Commit b8197a8f by zengxin

合并分支 'caorunzhe' 到 'zengxin'

Caorunzhe

查看合并请求 !235
parents 37e72523 a72cba49
......@@ -34,13 +34,10 @@
\node[anchor=north west] (original4-2) at ([yshift=0.3em]original4-1.south west) {\scriptsize{!''``我帮不了你。你全身都湿透了,会弄坏我这漂亮的小船的。''悲哀来了,爱向他求助:``}};
\node[anchor=north west] (original4-3) at ([yshift=0.3em]original4-2.south west) {\scriptsize{悲哀,让我跟你去吧!''``哦,……爱,我实在太悲哀了,想自己一个人呆一会儿!''悲哀答}};
\node[anchor=north west] (original4-4) at ([yshift=0.3em]original4-3.south west) {\scriptsize{道。快乐走近爱的身边,但是她太快乐了,竟然没有听见爱在叫她!}};
%机器翻译--------------
\node [anchor=north west] (mt4) at ([xshift=-3.5em,yshift=0.3em]original4-4.south west) {\scriptsize{机器翻译:At this time, Richness {\color{red}\underline{passed by}} in a big ship. Love said, ``Rich, can you take me away?'' Richness}};
\node [anchor=north west] (mt4-1) at ([xshift=3.5em,yshift=0.4em]mt4.south west) {\scriptsize{replied, ``No, {\color{red}\underline{there are many treasures}} of gold and silver in my ship,and there is no place for you.''}};
\begin{pgfonlayer}{background}
{
\node[rectangle,draw=ublue, inner sep=0mm] [fit =(original1)(ht1)(mt1)(mt4-1)] {};
\node[rectangle,draw=ublue, inner sep=0mm] [fit =(original1)(ht1)(mt1)(original4-4)] {};
}
\end{pgfonlayer}
......
......@@ -4,8 +4,10 @@
%%% outline
%-------------------------------------------------------------------------
\begin{tikzpicture}
\node [pos=0.4,left,xshift=-0.4em,yshift=2.0em,,opacity=0.0] (original1) {\scriptsize{\qquad 文:从前有一个小岛,上面住着快乐、悲哀、知识和爱,还有其他各种情感。一天,情感们得知}};
\node [anchor=north west] (mt4-2) at ([xshift=3.5em,yshift=0.3em]original1.south west) {\scriptsize{ Love saw vanity in a magnificent boat and said, ``Vanity, help me!'' ``I can't help you. You are {\color{red}\underline{soak}}}};
%机器翻译--------------
\node [pos=0.4,left,xshift=-0.4em,yshift=2.0em] (mt4) {\scriptsize{机器翻译:At this time, Richness {\color{red}\underline{passed by}} in a big ship. Love said, ``Rich, can you take me away?'' Richness}};
\node [anchor=north west] (mt4-1) at ([xshift=3.5em,yshift=0.4em]mt4.south west) {\scriptsize{replied, ``No, {\color{red}\underline{there are many treasures}} of gold and silver in my ship,and there is no place for you.''}};
\node [anchor=north west] (mt4-2) at ([xshift=0em,yshift=0.3em]mt4-1.south west) {\scriptsize{ Love saw vanity in a magnificent boat and said, ``Vanity, help me!'' ``I can't help you. You are {\color{red}\underline{soak}}}};
\node [anchor=north west] (mt4-3) at ([yshift=0.4em]mt4-2.south west) {\scriptsize{{\color{red}\underline{-ed to the skin}} and will damage my beautiful boat.'' When sorrow came, love asked him for help: ``}};
\node [anchor=north west] (mt4-4) at ([yshift=0.4em]mt4-3.south west) {\scriptsize{sorrow, let me go with you!'' ``Oh,...love, I am so sad that I want to be alone for a while!'' Sadly rep}};
......@@ -48,7 +50,7 @@
\begin{pgfonlayer}{background}
{
\node[rectangle,draw=ublue, inner sep=0mm] [fit = (mt4-2)(ht4)(ht8-4)] {};
\node[rectangle,draw=ublue, inner sep=0mm] [fit = (mt4)(ht4)(ht8-4)] {};
}
\end{pgfonlayer}
......
......@@ -15,7 +15,7 @@
{
\begin{scope}[yshift=-1.0in]
\node [] (part1label) at (0,0) {\includegraphics[scale=0.10]{./Chapter1/Figures/figure-oil.jpg}};
\node [anchor=north west] (part1text) at ([xshift=-1em,yshift=0.0em]part1label.south west) {\begin{tabular}{l}{\color{red}{资源}}:可以使机器翻译\\系统运行的"汽油"\end{tabular}};
\node [anchor=north west] (part1text) at ([xshift=-1em,yshift=0.0em]part1label.south west) {\begin{tabular}{l}{\color{red}{资源}}:可以使机器翻译\\系统运行的``汽油''\end{tabular}};
\end{scope}
}
......
......@@ -17,13 +17,13 @@
\node [anchor=south west, fill=blue!50, minimum width=1.1cm, minimum height=1.5cm] (mt1) at ([xshift=13.0em,yshift=-3.0em]mt.east) {{\color{white} {\small\sffamily\bfseries{机器}}}};
\node [anchor=south west, fill=red!50, minimum width=1.1cm, minimum height=2.7cm] (human1) at ([xshift=0.5cm]mt1.south east) {{\color{white} {\small\sffamily\bfseries{}}}};
\node [anchor=south] (mtscore1) at (mt1.north) {47\%};
\node [anchor=south] (humanscore1) at (human1.north) {100\%};
\node [anchor=south] (mtscore1) at (mt1.north) {47};
\node [anchor=south] (humanscore1) at (human1.north) {100};
\draw [->,thick] ([xshift=-0.5cm]mt1.south west) -- ([xshift=0.5cm]human1.south east);
\draw [->,thick] ([xshift=-0.5cm]mt1.south west) -- ([xshift=-0.5cm,yshift=3.2cm]mt1.south west);
\node[anchor=south](footname1) at ([xshift=2.1em,yshift=-2.0em]mt.south){\footnotesize{人工评价(5分满)}};
\node[anchor=south](footname2) at ([xshift=2.1em,yshift=-2.0em]mt1.south){\footnotesize{自动评价}};
