2.7}栈解码}{151}{subsection.4.2.7}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{翻译候选匹配}{152}{section*.146}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{翻译假设扩展}{152}{section*.148}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{剪枝}{153}{section*.150}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{解码中的栈结构}{154}{section*.152}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4.3}基于层次短语的模型}{155}{section.4.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3.1}同步上下文无关文法}{158}{subsection.4.3.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{文法定义}{159}{section*.157}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{推导}{160}{section*.158}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{胶水规则}{161}{section*.159}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{处理流程}{162}{section*.160}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3.2}层次短语规则抽取}{162}{subsection.4.3.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3.3}翻译模型及特征}{164}{subsection.4.3.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3.4}CYK解码}{165}{subsection.4.3.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.3.5}立方剪枝}{168}{subsection.4.3.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4.4}基于语言学句法的模型}{170}{section.4.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.1}基于句法的翻译模型分类}{173}{subsection.4.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.2}基于树结构的文法}{175}{subsection.4.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{树到树翻译规则}{176}{section*.176}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于树结构的翻译推导}{177}{section*.178}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{树到串翻译规则}{179}{section*.181}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.3}树到串翻译规则抽取}{180}{subsection.4.4.3}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{树的切割与最小规则}{181}{section*.183}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{空对齐处理}{184}{section*.189}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{组合规则}{185}{section*.191}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{SPMT规则}{187}{section*.193}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{句法树二叉化}{188}{section*.195}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.4}树到树翻译规则抽取}{189}{subsection.4.4.4}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于节点对齐的规则抽取}{190}{section*.199}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于对齐矩阵的规则抽取}{191}{section*.202}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.5}句法翻译模型的特征}{191}{subsection.4.4.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.6}基于超图的推导空间表示}{193}{subsection.4.4.6}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {4.4.7}基于树的解码 vs 基于串的解码}{197}{subsection.4.4.7}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于树的解码}{198}{section*.209}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{基于串的解码}{198}{section*.212}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {4.5}小结及深入阅读}{200}{section.4.5}
\defcounter {refsection}{0}\relax
\contentsline {part}{\@mypartnumtocformat {III}{神经机器翻译}}{203}{part.3}
\ttl@stoptoc {default@2}
\ttl@starttoc {default@3}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {5}人工神经网络和神经语言建模}{205}{chapter.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5.1}深度学习与人工神经网络}{206}{section.5.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.1.1}发展简史}{206}{subsection.5.1.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)早期的人工神经网络和第一次寒冬}{206}{section*.214}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)神经网络的第二次高潮和第二次寒冬}{207}{section*.215}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(三)深度学习和神经网络的崛起}{208}{section*.216}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.1.2}为什么需要深度学习}{209}{subsection.5.1.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)端到端学习和表示学习}{209}{section*.218}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)深度学习的效果}{210}{section*.220}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5.2}神经网络基础}{210}{section.5.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.2.1}线性代数基础}{210}{subsection.5.2.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)标量、向量和矩阵}{211}{section*.222}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)矩阵的转置}{212}{section*.223}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(三)矩阵加法和数乘}{212}{section*.224}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(四)矩阵乘法和矩阵点乘}{213}{section*.225}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(五)线性映射}{214}{section*.226}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(六)范数}{215}{section*.227}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.2.2}人工神经元和感知机}{216}{subsection.5.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)感知机\ \raisebox {0.5mm}{------}\ 最简单的人工神经元模型}{217}{section*.230}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)神经元内部权重}{217}{section*.233}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(三)神经元的输入\ \raisebox {0.5mm}{------}\ 离散 vs 连续}{218}{section*.235}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(四)神经元内部的参数学习}{219}{section*.237}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.2.3}多层神经网络}{220}{subsection.5.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)线性变换和激活函数}{220}{section*.239}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)单层神经网络$\rightarrow $多层神经网络}{222}{section*.246}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.2.4}函数拟合能力}{224}{subsection.5.2.4}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5.3}神经网络的张量实现}{227}{section.5.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3.1} 张量及其计算}{227}{subsection.5.3.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)张量}{227}{section*.256}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)张量的矩阵乘法}{229}{section*.259}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(三)张量的单元操作}{230}{section*.261}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3.2}张量的物理存储形式}{231}{subsection.5.3.