\node[anchor=south](footname1) at ([xshift=2.1em,yshift=-2.0em]mt.south){\footnotesize{人工评价(五分制)}};
\node[anchor=south](footname2) at ([xshift=2.1em,yshift=-2.0em]mt1.south){\footnotesize{自动评价(百分制)}};
\end{tikzpicture}
}
......
......@@ -73,7 +73,7 @@
\begin{itemize}
\vspace{0.5em}
\item {\small\bfnew{自然语言翻译问题的复杂性极高}}。语言是人类进化的最高成就之一,自然语言具有高度的概括性、灵活性、多样性,这些都很难用几个简单的模型和算法进行描述。因此,翻译问题的数学建模和计算机程序实现难度很大。虽然近几年Alpha Go等人工智能系统在围棋等领域取得了令人瞩目的成绩,但是,相比翻译来说,围棋等棋类任务仍然``简单'',比如,对于一个句子,其潜在的译文几乎是不可穷尽的,即使同一句话不同人的理解也不尽相同,甚至在翻译一个句子、一个单词的时候,要考虑整个篇章的上下文语境,这些问题都不是传统棋类任务所具备的。
\item {\small\bfnew{自然语言翻译问题的复杂性极高}}。语言是人类进化的最高成就之一,自然语言具有高度的概括性、灵活性、多样性,这些都很难用几个简单的模型和算法进行描述。因此,翻译问题的数学建模和计算机程序实现难度很大。虽然近几年AlphaGo等人工智能系统在围棋等领域取得了令人瞩目的成绩,但是,相比翻译来说,围棋等棋类任务仍然``简单''。正如不同人对同一句话的理解不尽相同,一个句子往往不存在绝对的标准译文,其潜在的译文几乎是不可穷尽的。甚至人类译员在翻译一个句子、一个单词的时候,都要考虑整个篇章的上下文语境。这些难点都不是传统棋类任务所具有的。
\vspace{0.5em}
\item {\small\bfnew{计算机的``理解''与人类的``理解''存在鸿沟}}。人类一直希望把自己翻译时所使用的知识描述出来,并用计算机程序进行实现,例如早期基于规则的机器翻译方法就源自这个思想。但是,经过实践发现,人和计算机在``理解''自然语言上存在着明显差异。首先,人类的语言能力是经过长时间在多种外部环境因素共同作用下形成的,这种能力很难直接准确地表达。况且人类的语言知识本身就很难描述,更不用说让计算机来理解;其次,人和机器翻译系统理解语言的目的不一样。人理解和使用语言是为了进行生活和工作,而机器翻译系统更多的是为了对某些数学上定义的目标函数进行优化。也就是说,机器翻译系统关注的是翻译这个单一目标,而并不是像人一样进行复杂的活动;此外,人和计算机的运行方式有着本质区别。人类语言能力的生物学机理与机器翻译系统所使用的计算模型本质上是不同的,机器翻译系统使用的是其自身能够理解的``知识'',比如,统计学上的词语表示。这种``知识''并不需要人来理解,当然从系统开发的角度,计算机也并不需要理解人是如何思考的。
\vspace{0.5em}
......@@ -112,7 +112,7 @@
\parinterval 随后,更多的翻译工作在文化和知识传播中开展。其中一个典型代表是宗教文献的翻译。在人类的历史长河中,宗教是人类意识形态的一个重要载体。为了宣传教义,人们编写了大量的宗教文献。在西方,一项最早被记录的翻译活动是将旧约圣经(希伯来文及埃兰文)翻译为希腊文版本。迄今为止人类历史上翻译版本最多的书就是圣经。在中国唐代,有一位世界性的重量级文化人物\ \dash \ 玄奘,他不仅是佛学家、旅行家,还是翻译家。玄奘西行求法归来后把全部的心血和智慧奉献给了译经事业,在助手们的帮助下,共翻译佛教经论74部,1335卷,每卷万字左右,合计1335万字,占去整个唐代译经总数的一半以上,树立了我国古代翻译思想的光辉典范。
\parinterval 翻译在人类历史长河中起到了重要的作用。一方面,由于语言文字、文化和地理位置的差异性,使得翻译成为一个重要的需求;另一方面,翻译也加速了不同文明的融会贯通,促进了世界的发展。今天,翻译已经成为重要的行业之一,包括各个高校也都设立了翻译及相关专业,相关人才不断涌现。据《2019年中国语言服务行业发展报告》统计:全球语言服务产值预计将首次接近500亿美元;中国涉及语言服务的在营企业360,000余家,语言服务为主营业务的在营企业近万家,总产值超过300亿元,年增长3\%以上;全国开设外语类专业的高校数量多达上千所,其中设立有翻译硕士(MTI)和翻译本科(BTI)专业的院校分别有250余所和280余所,MTI累计招生数达6万余人\cite{赵军峰2019深化改革}。当然,面对着巨大的需求,如何使用技术手段提高人工翻译效率,比如:机器辅助翻译,也是人工翻译和机器翻译领域需要共同探索的方向。
\parinterval 翻译在人类历史长河中起到了重要的作用。一方面,由于语言文字、文化和地理位置的差异性,使得翻译成为一个重要的需求;另一方面,翻译也加速了不同文明的融会贯通,促进了世界的发展。今天,翻译已经成为重要的行业之一,包括各个高校也都设立了翻译及相关专业,相关人才不断涌现。据《2019年中国语言服务行业发展报告》统计:全球语言服务产值预计将首次接近500亿美元;中国涉及语言服务的在营企业360,000余家,语言服务为主营业务的在营企业近万家,总产值超过300亿元,年增长3\%以上;全国开设外语类专业的高校数量多达上千所,其中设立有翻译硕士(MTI)和翻译本科(BTI)专业的院校分别有250余所和280余所,MTI累计招生数达6万余人\cite{赵军峰2019深化改革}。当然,面对着巨大的需求,如何使用机器辅助翻译等技术手段提高人工翻译效率,也是人工翻译和机器翻译领域需要共同探索的方向。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -120,20 +120,20 @@
\subsection{机器翻译的萌芽}
\parinterval 人工翻译已经存在了上千年,而机器翻译又起源于什么时候呢?机器翻译的兴起与发展可以说充满了跌宕起伏,整个发展史可以分为萌芽期、受挫期、快速成长期和爆发期四个阶段。
\parinterval 人工翻译已经存在了上千年,而机器翻译又起源于什么时候呢?机器翻译跌宕起伏的发展史可以分为萌芽期、受挫期、快速成长期和爆发期四个阶段。
%----------------------------------------------
\begin{figure}[htp]
\centering
\includegraphics[scale=0.25]{./Chapter1/Figures/figure-eniac.jpg}
\caption{世界上第一台通用电子数字计算机``埃尼阿克''(ENIAC)}%\\【图片来源:百度百科】
\caption{世界上第一台通用电子数字计算机``埃尼阿克''(ENIAC)}
\label{fig:1-4}
\end{figure}
%-------------------------------------------
\parinterval 世界上第一台通用电子数字计算机在1946年研制成功(图\ref{fig:1-4})。但在上世纪30年代使用计算模型进行自动翻译的思想就开始萌芽,当时法国科学家G.B. Artsouni提出了用机器来进行翻译的想法。
\parinterval 世界上第一台通用电子数字计算机在1946年研制成功(图\ref{fig:1-4}\footnote{\url{https://baike.baidu.com/item/ENIAC}})。但在上世纪30年代使用计算模型进行自动翻译的思想就开始萌芽,当时法国科学家G.\ B.\ Artsouni提出了用机器来进行翻译的想法。
\parinterval 第二次世界大战使得数学和密码学相当发达,由于战争的需要,在那个时代消息传递变的更为隐秘,对文字进行加密和解密成为重要的军事需求。因此,有人提出是否能用密码学的技术或方法解决人类语言的翻译,比如把汉语看成英语的一个加密文本,汉语翻译成英语就类似于解密的过程。当然这只是最初的想法。第一次提出机器翻译这个概念是在1949年,当时W. Weaver撰写了一篇名为《翻译》的备忘录,正式开创了机器翻译(Machine Translation)的概念,这个概念一直沿用至今。当然,在那个年代进行机器翻译研究还有很多条件不具备,包括使用加密解密技术进行自动翻译的很多尝试很快也被验证是不可行的。不过,这些早期的探索为后来机器翻译的发展提供了思想的火种。
\parinterval 第二次世界大战使得数学和密码学相当发达,由于战争的需要,在那个时代消息传递变的更为隐秘,对文字进行加密和解密成为重要的军事需求。因此,有人提出是否能用密码学的技术或方法解决人类语言的翻译任务,比如把汉语看成英语的一个加密文本,汉语翻译成英语就类似于解密的过程。当然这只是最初的想法。第一次提出机器翻译这个概念是在1949年,当时W. Weaver撰写了一篇名为《翻译》的备忘录,正式开创了机器翻译(Machine Translation)的概念,这个概念一直沿用至今。当然,在那个年代进行机器翻译研究还有很多条件不具备,包括使用加密解密技术进行自动翻译的很多尝试很快也被验证是不可行的。不过,这些早期的探索为后来机器翻译的发展提供了思想的火种。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -143,7 +143,7 @@
\parinterval 随着电子计算机的发展,研究者开始尝试使用计算机来进行自动的翻译。但是事情并不总是一帆风顺,怀疑论者对机器翻译一直存有质疑,并很容易找出一些机器翻译无法解决的问题。自然地,人们也期望能够客观地评估一下机器翻译的可行性。当时美国基金资助组织委任自动语言处理咨询会承担了这项任务。
\parinterval 经过近两年的调查与分析,该委员会于1966年11月公布了一个题为《语言与机器》的报告(图\ref{fig:1-5}),简称ALPAC报告。该报告全面否定了机器翻译的可行性,为机器翻译的研究泼了一盆冷水。
\parinterval 经过近两年的调查与分析,该委员会于1966年11月公布了一个题为《语言与机器》的报告(图\ref{fig:1-5}),ALPAC报告。该报告全面否定了机器翻译的可行性,为机器翻译的研究泼了一盆冷水。
\parinterval 随后美国政府终止了对机器翻译研究的支持,这导致整个产业界和学术界对机器翻译都开始回避。大家觉得机器翻译像伪科学,无论是发表论文还是申请项目都很难得到支持。没有了政府的支持,企业也无法进行大规模投入,机器翻译的研究就此受挫。
......@@ -166,7 +166,7 @@
\parinterval 事物发展都是螺旋式上升的,机器翻译也是一样。上世纪70年代中后期,特别是80年代到90年代初,国家之间往来日益密切,而不同语言之间形成的交流障碍愈发严重,传统的人工作业方式已经远远不能满足需求。与此同时,语料库语言学的发展也为机器翻译提供了新的思路。其中,随着传统纸质文字资料不断电子化,计算机可读的语料越来越多,这使得人们可以用计算机对语言规律进行统计分析。另一方面,随着可用数据越来越多,用数学模型描述这些数据中的规律并进行推理逐渐成为可能。这也衍生出一类数学建模方法\ \dash\ {\small\bfnew{数据驱动}}\index{数据驱动}(Data-Driven)\index{Data-Driven}的方法。这类方法也成为了随后出现的统计机器翻译的基础。
传统的机器翻译方法,都需要人来书写规则,虽然对少部分句子具有较高的翻译精度,但这类方法对翻译现象的覆盖度有限,而且对规则或者模板中的噪声非常敏感,系统健壮性差。而基于数据驱动的方法不依赖于人写的规则,机器翻译的建模、训练和推断都可以自动地从数据中学习。这使得整个机器翻译的范式发生了翻天覆地的变化,比如,基于实例的方法和统计机器翻译就是在此期间兴起的。此外,这样的方法使得机器翻译系统的开发代价大大地降低。从上世纪90年代到本世纪初,统计机器翻译发展迅猛,很快成为了当时机器翻译研究与应用的代表性方法。一个标志性的事件是谷歌推出了一个在线的免费自动翻译服务,也就是大家熟知的谷歌翻译。这使得机器翻译这种``高大上''的技术快速进入人们的生活,而不再是束之高阁的科研想法。随着机器翻译不断走向实用,机器翻译的应用也越来越多,这反过来进一步促进了机器翻译的研究进程。比如,在2005-2015年间,统计机器翻译这个主题几乎统治了ACL等自然语言处理相关方向顶级会议的论文,可见其在当时的影响力。
传统的机器翻译方法,都需要人来书写规则,虽然对少部分句子具有较高的翻译精度,但这类方法对翻译现象的覆盖度有限,而且对规则或者模板中的噪声非常敏感,系统健壮性差。而基于数据驱动的方法不依赖于人写的规则,机器翻译的建模、训练和推断都可以自动地从数据中学习。这使得整个机器翻译的范式发生了翻天覆地的变化,比如,基于实例的方法和统计机器翻译就是在此期间兴起的。此外,这样的方法使得机器翻译系统的开发代价大大地降低。从上世纪90年代到本世纪初,统计机器翻译发展迅猛,很快成为了当时机器翻译研究与应用的代表性方法。一个标志性的事件是谷歌推出了一个在线的免费自动翻译服务,也就是大家熟知的谷歌翻译。这使得机器翻译这种``高大上''的技术快速进入人们的生活,而不再是束之高阁的科研想法。随着机器翻译不断走向实用,机器翻译的应用也越来越多,这反过来进一步促进了机器翻译的研究进程。比如,在20052015年间,统计机器翻译这个主题几乎统治了ACL等自然语言处理相关方向顶级会议的论文,可见其在当时的影响力。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -174,11 +174,11 @@
\subsection{机器翻译的爆发}
\parinterval 2005年以后迎来了统计机器翻译发展的十年黄金时期,各种基于统计机器翻译模型层出不穷,经典的基于短语的模型和基于句法的模型也先后被提出。但是在2013年以后,机器学习的进步带来了机器翻译技术的进一步提升。特别是基于神经网络的深度学习方法在机器视觉、语音识别中被成功应用,带来性能的飞跃式提升。很快,相关模型和方法也被用于机器翻译。对于机器翻译来说,深度学习的成功也是一种必然,原因如下:
\parinterval 2005年拉开了统计机器翻译发展十年黄金时期的序幕。在这一时期,各种基于统计机器翻译模型层出不穷,经典的基于短语的模型和基于句法的模型也先后被提出。在2013年以后,机器学习的进步带来了机器翻译技术的进一步提升。特别是基于神经网络的深度学习方法在机器视觉、语音识别中被成功应用,带来性能的飞跃式提升。很快,相关模型和方法也被用于机器翻译。对于机器翻译来说,深度学习的成功也是一种必然,原因如下:
\begin{itemize}
\vspace{0.5em}
\item 第一,端到端学习不依赖于过多的先验假设。在统计机器翻译时代,模型设计或多或少会对翻译的过程进行假设,称为隐藏结构假设。比如基于短语的模型假设:源语言和目标语言都会被切分成短语序列,这些短语之间存在某种对齐关系。这种假设既有优点也有缺点,一方面,假设可以有助于模型融入人类的先验知识,包括短语本身也借鉴了语言学相关的概念;另一方面,假设越多模型受到的限制也越多。如果假设是正确的,模型可以很好地描述问题。但如果假设错误,那么模型就可能产生偏差。深度学习不依赖于先验知识,也不需要手工设计特征,模型直接从输入和输出的映射上进行学习(端到端学习),这样也在一定程度上避免了隐藏结构假设造成的偏差。
\item 第一,端到端学习不依赖于过多的先验假设。在统计机器翻译时代,模型设计或多或少会对翻译的过程进行假设,称为隐藏结构假设。比如基于短语的模型假设:源语言和目标语言都会被切分成短语序列,这些短语之间存在某种对齐关系。这种假设既有优点也有缺点:一方面,该假设有助于模型融入人类的先验知识,比如假设中的短语就借鉴了语言学相关的概念;另一方面,假设越多模型受到的限制也越多。如果假设是正确的,模型可以很好地描述问题。但如果假设错误,那么模型就可能产生偏差。深度学习不依赖于先验知识,也不需要手工设计特征,模型直接从输入和输出的映射上进行学习(端到端学习),这样也在一定程度上避免了隐藏结构假设造成的偏差。
\vspace{0.5em}
\item 第二,神经网络的连续空间模型有更强的表示能力。机器翻译中的一个基本问题是:如何表示一个句子?统计机器翻译把句子的生成过程看作是短语或者规则的推导,这本质上是一个离散空间上的符号系统。深度学习把传统的基于离散化的表示变成了连续空间的表示。比如,用实数空间的分布式表示代替了离散化的词语表示,而整个句子可以被描述为一个实数向量。这使得翻译问题可以在连续空间上描述,进而大大缓解了传统离散空间模型维度灾难等问题。更重要的是,连续空间模型可以用梯度下降等方法进行优化,具有很好的数学性质并且易于实现。
\vspace{0.5em}
......@@ -186,9 +186,9 @@
\vspace{0.5em}
\end{itemize}
\parinterval 今天,神经机器翻译已经成为新的范式,大有全面替代统计机器翻译之势。比如,从世界上著名的机器翻译比赛WMT和CCMT中就可以看出这个趋势。如图\ref{fig:1-6}所示,其中左图是WMT19全球机器翻译比赛的参赛队伍的截图,这些参赛队伍基本上都在使用深度学习完成机器翻译的建模。而在WMT19各个项目夺冠系统中(\ref{fig:1-6}右图),神经机器翻译也几乎一统天下。
\parinterval 今天,神经机器翻译已经成为新的范式,大有全面替代统计机器翻译之势。比如,从世界上著名的机器翻译比赛WMT和CCMT中就可以看出这个趋势。如图\ref{fig:1-6}所示,其中左图是WMT\ 19全球机器翻译比赛的参赛队伍的截图,这些参赛队伍基本上都在使用深度学习完成机器翻译的建模。而在WMT\ 19各个项目夺冠系统中(\ref{fig:1-6}右图),神经机器翻译也几乎一统天下。
\parinterval 值得一提的是,近些年神经机器翻译的快速发展也得益于产业界的关注。各大互联网企业和机器翻译技术研发机构都对神经机器翻译的模型和实践方法给予了很大贡献。比如,谷歌,微软、百度、搜狗、腾讯、阿里、有道、小牛翻译等企业凭借自身人才和基础设施方面的优势,先后推出了以神经机器翻译为内核的产品及服务,相关技术方法已经在大规模应用中得到验证,大大推动了机器翻译的产业化进程,而且这种趋势在不断加强,机器翻译的前景也更加宽广。
\parinterval 值得一提的是,近些年神经机器翻译的快速发展也得益于产业界的关注。各大互联网企业和机器翻译技术研发机构都对神经机器翻译的模型和实践方法给予了很大贡献。比如,谷歌、微软、百度、搜狗、金山、腾讯、阿里、有道、讯飞、小牛翻译等企业凭借自身人才和基础设施方面的优势,先后推出了以神经机器翻译为内核的产品及服务,相关技术方法已经在大规模应用中得到验证,大大推动了机器翻译的产业化进程,而且这种趋势在不断加强,机器翻译的前景也更加宽广。
%----------------------------------------------
\begin{figure}[htp]
......@@ -196,7 +196,7 @@
\includegraphics[scale=0.3]{./Chapter1/Figures/figure-wmt-participation.jpg}
\includegraphics[scale=0.3]{./Chapter1/Figures/figure-wmt-bestresults.jpg}
\setlength{\belowcaptionskip}{-1.5em}
\caption{国际机器翻译大赛(左:WMT19参赛队伍;右:WMT19最终个项目最好分数结果)}
\caption{国际机器翻译大赛(左:WMT\ 19参赛队伍;右:WMT\ 19各项目的最好分数结果)}
\label{fig:1-6}
\end{figure}
%-------------------------------------------
......@@ -210,7 +210,7 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\parinterval 机器翻译技术发展到今天已经过无数次迭代,技术范式也经过若干次更替,近些年机器翻译的应用也如雨后春笋。但是大家都很好奇今天的机器翻译的质量究竟如何呢?乐观地说,在受限条件下,机器翻译的译文结果还是非常不错的,甚至可以接近人工翻译的结果。然而,在开放式翻译任务中,机器翻译的结果却并不理想。更严格来说,机器翻译的质量远没有达到人们所期望的完美的程度。对于有些人提到的``机器翻译代替人工翻译''也并不是事实。比如,在高精度同声传译任务中,机器翻译仍需要更多打磨;再比如,针对于小说的翻译,机器翻译还无法做到与人工翻译媲美;甚至有人尝试用机器翻译系统翻译中国古代诗词,这里更多的是娱乐的味道。但是毫无疑问的是,机器翻译可以帮助人类,甚至有朝一日可以代替一些低端的人工翻译工作。