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3.3}使用开源框架实现张量计算}{232}{subsection.5.3.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3.4}神经网络中的前向传播}{236}{subsection.5.3.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.3.5}神经网络实例}{237}{subsection.5.3.5}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5.4}神经网络的参数训练}{238}{section.5.4}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4.1}损失函数}{239}{subsection.5.4.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4.2}基于梯度的参数优化}{240}{subsection.5.4.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)梯度下降}{241}{section*.279}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)梯度获取}{243}{section*.281}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(三)基于梯度的方法的变种和改进}{245}{section*.285}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4.3}参数更新的并行化策略}{248}{subsection.5.4.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4.4}梯度消失、梯度爆炸和稳定性训练}{250}{subsection.5.4.4}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)梯度消失现象及解决方法}{250}{section*.288}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)梯度爆炸现象及解决方法}{251}{section*.292}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(三)稳定性训练}{251}{section*.293}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4.5}过拟合}{253}{subsection.5.4.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.4.6}反向传播}{254}{subsection.5.4.6}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)输出层的反向传播}{255}{section*.296}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)隐藏层的反向传播}{257}{section*.300}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(三)程序实现}{258}{section*.303}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5.5}神经语言模型}{260}{section.5.5}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.5.1}基于神经网络的语言建模}{260}{subsection.5.5.1}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)基于前馈神经网络的语言模型}{261}{section*.306}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)基于循环神经网络的语言模型}{263}{section*.309}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(三)基于自注意力机制的语言模型}{264}{section*.311}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(四)语言模型的评价}{265}{section*.313}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.5.2}单词表示模型}{266}{subsection.5.5.2}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)One-hot编码}{266}{section*.314}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)分布式表示}{266}{section*.316}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {5.5.3}句子表示模型及预训练}{268}{subsection.5.5.3}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(一)简单的上下文表示模型}{268}{section*.320}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(二)ELMO模型}{270}{section*.323}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(三)GPT模型}{270}{section*.325}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(四)BERT模型}{271}{section*.327}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{(五)为什么要预训练?}{272}{section*.329}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {5.6}小结及深入阅读}{272}{section.5.6}
\defcounter {refsection}{0}\relax
\contentsline {chapter}{\numberline {6}神经机器翻译模型}{275}{chapter.6}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6.1}神经机器翻译的发展简史}{275}{section.6.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.1.1}神经机器翻译的起源}{277}{subsection.6.1.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.1.2}神经机器翻译的品质 }{279}{subsection.6.1.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.1.3}神经机器翻译的优势 }{282}{subsection.6.1.3}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6.2}编码器-解码器框架}{284}{section.6.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.2.1}框架结构}{284}{subsection.6.2.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.2.2}表示学习}{285}{subsection.6.2.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.2.3}简单的运行实例}{286}{subsection.6.2.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.2.4}机器翻译范式的对比}{287}{subsection.6.2.4}
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {6.3}基于循环神经网络的翻译模型及注意力机制}{288}{section.6.3}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.1}建模}{290}{subsection.6.3.1}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.2}输入(词嵌入)及输出(Softmax)}{292}{subsection.6.3.2}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.3}循环神经网络结构}{296}{subsection.6.3.3}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{循环神经单元(RNN)}{296}{section*.351}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{长短时记忆网络(LSTM)}{296}{section*.352}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{门控循环单元(GRU)}{298}{section*.355}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{双向模型}{299}{section*.357}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{多层循环神经网络}{301}{section*.359}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.4}注意力机制}{301}{subsection.6.3.4}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{翻译中的注意力机制}{302}{section*.362}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{上下文向量的计算}{303}{section*.365}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{注意力机制的解读}{306}{section*.370}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.5}训练}{308}{subsection.6.3.5}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{损失函数}{309}{section*.373}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{长参数初始化}{309}{section*.374}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{优化策略}{310}{section*.375}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{梯度裁剪}{310}{section*.377}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{学习率策略}{311}{section*.378}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{并行训练}{312}{section*.381}