\parinterval\ref{fig:1-7}展示了机器翻译和人工翻译质量的一个对比结果。在汉语到英语的新闻翻译任务中,如果对译文进行人工评价,五分制机器翻译的译文得3.9 分,人工译文得4.7分(人的翻译也不是完美的)。可见,在这个任务中机器翻译表现不错,但是与人还有一定差距。如果换一种方式评价,把人的译文作为参考答案,用机器翻译的译文与其进行比对,会发现机器翻译的得分只有47分(百分制)。当然,这个结果并不是说机器翻译的译文质量很差,它更多的是表明机器翻译系统可以生成一些与人工翻译不同的译文,机器翻译也具有一定的创造性。这也类似于,很多围棋选手都想向AlphaGo学习,因为智能围棋系统也可以走出一些人类从未走过的妙招。
\parinterval\ref{fig:1-7}展示了机器翻译和人工翻译质量的一个对比结果。在汉语到英语的新闻翻译任务中,如果对译文进行人工评价(五分制),那么机器翻译的译文得分为3.9分,人工译文得分为4.7分(人的翻译也不是完美的)。可见,在这个任务中机器翻译表现不错,但是与人还有一定差距。如果换一种方式评价,把人的译文作为参考答案,用机器翻译的译文与其进行比对(百分制),会发现机器翻译的得分只有47分。当然,这个结果并不是说机器翻译的译文质量很差,它更多的是表明机器翻译系统可以生成一些与人工翻译不同的译文,机器翻译也具有一定的创造性。这也类似于,很多围棋选手都想向AlphaGo学习,因为智能围棋系统也可以走出一些人类从未走过的妙招。
%----------------------------------------------
\begin{figure}[htp]
......@@ -318,7 +318,7 @@
\subsection{神经机器翻译}
\parinterval 随着机器学习技术的发展,基于深度学习的神经机器翻译逐渐兴起。自2014年开始,它在短短几年内已经在大部分任务上取得了明显的优势\cite{NIPS2014_5346,bahdanau2014neural}。在神经机器翻译中,词串被表示成实数向量,即分布式向量表示。这样,翻译过程并不是在离散化的单词和短语上进行,而是在实数向量空间上计算,因此它对词序列表示的方式产生了本质的改变。通常,机器翻译可以被看作一个序列到另一个序列的转化。在神经机器翻译中,序列到序列的转化过程可以由{\small\bfnew{编码器-解码器}}\index{编码器-解码器}encoder-decoder)\index{encoder-decoder}框架实现。其中,编码器把源语言序列进行编码,并提取源语言中信息进行分布式表示,之后解码器再把这种信息转换为另一种语言的表达。
\parinterval 随着机器学习技术的发展,基于深度学习的神经机器翻译逐渐兴起。自2014年开始,它在短短几年内已经在大部分任务上取得了明显的优势\cite{NIPS2014_5346,bahdanau2014neural}。在神经机器翻译中,词串被表示成实数向量,即分布式向量表示。这样,翻译过程并不是在离散化的单词和短语上进行,而是在实数向量空间上计算,因此它对词序列表示的方式产生了本质的改变。通常,机器翻译可以被看作一个序列到另一个序列的转化。在神经机器翻译中,序列到序列的转化过程可以由{\small\bfnew{编码器-解码器}}\index{编码器-解码器}Encoder-Decoder)\index{Encoder-Decoder}框架实现。其中,编码器把源语言序列进行编码,并提取源语言中信息进行分布式表示,之后解码器再把这种信息转换为另一种语言的表达。
%----------------------------------------------
\begin{figure}[htp]
......@@ -331,7 +331,7 @@
\parinterval\ref{fig:1-12}展示了一个神经机器翻译的实例。首先,通过编码器,源语言序列``我对你感到满意''经过多层神经网络编码生成一个向量表示,即图中的向量(0.2,-1,6,5,0.7,-2)。再将该向量作为输入送到解码器中,解码器把这个向量解码成目标语言序列。注意,目标语言序列的生成是逐词进行的(虽然图中展示的是解码器生成整个序列,但是在具体实现时是逐个单词生成目标语译文),产生某个词的时候依赖之前生成的目标语言的历史信息,直到产生句子结束符为止。
\parinterval 相比统计机器翻译,神经机器翻译的优势体现在其不需要特征工程,所有信息由神经网络自动从原始输入中提取。而且,相比离散化的表示,词和句子的分布式连续空间表示可以为建模提供更为丰富的信息,同时可以使用相对成熟的基于梯度的方法优化模型。此外,神经网络的存储需求较小,天然适合小设备上的应用。但是,神经机器翻译也存在问题。首先,虽然脱离了特征工程,但神经网络的结构需要人工设计,即使设计好结构,系统的调优、超参数的设置等仍然依赖大量的实验;其次,神经机器翻译现在缺乏可解释性,其过程和人的认知差异很大,通过人的先验知识干预的程度差;再次,神经机器翻译对数据的依赖很大,数据规模、质量对性能都有很大影响,特别是在数据稀缺的情况下,充分训练神经网络具有挑战
\parinterval 相比统计机器翻译,神经机器翻译的优势体现在其不需要特征工程,所有信息由神经网络自动从原始输入中提取。而且,相比离散化的表示,词和句子的分布式连续空间表示可以为建模提供更为丰富的信息,同时可以使用相对成熟的基于梯度的方法优化模型。此外,神经网络的存储需求较小,天然适合小设备上的应用。但是,神经机器翻译也存在问题。首先,虽然脱离了特征工程,但神经网络的结构需要人工设计,即使设计好结构,系统的调优、超参数的设置等仍然依赖大量的实验;其次,神经机器翻译现在缺乏可解释性,其过程和人的认知差异很大,通过人的先验知识干预的程度差;再次,神经机器翻译对数据的依赖很大,数据规模、质量对性能都有很大影响,特别是在数据稀缺的情况下,充分训练神经网络很有挑战性
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -351,8 +351,6 @@
\vspace{0.5em}
\end{itemize}
\parinterval 借用机器翻译著名学者董振东先生对不同机器翻译方法的评价\footnote[1]{这里遵循董振东先生的话进行了重新表述}:基于规则和实例的机器翻译是傻子(依赖一定人工,在匹配规则和模板的情况下翻译质量高,但是系统泛化能力有限),统计和神经机器翻译是疯子(只依赖数据,不依赖人工书写规则或者模板,系统健壮性强,但是精度不稳定且翻译过程难以人工干预)。
%----------------------------------------------
\begin{table}[htp]{
\begin{center}
......@@ -376,7 +374,7 @@
}\end{table}
%-------------------------------------------
\parinterval 从现在机器翻译的研究和应用情况来看,基于统计建模的方法(统计机器翻译和神经机器翻译)是主流。这主要是由于它们的系统研发周期短,通过搜集一定量的数据即可实现快速原型。但是随着互联网等信息的不断开放,低成本的数据获取可以让系统更快得以实现。特别是最近神经机器翻译凭借其高质量的译文,受到研究人员和开发者的广泛青睐。当然,对不同方法进行融合也是有价值的研究方向,也有很多有趣的探索,比如无指导机器翻译中还是会同时使用统计机器翻译和神经机器翻译方法,这也是一种典型的融合多种方法的思路。
\parinterval 从现在机器翻译的研究和应用情况来看,基于统计建模的方法(统计机器翻译和神经机器翻译)是主流。这主要是由于它们的系统研发周期短,通过搜集一定量的数据即可实现快速原型。但是随着互联网等信息的不断开放,低成本的数据获取让神经机器翻译系统更快得以实现。因此最近神经机器翻译凭借其高质量的译文,受到越来越多研究人员和开发者的青睐。当然,对不同方法进行融合也是有价值的研究方向,也有很多有趣的探索,比如无指导机器翻译中还是会同时使用统计机器翻译和神经机器翻译方法,这也是一种典型的融合多种方法的思路。
%----------------------------------------------------------------------------------------
% NEW SECTION
......@@ -387,7 +385,7 @@
\parinterval 机器翻译质量的评价对于机器翻译的发展具有至关重要的意义。首先,评价的结果可以用于指导研究人员不断改进机器翻译结果,并找到最具潜力的技术发展方向。同时,一个权威的翻译质量评价指标可以帮助用户更有效地使用机器翻译的结果。
\parinterval 一般来说,机器翻译的翻译{\small\bfnew{质量评价}}\index{质量评价}(Quality Evaluation)\index{Quality Evaluation}是指在参考答案或者评价标准已知的情况下对译文进行打分。这类方法可以被称作有参考答案的评价,包括人工打分、BLEU 等自动评价方法都是典型的有参考答案评价。相对的,{\small\bfnew{无参考答案的评价}}\index{无参考答案的评价}(Quality Estimation)\index{Quality Estimation}是指在没有人工评价和参考答案的情况下,对译文质量进行评估。这类方法可以被看作是对机器翻译译文进行质量`` 预测'',这样用户可以选择性的使用机器翻译结果。这里主要讨论有参考答案的评价,因为这类方法是机器翻译系统研发所使用的主要评价方法。
\parinterval 一般来说,机器翻译的翻译{\small\bfnew{质量评价}}\index{质量评价}(Quality Evaluation)\index{Quality Evaluation}是指在参考答案或者评价标准已知的情况下对译文进行打分。这类方法可以被称作有参考答案的评价,包括人工打分、BLEU 等自动评价方法都是典型的有参考答案评价。相对的,{\small\bfnew{无参考答案的评价}}\index{无参考答案的评价}(Quality Estimation)\index{Quality Estimation}是指在没有人工评价和参考答案的情况下,对译文质量进行评估。这类方法可以被看作是对机器翻译译文进行质量``预测'',这样用户可以选择性的使用机器翻译结果。这里主要讨论有参考答案的评价,因为这类方法是机器翻译系统研发所使用的主要评价方法。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -401,17 +399,17 @@
\begin{itemize}
\vspace{0.5em}
\item 打分常用的方法是对每个译文进行百分制或者五分制打分,分数越高表明译文越好。更粗糙的方法有三分制,甚至两分制打分。注意,打分越细致,评价者的工作量越大,因此五分制或者三分制评价更适合快速获得评价结果。
\item 打分常用的方法是对每个译文进行百分制或者五分制打分,分数越高表明译文越好。更粗糙的方法有三分制,甚至两分制打分。注意,打分越细致,评价者的工作量越大,因此五分制或者三分制评价更适合快速获得评价结果。
\vspace{0.5em}
\item 是否呈现源语言文本评价者在进行人工评价时可仅被提供源语言文本或参考译文、或同时提供源语言文本和参考译文。从评价的角度,参考译文已经能够帮助评价者进行正确评价,但是源语言文本可以提供更多信息帮助评估译文的准确性。
\item 是否呈现源语言文本评价者在进行人工评价时可仅被提供源语言文本或参考译文、或同时提供源语言文本和参考译文。从评价的角度,参考译文已经能够帮助评价者进行正确评价,但是源语言文本可以提供更多信息帮助评估译文的准确性。
\vspace{0.5em}
\item 评价者选择理想情况下,评价者应同时具有源语言和目标语言的语言能力。但是,很多场景下双语能力的评价者很难招募,因此这时会考虑使用目标语为母语的评价者。配合参考译文,单语评价者也可以准确地进行评价。
\item 评价者选择理想情况下,评价者应同时具有源语言和目标语言的语言能力。但是,很多场景下双语能力的评价者很难招募,因此这时会考虑使用目标语为母语的评价者。配合参考译文,单语评价者也可以准确地进行评价。
\vspace{0.5em}
\item 多个系统评价如果有多个不同系统的译文需要评价,可以直接使用每个系统单独打分的方法。但是,如果仅仅是想了解不同译文之间的相对好坏,也可以采用竞评的方式,即对于每个句子,对不同系统根据译文质量进行排序,这样做的效率会高于直接打分,而且评价准确性也能够得到保证。
\item 多个系统评价如果有多个不同系统的译文需要评价,可以直接使用每个系统单独打分的方法。但是,如果仅仅是想了解不同译文之间的相对好坏,也可以采用竞评的方式,即对于每个句子,对不同系统根据译文质量进行排序,这样做的效率会高于直接打分,而且评价准确性也能够得到保证。
\vspace{0.5em}
\item 数据选择评价数据一般需要根据目标任务进行采集,为了避免和系统训练数据重复,往往会搜集最新的数据。而且,评价数据的规模越大,评价结果越科学。常用的做法是搜集一定量的评价数据,之后从中采样出所需的数据。由于不同的采样会得到不同的评价集合,这样的方法可以复用多次,得到不同的测试集。
\item 数据选择评价数据一般需要根据目标任务进行采集,为了避免和系统训练数据重复,往往会搜集最新的数据。而且,评价数据的规模越大,评价结果越科学。常用的做法是搜集一定量的评价数据,之后从中采样出所需的数据。由于不同的采样会得到不同的评价集合,这样的方法可以复用多次,得到不同的测试集。
\vspace{0.5em}
\item 面向应用的评价除了人工直接打分,一种更有效的方法是把机器翻译的译文嵌入到下游应用中,通过机器翻译对下游应用的改善效果评估机器翻译译文质量。比如,可以把机器翻译放入译后编辑流程中,通过对比翻译效率的提升来评价译文质量。再比如,把机器翻译放入线上应用中,通过点击率或者用户反馈来评价机器翻译的品质。
\item 面向应用的评价除了人工直接打分,一种更有效的方法是把机器翻译的译文嵌入到下游应用中,通过机器翻译对下游应用的改善效果评估机器翻译译文质量。比如,可以把机器翻译放入译后编辑流程中,通过对比翻译效率的提升来评价译文质量。再比如,把机器翻译放入线上应用中,通过点击率或者用户反馈来评价机器翻译的品质。
\vspace{0.5em}
\end{itemize}
......@@ -474,7 +472,7 @@ e^{(1-\frac{r}{c})}& c \le r
\label{eq:1-4}
\end{eqnarray}
\parinterval 从机器翻译的发展来看,BLEU的意义在于它给系统研发人员提供了一种简单、高效、可重复的自动评价手段,在研发机器翻译系统时可以不需要依赖人工评价。同时,BLEU也有很多创新之处,包括引入$n$-gram的匹配,截断计数和短句惩罚等等,包括NIST等很多评价指标都是受到BLEU的启发。当然, BLEU也并不完美,甚至经常被人诟病。比如,它需要依赖参考译文,而且评价结果有时与人工评价不一致,同时BLEU评价只是单纯从匹配度的角度思考翻译质量的好坏,并没有真正考虑句子的语义是否翻译正确。但是,毫无疑问,BLEU仍然是机器翻译中最常用的评价方法。在没有找到更好的替代方案之前,BLEU还是机器翻译研究所使用的标准评价指标。
\parinterval 从机器翻译的发展来看,BLEU的意义在于它给系统研发人员提供了一种简单、高效、可重复的自动评价手段,在研发机器翻译系统时可以不需要依赖人工评价。同时,BLEU也有很多创新之处,包括引入$n$-gram的匹配,截断计数和短句惩罚等等,包括NIST等很多评价指标都是受到BLEU的启发。当然, BLEU也并不完美,甚至经常被人诟病。比如,它需要依赖参考译文,而且评价结果有时与人工评价不一致,同时BLEU评价只是单纯从匹配度的角度思考翻译质量的好坏,并没有真正考虑句子的语义是否翻译正确。但是,毫无疑问,BLEU仍然是机器翻译中最常用的评价方法。在没有找到更好的替代方案之前,BLEU还是机器翻译研究所使用的标准评价指标。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -482,7 +480,7 @@ e^{(1-\frac{r}{c})}& c \le r
\subsubsection{TER}
\parinterval TER是Translation Edit Rate的缩写,是一种基于距离的评价方法,用来评定机器翻译结果的译后编辑的工作量\cite{snover2006study}。这里,距离被定义为将一个序列转换成另一个序列所需要的最少编辑操作次数。操作次数越多,距离越大,序列之间的相似性越低;相反距离越小,表示一个句子越容易改写成另一个句子,序列之间的相似性越高。TER使用的编辑操作包括:增加,删除,替换和移位,其中增加,删除,替换操作计算得到的距离被称为编辑距离,并根据错误率的形式给出评分:
\parinterval TER是Translation Edit Rate的缩写,是一种基于距离的评价方法,用来评定机器翻译结果的译后编辑的工作量\cite{snover2006study}。这里,距离被定义为将一个序列转换成另一个序列所需要的最少编辑操作次数。操作次数越多,距离越大,序列之间的相似性越低;相反距离越小,表示一个句子越容易改写成另一个句子,序列之间的相似性越高。TER使用的编辑操作包括:增加、删除、替换和移位。其中增加、删除、替换操作计算得到的距离被称为编辑距离,并根据错误率的形式给出评分:
\begin{eqnarray}
\textrm{score}=\frac{\textrm{edit}(c,r)}{l}
\label{eq:1-5}
......@@ -542,7 +540,7 @@ His house is on the south bank of the river.
\label{eg:1-5}
\end{example}
\parinterval 基于检测点的评价方法的意义在于,它并不是简单给出一个分数,而是帮助系统研发人员定位问题。因此这类方法更多使用在对机器翻译的结果进行分析上,是对BLEU等整体评价指标的一种很好的补充。
\parinterval 基于检测点的评价方法的意义在于,它并不是简单给出一个分数,而是帮助系统研发人员定位问题。因此这类方法更多使用在对机器翻译的结果进行分析上,是对BLEU等整体评价指标的一种很好的补充。
%----------------------------------------------------------------------------------------
% NEW SECTION
......@@ -551,7 +549,7 @@ His house is on the south bank of the river.
\sectionnewpage
\section{机器翻译应用}
\parinterval 机器翻译有着十分广泛的应用,下面看一下机器翻译生活中的具体应用形式:
\parinterval 机器翻译有着十分广泛的应用,下面看一下机器翻译生活中的具体应用形式:
\parinterval (一)网页翻译
......@@ -581,7 +579,7 @@ His house is on the south bank of the river.
\parinterval (五)同声传译
\parinterval 在一些国际会议中,与会者来自许多不同的国家,为了保证会议的流畅,通常需要专业译员进行同声传译。同声传译需要在不打断演讲的同时,不间断的将讲话内容进行口译,对翻译人员的素质要求极高,成本高昂。现在,一些会议开始采用语音识别来将语音转换成文本,同时使用机器翻译技术进行翻译的方式,达到同步翻译的目的。这项技术已经得到了多个企业的关注,并在很多重要会议上进行尝试,取得了很好的反响。不过同声传译达到真正的使用还需一定时间的打磨,特别是会议场景下,准确进行语音识别和翻译仍然具有一定挑战
\parinterval 在一些国际会议中,与会者来自许多不同的国家,为了保证会议的流畅,通常需要专业译员进行同声传译。同声传译需要在不打断演讲的同时,不间断地将讲话内容进行口译,对翻译人员的素质要求极高,成本高昂。现在,一些会议开始采用语音识别来将语音转换成文本,同时使用机器翻译技术进行翻译的方式,达到同步翻译的目的。这项技术已经得到了多个企业的关注,并在很多重要会议上进行尝试,取得了很好的反响。不过同声传译达到真正的使用还需一定时间的打磨,特别是会议场景下,准确进行语音识别和翻译仍然具有挑战性
\parinterval (六)医药领域翻译
......@@ -589,7 +587,7 @@ His house is on the south bank of the river.