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {6.3.6}推断}{313}{subsection.6.3.6}
\defcounter {refsection}{0}\relax
\contentsline {subsubsection}{贪婪搜索}{315}{section*.385}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {s
ection}{\numberline {1.1}机器翻译的概念}{7}{section.1.1}%
\contentsline {s
ubsubsection}{束搜索}{316}{section*.388}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {s
ection}{\numberline {1.2}机器翻译简史}{10}{section.1.2}%
\contentsline {s
ubsubsection}{长度惩罚}{317}{section*.390}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {
1.2.1}人工翻译}{10}{subsection.1.2.1}%
\contentsline {subsection}{\numberline {
6.3.7}实例-GNMT}{318}{subsection.6.3.7}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {s
ubsection}{\numberline {1.2.2}机器翻译的萌芽}{11}{subsection.1.2.2}%
\contentsline {s
ection}{\numberline {6.4}Transformer}{320}{section.6.4}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {
1.2.3}机器翻译的受挫}{12}{subsection.1.2.3}%
\contentsline {subsection}{\numberline {
6.4.1}自注意力模型}{321}{subsection.6.4.1}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {
1.2.4}机器翻译的快速成长}{13}{subsection.1.2.4}%
\contentsline {subsection}{\numberline {
6.4.2}Transformer架构}{322}{subsection.6.4.2}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {
1.2.5}机器翻译的爆发}{14}{subsection.1.2.5}%
\contentsline {subsection}{\numberline {
6.4.3}位置编码}{325}{subsection.6.4.3}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {s
ection}{\numberline {1.3}机器翻译现状}{15}{section.1.3}%
\contentsline {s
ubsection}{\numberline {6.4.4}基于点乘的注意力机制}{327}{subsection.6.4.4}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {s
ection}{\numberline {1.4}机器翻译方法}{16}{section.1.4}%
\contentsline {s
ubsection}{\numberline {6.4.5}掩码操作}{328}{subsection.6.4.5}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {
1.4.1}基于规则的机器翻译}{16}{subsection.1.4.1}%
\contentsline {subsection}{\numberline {
6.4.6}多头注意力}{329}{subsection.6.4.6}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {
1.4.2}基于实例的机器翻译}{18}{subsection.1.4.2}%
\contentsline {subsection}{\numberline {
6.4.7}残差网络和层正则化}{331}{subsection.6.4.7}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {
1.4.3}统计机器翻译}{19}{subsection.1.4.3}%
\contentsline {subsection}{\numberline {
6.4.8}前馈全连接网络子层}{332}{subsection.6.4.8}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {
1.4.4}神经机器翻译}{20}{subsection.1.4.4}%
\contentsline {subsection}{\numberline {
6.4.9}训练}{333}{subsection.6.4.9}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {
1.4.5}对比分析}{21}{subsection.1.4.5}%
\contentsline {subsection}{\numberline {
6.4.10}推断}{336}{subsection.6.4.10}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {
1.5}翻译质量评价}{22}{section.1.5}%
\contentsline {section}{\numberline {
6.5}序列到序列问题及应用}{336}{section.6.5}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {
1.5.1}人工评价}{22}{subsection.1.5.1}%
\contentsline {subsection}{\numberline {
6.5.1}自动问答}{337}{subsection.6.5.1}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subsection}{\numberline {
1.5.2}自动评价}{23}{subsection.1.5.2}%
\contentsline {subsection}{\numberline {
6.5.2}自动文摘}{337}{subsection.6.5.2}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subs
ubsection}{BLEU}{23}{section*.15}%
\contentsline {subs
ection}{\numberline {6.5.3}文言文翻译}{338}{subsection.6.5.3}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subs
ubsection}{TER}{25}{section*.16}%
\contentsline {subs
ection}{\numberline {6.5.4}对联生成}{338}{subsection.6.5.4}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {subs
ubsection}{基于检测点的评价}{25}{section*.17}%
\contentsline {subs
ection}{\numberline {6.5.5}古诗生成}{339}{subsection.6.5.5}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {
1.6}机器翻译应用}{26}{section.1.6}%
\contentsline {section}{\numberline {
6.6}小结及深入阅读}{340}{section.6.6}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {1.7}开源项目与评测}{28}{section.1.7}%
\contentsline {part}{\@mypartnumtocformat {IV}{附录}}{343}{part.4}
\ttl@stoptoc {default@3}
\ttl@starttoc {default@4}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {
subsection}{\numberline {1.7.1}开源机器翻译系统}{28}{subsection.1.7.1}%
\contentsline {
chapter}{\numberline {A}附录A}{345}{Appendix.1.A}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {
subsubsection}{统计机器翻译开源系统}{29}{section*.19}%
\contentsline {
chapter}{\numberline {B}附录B}{347}{Appendix.2.B}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {s
ubsubsection}{神经机器翻译开源系统}{30}{section*.20}%
\contentsline {s
ection}{\numberline {B.1}IBM模型3训练方法}{347}{section.2.B.1}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {s
ubsection}{\numberline {1.7.2}常用数据集及公开评测任务}{32}{subsection.1.7.2}%
\contentsline {s
ection}{\numberline {B.2}IBM模型4训练方法}{349}{section.2.B.2}
\defcounter {refsection}{0}\relax
\defcounter {refsection}{0}\relax
\contentsline {section}{\numberline {
1.8}推荐学习资源}{34}{section.1.8}%
\contentsline {section}{\numberline {
B.3}IBM模型5训练方法}{350}{section.2.B.3}
\contentsfinish
\contentsfinish
Book/mt-book-xelatex.tex
查看文件 @
a744eab3
...
@@ -112,13 +112,13 @@
...
@@ -112,13 +112,13 @@
% CHAPTERS
% CHAPTERS
%----------------------------------------------------------------------------------------
%----------------------------------------------------------------------------------------
%
\include{Chapter1/chapter1}
\include
{
Chapter1/chapter1
}
\include
{
Chapter2/chapter2
}
\include
{
Chapter2/chapter2
}
%
\include{Chapter3/chapter3}
\include
{
Chapter3/chapter3
}
%
\include{Chapter4/chapter4}
\include
{
Chapter4/chapter4
}
%
\include{Chapter5/chapter5}
\include
{
Chapter5/chapter5
}
%
\include{Chapter6/chapter6}
\include
{
Chapter6/chapter6
}
%
\include{ChapterAppend/chapterappend}
\include
{
ChapterAppend/chapterappend
}
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论