\parinterval (七)中国传统语言文化的翻译
\parinterval 中国几千年的历史留下了极为宝贵的文化遗产,而其中,文言文作为古代书面语,具有言文分离、行文简练的特点,易于流传。由于其言文分离的特点,使得文言文和现在的标准汉语具有一定的区别,为了更好发扬中国传统文化,需要对文言文进行翻译。而文言文古奥难懂,需要人们具备一定的文言文知识背景,否则很难准确翻译,机器翻译技术也可以帮助人们快速完成文言文的翻译。除此之外,机器翻译技术同样可以用于古诗生成和对联生成等任务。
\parinterval 中国几千年的历史留下了极为宝贵的文化遗产,而其中,文言文作为古代书面语,具有言文分离、行文简练的特点,易于流传。言文分离的特点使得文言文和现在的标准汉语具有一定的区别。为了更好发扬中国传统文化,我们需要对文言文进行翻译。而文言文古奥难懂,人们需要具备一定的文言文知识背景才能准确翻译。机器翻译技术也可以帮助人们快速完成文言文的翻译。除此之外,机器翻译技术同样可以用于古诗生成和对联生成等任务。
\parinterval (八)全球化
......@@ -629,27 +627,27 @@ His house is on the south bank of the river.
\begin{itemize}
\vspace{0.5em}
\item NiuTrans.SMTNiuTrans\cite{Tong2012NiuTrans}是由东北大学自然语言处理实验室自主研发的统计机器翻译系统,该系统可支持基于短语的模型、基于层次短语的模型以及基于句法的模型。由于使用C++ 语言开发,所以该系统运行时间快,所占存储空间少。系统中内嵌有$n$-gram语言模型,故无需使用其他的系统即可对完成语言建模。网址:\url{http://opensource.niutrans.com/smt/index.html}
\item NiuTrans.SMTNiuTrans\cite{Tong2012NiuTrans}是由东北大学自然语言处理实验室自主研发的统计机器翻译系统,该系统可支持基于短语的模型、基于层次短语的模型以及基于句法的模型。由于使用C++ 语言开发,所以该系统运行时间快,所占存储空间少。系统中内嵌有$n$-gram语言模型,故无需使用其他的系统即可对完成语言建模。网址:\url{http://opensource.niutrans.com/smt/index.html}
\vspace{0.5em}
\item MosesMoses\cite{Koehn2007Moses}是统计机器翻译时代最著名的系统之一,(主要)由爱丁堡大学的机器翻译团队开发。最新的Moses系统支持很多的功能,例如,它既支持基于短语的模型,也支持基于句法的模型。Moses 提供因子化翻译模型(Factored Translation Model),因此该模型可以很容易地对不同层次的信息进行建模。此外,它允许将混淆网络和字格作为输入,可缓解系统的1-best输出中的错误。Moses还提供了很多有用的脚本和工具,被机器翻译研究者广泛使用。网址:\url{http://www.statmt.org/moses/}
\item MosesMoses\cite{Koehn2007Moses}是统计机器翻译时代最著名的系统之一,(主要)由爱丁堡大学的机器翻译团队开发。最新的Moses系统支持很多的功能,例如,它既支持基于短语的模型,也支持基于句法的模型。Moses 提供因子化翻译模型(Factored Translation Model),因此该模型可以很容易地对不同层次的信息进行建模。此外,它允许将混淆网络和字格作为输入,可缓解系统的1-best输出中的错误。Moses还提供了很多有用的脚本和工具,被机器翻译研究者广泛使用。网址:\url{http://www.statmt.org/moses/}
\vspace{0.5em}
\item Joshua:Joshua\cite{Li2010Joshua}是由约翰霍普金斯大学的语言和语音处理中心开发的层次短语翻译系统。由于Joshua是由Java语言开发,所以它在不同的平台上运行或开发时具有良好的可扩展性和可移植性。Joshua也是使用非常广泛的开源器翻译系统之一。网址:\url{http://joshua.sourceforge.net/Joshua/Welcome.html}
\item Joshua。Joshua\cite{Li2010Joshua}是由约翰霍普金斯大学的语言和语音处理中心开发的层次短语翻译系统。由于Joshua是由Java语言开发,所以它在不同的平台上运行或开发时具有良好的可扩展性和可移植性。Joshua也是使用非常广泛的开源器翻译系统之一。网址:\url{https://cwiki.apache.org/confluence/display/JOSHUA/}
\vspace{0.5em}
\item SilkRoadSilkRoad是由五个国内机构(中科院计算所、中科院软件所、中科院自动化所、厦门大学和哈尔滨工业大学)联合开发的基于短语的统计机器翻译系统。该系统是中国乃至亚洲地区第一个开源的统计机器翻译系统。SilkRoad支持多种解码器和规则提取模块,这样可以组合成不同的系统,提供多样的选择。网址:\url{http://www.nlp.org.cn/project/project.php?projid=14}
\item SilkRoadSilkRoad是由五个国内机构(中科院计算所、中科院软件所、中科院自动化所、厦门大学和哈尔滨工业大学)联合开发的基于短语的统计机器翻译系统。该系统是中国乃至亚洲地区第一个开源的统计机器翻译系统。SilkRoad支持多种解码器和规则提取模块,这样可以组合成不同的系统,提供多样的选择。网址:\url{http://www.nlp.org.cn/project/project.php?projid=14}
\vspace{0.5em}
\item SAMTSAMT\cite{zollmann2007the}是由卡内基梅隆大学机器翻译团队开发的语法增强的统计机器翻译系统。SAMT在解码的时候使用目标树来生成翻译规则,而不严格遵守目标语言的语法。SAMT 的一个亮点是它提供了简单但高效的方式在机器翻译中使用句法信息。由于SAMT在hadoop中实现,它可受益于大数据集的分布式处理。网址:\url{http://www.cs.cmu.edu/zollmann/samt/}
\item SAMTSAMT\cite{zollmann2007the}是由卡内基梅隆大学机器翻译团队开发的语法增强的统计机器翻译系统。SAMT在解码的时候使用目标树来生成翻译规则,而不严格遵守目标语言的语法。SAMT 的一个亮点是它提供了简单但高效的方式在机器翻译中使用句法信息。由于SAMT在hadoop中实现,它可受益于大数据集的分布式处理。网址:\url{http://www.cs.cmu.edu/zollmann/samt/}
\vspace{0.5em}
\item HiFSTHiFST\cite{iglesias2009hierarchical}是剑桥大学开发的统计机器翻译系统。该系统完全基于有限状态自动机实现,因此非常适合对搜索空间进行有效的表示。网址:\url{http://ucam-smt.github.io/}
\item HiFSTHiFST\cite{iglesias2009hierarchical}是剑桥大学开发的统计机器翻译系统。该系统完全基于有限状态自动机实现,因此非常适合对搜索空间进行有效的表示。网址:\url{http://ucam-smt.github.io/}
\vspace{0.5em}
\item cdeccdec\cite{dyer2010cdec}是一个强大的解码器,是由Chris Dyer 和他的合作者们一起开发。cdec的主要功能是它使用了翻译模型的一个统一的内部表示,并为结构预测问题的各种模型和算法提供了实现框架。所以,cdec也可以在被用来做一个对齐系统或者一个更通用的学习框架。此外,由于使用C++语言编写,cdec的运行速度较快。网址:\url{http://cdec-decoder.org/index.php?title=MainPage}
\item cdeccdec\cite{dyer2010cdec}是一个强大的解码器,是由Chris Dyer 和他的合作者们一起开发。cdec的主要功能是它使用了翻译模型的一个统一的内部表示,并为结构预测问题的各种模型和算法提供了实现框架。所以,cdec也可以在被用来做一个对齐系统或者一个更通用的学习框架。此外,由于使用C++语言编写,cdec的运行速度较快。网址:\url{http://cdec-decoder.org/index.php?title=MainPage}
\vspace{0.5em}
\item PhrasalPhrasal\cite{Cer2010Phrasal}是由斯坦福大学自然语言处理小组开发的系统。除了传统的基于短语的模型,Phrasal还支持基于非层次短语的模型,这种模型将基于短语的翻译延伸到非连续的短语翻译,增加了模型的泛化能力。网址:\url{http://nlp.stanford.edu/phrasal/}
\item PhrasalPhrasal\cite{Cer2010Phrasal}是由斯坦福大学自然语言处理小组开发的系统。除了传统的基于短语的模型,Phrasal还支持基于非层次短语的模型,这种模型将基于短语的翻译延伸到非连续的短语翻译,增加了模型的泛化能力。网址:\url{http://nlp.stanford.edu/phrasal/}
\vspace{0.5em}
\item JaneJane\cite{vilar2012jane}是一个基于短语和基于层次短语的机器翻译系统,由亚琛工业大学的人类语言技术与模式识别小组开发。Jane提供了系统融合模块,因此可以非常方便的对多个系统进行融合。网址:\url{https://www-i6.informatik.rwth-aachen.de/jane/}
\item JaneJane\cite{vilar2012jane}是一个基于短语和基于层次短语的机器翻译系统,由亚琛工业大学的人类语言技术与模式识别小组开发。Jane提供了系统融合模块,因此可以非常方便的对多个系统进行融合。网址:\url{https://www-i6.informatik.rwth-aachen.de/jane/}
\vspace{0.5em}
\item GIZA++GIZA++\cite{och2003systematic}是Franz Och研发的用于训练IBM模型1-5和HMM单词对齐模型的工具包。在早期,GIZA++是所有统计机器翻译系统中词对齐的标配工具。网址:\url{https://github.com/moses-smt/giza-pp}
\item GIZA++GIZA++\cite{och2003systematic}是Franz Och研发的用于训练IBM模型1-5和HMM单词对齐模型的工具包。在早期,GIZA++是所有统计机器翻译系统中词对齐的标配工具。网址:\url{https://github.com/moses-smt/giza-pp}
\vspace{0.5em}
\item FastAlignFastAlign\cite{dyer2013a}是一个快速,无监督的词对齐工具,由卡内基梅隆大学开发。网址:\url{https://github.com/clab/fast\_align}
\item FastAlignFastAlign\cite{dyer2013a}是一个快速,无监督的词对齐工具,由卡内基梅隆大学开发。网址:\url{https://github.com/clab/fast\_align}
\vspace{0.5em}
\end{itemize}
......@@ -661,33 +659,33 @@ His house is on the south bank of the river.
\begin{itemize}
\vspace{0.5em}
\item GroundHogGroundHog\cite{bahdanau2014neural}基于Theano\cite{al2016theano}框架,由蒙特利尔大学LISA 实验室使用Python语言编写的一个框架,旨在提供灵活而高效的方式来实现复杂的循环神经网络模型。它提供了包括LSTM在内的多种模型。Bahdanau等人在此框架上又编写了GroundHog神经机器翻译系统。该系统也作为了很多论文的基线系统。网址:\url{https://github.com/lisa-groundhog/GroundHog}
\item GroundHogGroundHog\cite{bahdanau2014neural}基于Theano\cite{al2016theano}框架,由蒙特利尔大学LISA 实验室使用Python语言编写的一个框架,旨在提供灵活而高效的方式来实现复杂的循环神经网络模型。它提供了包括LSTM在内的多种模型。Bahdanau等人在此框架上又编写了GroundHog神经机器翻译系统。该系统也作为了很多论文的基线系统。网址:\url{https://github.com/lisa-groundhog/GroundHog}
\vspace{0.5em}
\item NematusNematus\cite{DBLP:journals/corr/SennrichFCBHHJL17}是英国爱丁堡大学开发的,基于Theano框架的神经机器翻译系统。该系统使用GRU作为隐层单元,支持多层网络。Nematus 编码端有正向和反向的编码方式,可以同时提取源语句子中的上下文信息。该系统的一个优点是,它可以支持输入端有多个特征的输入(例如词的词性等)。网址:\url{https://github.com/EdinburghNLP/nematus}
\item NematusNematus\cite{DBLP:journals/corr/SennrichFCBHHJL17}是英国爱丁堡大学开发的,基于Theano框架的神经机器翻译系统。该系统使用GRU作为隐层单元,支持多层网络。Nematus 编码端有正向和反向的编码方式,可以同时提取源语句子中的上下文信息。该系统的一个优点是,它可以支持输入端有多个特征的输入(例如词的词性等)。网址:\url{https://github.com/EdinburghNLP/nematus}
\vspace{0.5em}
\item ZophRNNZophRNN\cite{zoph2016simple}是由南加州大学的Barret Zoph 等人使用C++语言开发的系统。Zoph既可以训练序列表示模型(如语言模型),也可以训练序列到序列的模型(如神经机器翻译模型)。当训练神经机器翻译系统时,ZophRNN也支持多源输入。网址:\url{https://github.com/isi-nlp/Zoph\_RNN}
\item ZophRNNZophRNN\cite{zoph2016simple}是由南加州大学的Barret Zoph 等人使用C++语言开发的系统。Zoph既可以训练序列表示模型(如语言模型),也可以训练序列到序列的模型(如神经机器翻译模型)。当训练神经机器翻译系统时,ZophRNN也支持多源输入。网址:\url{https://github.com/isi-nlp/Zoph\_RNN}
\vspace{0.5em}
\item Fairseq:Fairseq\cite{Ottfairseq}是由Facebook开发的,基于PyTorch框架的用以解决序列到序列问题的工具包,其中包括基于卷积神经网络、基于循环神经网络、基于Transformer的模型等。Fairseq是当今使用最广泛的神经机器翻译开源系统之一。https://github.com/facebookresearch/fairseq
\item Fairseq。Fairseq\cite{Ottfairseq}是由Facebook开发的,基于PyTorch框架的用以解决序列到序列问题的工具包,其中包括基于卷积神经网络、基于循环神经网络、基于Transformer的模型等。Fairseq是当今使用最广泛的神经机器翻译开源系统之一。网址:\url{https://github.com/facebookresearch/fairseq}
\vspace{0.5em}
\item Tensor2TensorTensor2Tensor\cite{VaswaniTensor2Tensor}是由谷歌推出的,基于TensorFlow框架的开源系统。该系统基于Transformer模型,因此可以支持大多数序列到序列任务。得益于Transformer 的网络结构,系统的训练速度较快。现在,Tensor2Tensor也是机器翻译领域广泛使用的开源系统之一。网址:\url{https://github.com/tensorflow/tensor2tensor}
\item Tensor2TensorTensor2Tensor\cite{VaswaniTensor2Tensor}是由谷歌推出的,基于TensorFlow框架的开源系统。该系统基于Transformer模型,因此可以支持大多数序列到序列任务。得益于Transformer 的网络结构,系统的训练速度较快。现在,Tensor2Tensor也是机器翻译领域广泛使用的开源系统之一。网址:\url{https://github.com/tensorflow/tensor2tensor}
\vspace{0.5em}
\item OpenNMTOpenNMT\cite{KleinOpenNMT}系统是由哈佛大学自然语言处理研究组开源的,基于Torch框架的神经机器翻译系统。OpenNMT系统的早期版本使用Lua 语言编写,现在也扩展到了TensorFlow和PyTorch,设计简单易用,易于扩展,同时保持效率和翻译精度。网址:\url{https://github.com/OpenNMT/OpenNMT}
\item OpenNMTOpenNMT\cite{KleinOpenNMT}系统是由哈佛大学自然语言处理研究组开源的,基于Torch框架的神经机器翻译系统。OpenNMT系统的早期版本使用Lua 语言编写,现在也扩展到了TensorFlow和PyTorch,设计简单易用,易于扩展,同时保持效率和翻译精度。网址:\url{https://github.com/OpenNMT/OpenNMT}
\vspace{0.5em}
\item 斯坦福神经机器翻译开源代码库斯坦福大学自然语言处理组(Stanford NLP)发布了一篇教程,介绍了该研究组在神经机器翻译上的研究信息,同时实现了多种翻译模型\cite{luong2016acl_hybrid}。 网址:\url{https://nlp.stanford.edu/projects/nmt/}
\item 斯坦福神经机器翻译开源代码库斯坦福大学自然语言处理组(Stanford NLP)发布了一篇教程,介绍了该研究组在神经机器翻译上的研究信息,同时实现了多种翻译模型\cite{luong2016acl_hybrid}。 网址:\url{https://nlp.stanford.edu/projects/nmt/}
\vspace{0.5em}
\item THUMT:清华大学NLP团队实现的神经机器翻译系统,支持Transformer等模型\cite{ZhangTHUMT}。该系统主要基于Tensorflow和Theano实现,其中Theano版本包含了RNNsearch模型,训练方式包括MLE (Maximum Likelihood Estimate), MRT\\(Minimum Risk Training), SST(Semi-Supervised Training)。Tensorflow 版本实现了Seq2Seq, RNNsearch, Transformer三种基本模型。网址:\url{https://github.com/THUNLP-MT/THUMT}
\item THUMT。清华大学NLP团队实现的神经机器翻译系统,支持Transformer等模型\cite{ZhangTHUMT}。该系统主要基于TensorFlow和Theano实现,其中Theano版本包含了RNNsearch模型,训练方式包括MLE (Maximum Likelihood Estimate), MRT(Minimum Risk Training), SST(Semi-Supervised Training)。TensorFlow 版本实现了Seq2Seq, RNNsearch, Transformer三种基本模型。网址:\url{https://github.com/THUNLP-MT/THUMT}
\vspace{0.5em}
\item NiuTrans.NMT由小牛翻译团队基于NiuTensor实现的神经机器翻译系统。支持循环神经网络、Transformer等结构,并支持语言建模、序列标注、机器翻译等任务。支持机器翻译GPU与CPU 训练及解码。其小巧易用,为开发人员提供快速二次开发基础。此外,NiuTrans.NMT已经得到了大规模应用,形成了支持187种语言翻译的小牛翻译系统。网址:\url{http://opensource.niutrans.com/niutensor/index.html}
\item NiuTrans.NMT由小牛翻译团队基于NiuTensor实现的神经机器翻译系统。支持循环神经网络、Transformer等结构,并支持语言建模、序列标注、机器翻译等任务。支持机器翻译GPU与CPU 训练及解码。其小巧易用,为开发人员提供快速二次开发基础。此外,NiuTrans.NMT已经得到了大规模应用,形成了支持187种语言翻译的小牛翻译系统。网址:\url{http://opensource.niutrans.com/niutensor/index.html}
\vspace{0.5em}
\item MARIAN主要由微软翻译团队搭建\cite{JunczysMarian},其使用C++实现的用于GPU/CPU训练和解码的引擎,支持多GPU训练和批量解码,最小限度依赖第三方库,静态编译一次之后,复制其二进制文件就能在其他平台使用。网址:\url{https://marian-nmt.github.io/}
\item MARIAN主要由微软翻译团队搭建\cite{JunczysMarian},其使用C++实现的用于GPU/CPU训练和解码的引擎,支持多GPU训练和批量解码,最小限度依赖第三方库,静态编译一次之后,复制其二进制文件就能在其他平台使用。网址:\url{https://marian-nmt.github.io/}
\vspace{0.5em}
\item Sockeye:由Awslabs开发的神经机器翻译框架\cite{hieber2017sockeye}。其中支持RNNSearch、Transformer、CNN等翻译模型,同时提供了从图片翻译到文字的模块以及WMT 德英新闻翻译、领域适应任务、多语言零资源翻译任务的教程。网址:\url{https://awslabs.github.io/sockeye/}
\item Sockeye。由Awslabs开发的神经机器翻译框架\cite{hieber2017sockeye}。其中支持RNNsearch、Transformer、CNN等翻译模型,同时提供了从图片翻译到文字的模块以及WMT 德英新闻翻译、领域适应任务、多语言零资源翻译任务的教程。网址:\url{https://awslabs.github.io/sockeye/}
\vspace{0.5em}
\item CytonMT由NICT开发的一种用C++实现的神经机器翻译开源工具包\cite{WangCytonMT}。主要支持Transformer模型,并支持一些常用的训练方法以及解码方法。网址:\url{https://github.com/arthurxlw/cytonMt}
\item CytonMT由NICT开发的一种用C++实现的神经机器翻译开源工具包\cite{WangCytonMT}。主要支持Transformer模型,并支持一些常用的训练方法以及解码方法。网址:\url{https://github.com/arthurxlw/cytonMt}
\vspace{0.5em}
\item OpenSeq2Seq:由NVIDIA团队开发的\cite{DBLP:journals/corr/abs-1805-10387}基于Tensorflow的模块化架构,用于序列到序列的模型,允许从可用组件中组装新模型,支持混合精度训练,利用NVIDIA Volta Turing GPU中的Tensor核心,基于Horovod的快速分布式训练,支持多GPU,多节点多模式。网址:\url{https://nvidia.github.io/OpenSeq2Seq/html/index.html}
\item OpenSeq2Seq。由NVIDIA团队开发的\cite{DBLP:journals/corr/abs-1805-10387}基于TensorFlow的模块化架构,用于序列到序列的模型,允许从可用组件中组装新模型,支持混合精度训练,利用NVIDIA Volta Turing GPU中的Tensor核心,基于Horovod的快速分布式训练,支持多GPU,多节点多模式。网址:\url{https://nvidia.github.io/OpenSeq2Seq/html/index.html}
\vspace{0.5em}
\item NMTPyTorch:由勒芒大学语言实验室发布的基于序列到序列框架的神经网络翻译系统\cite{nmtpy2017},Nmtpytorch的核心部分依赖于Numpy,Pytorch和tqdm。其允许训练各种端到端神经体系结构,包括但不限于神经机器翻译,图像字幕和自动语音识别系统。网址:\url{https://github.com/lium-lst/nmtpytorch}
\item NMTPyTorch。由勒芒大学语言实验室发布的基于序列到序列框架的神经网络翻译系统\cite{nmtpy2017},NMTPyTorch的核心部分依赖于Numpy,PyTorch和tqdm。其允许训练各种端到端神经体系结构,包括但不限于神经机器翻译、图像字幕和自动语音识别系统。网址:\url{https://github.com/lium-lst/nmtpytorch}
\vspace{0.5em}
\end{itemize}
......@@ -698,21 +696,21 @@ His house is on the south bank of the river.
\subsection{常用数据集及公开评测任务}
\parinterval 机器翻译相关评测主要有两种组织形式,一种是由政府及国家相关机构组织,权威性强。如由美国国家标准技术研究所组织的NIST评测、日本国家科学咨询系统中心主办的NACSIS Test Collections for IR(NTCIR)PatentMT、日本科学振兴机构(Japan Science and Technology Agency,简称JST)等组织联合举办的Workshop on Asian Translation(WAT)以及国内由中文信息学会主办的全国机器翻译大会(China Conference on Machine Translation,简称CCMT);另一种是由相关学术机构组织,具有领域针对性的特点,如倾向新闻领域的Workshop on Statistical Machine Translation(WMT)以及面向口语的International Workshop on Spoken Language Translation(IWSLT)。下面将针对上述评测进行简要介绍。
\parinterval 机器翻译相关评测主要有两种组织形式,一种是由政府及国家相关机构组织,权威性强。如由美国国家标准技术研究所组织的NIST评测、日本国家科学咨询系统中心主办的NACSIS Test Collections for IR(NTCIR)PatentMT、日本科学振兴机构(Japan Science and Technology Agency,简称JST)等组织联合举办的Workshop on Asian Translation(WAT)以及国内由中文信息学会主办的全国机器翻译大会(China Conference on Machine Translation,简称CCMT);另一种是由相关学术机构组织,具有领域针对性的特点,如倾向新闻领域的Conference on Machine Translation(WMT)以及面向口语的International Workshop on Spoken Language Translation(IWSLT)。下面将针对上述评测进行简要介绍。
\begin{itemize}
\vspace{0.5em}
\item CCMT(全国机器翻译大会),前身为CWMT(全国机器翻译研讨会)是国内机器翻译领域的旗舰会议,自2005年起已经组织多次机器翻译评测,对国内机器翻译相关技术的发展产生了深远影响。该评测主要针对汉语、英语以及国内的少数民族语言(蒙古语、藏语、维吾尔语等)进行评测,领域包括新闻、口语、政府文件等,不同语言方向对应的领域也有所不同。评价方式不同届略有不同,主要采用自动评价的方式,自CWMT 2013起则针对某些领域增设人工评价。自动评价的指标一般包括BLEU-SBP、BLEU-NIST、TER、METEOR、NIST、GTM、mWER、mPER 以及ICT 等,其中以BLEU-SBP 为主,汉语为目标语的翻译采用基于字符的评价方式,面向英语的翻译采用基于词的评价方式。每年该评测吸引国内外近数十家企业及科研机构参赛,业内认可度极高。关于CCMT的更多信息可参考官网:\url{http://www.ai-ia.ac.cn/cwmt2015/evaluation.html} (链接为CWMT 2015)
\item CCMT(全国机器翻译大会),前身为CWMT(全国机器翻译研讨会)是国内机器翻译领域的旗舰会议,自2005年起已经组织多次机器翻译评测,对国内机器翻译相关技术的发展产生了深远影响。该评测主要针对汉语、英语以及国内的少数民族语言(蒙古语、藏语、维吾尔语等)进行评测,领域包括新闻、口语、政府文件等,不同语言方向对应的领域也有所不同。评价方式不同届略有不同,主要采用自动评价的方式,自CWMT\ 2013起则针对某些领域增设人工评价。自动评价的指标一般包括BLEU-SBP、BLEU-NIST、TER、METEOR、NIST、GTM、mWER、mPER 以及ICT 等,其中以BLEU-SBP 为主,汉语为目标语的翻译采用基于字符的评价方式,面向英语的翻译采用基于词的评价方式。每年该评测吸引国内外近数十家企业及科研机构参赛,业内认可度极高。关于CCMT的更多信息可参考中文信息学会机器翻译专业委员会相关页面:\url{http://sc.cipsc.org.cn/mt/index.php/CWMT.html}
\vspace{0.5em}
\item WMT由Special Interest Group for Machine Translation(SIGMT)主办,会议自2006年起每年召开一次,是一个涉及机器翻译多种任务的综合性会议,包括多领域翻译评测任务、质量评价任务以及其他与机器翻译的相关任务(如文档对齐评测等)。现在WMT已经成为机器翻译领域的旗舰评测任务,很多研究工作都以WMT任务作为基准。WMT评测涉及的语言范围较广,包括英语、德语、芬兰语、捷克语、罗马尼亚语等十多种语言,翻译方向一般以英语为核心,探索英语与其他语言之间的翻译性能,领域包括新闻、信息技术、生物医学。最近,也增加了无指导机器翻译等热门问题。WMT在评价方面类似于CCMT,也采用人工评价与自动评价相结合的方式,自动评价的指标一般为BLEU、TER 等。此外,WMT公开了所有评测数据,因此也经常被机器翻译相关人员所使用。更多WMT的机器翻译评测相关信息可参考官网:\url{http://www.sigmt.org/}
\item WMT由Special Interest Group for Machine Translation(SIGMT)主办,会议自2006年起每年召开一次,是一个涉及机器翻译多种任务的综合性会议,包括多领域翻译评测任务、质量评价任务以及其他与机器翻译的相关任务(如文档对齐评测等)。现在WMT已经成为机器翻译领域的旗舰评测会议,很多研究工作都以WMT评测结果作为基准。WMT评测涉及的语言范围较广,包括英语、德语、芬兰语、捷克语、罗马尼亚语等十多种语言,翻译方向一般以英语为核心,探索英语与其他语言之间的翻译性能,领域包括新闻、信息技术、生物医学。最近,也增加了无指导机器翻译等热门问题。WMT在评价方面类似于CCMT,也采用人工评价与自动评价相结合的方式,自动评价的指标一般为BLEU、TER 等。此外,WMT公开了所有评测数据,因此也经常被机器翻译相关人员所使用。更多WMT的机器翻译评测相关信息可参考SIGMT官网:\url{http://www.sigmt.org/}
\vspace{0.5em}
\item NIST机器翻译评测开始于2001年,是早期机器翻译公开评测中颇具代表性的任务,现在WMT和CCMT很多任务的设置也大量参考了当年NIST评测的内容。NIST评测由美国国家标准技术研究所主办,作为美国国防高级计划署(DARPA)中TIDES计划的重要组成部分。早期,NIST评测主要评价阿拉伯语和汉语等语言到英语的翻译效果,评价方法一般采用人工评价与自动评价相结合的方式。人工评价采用5分制评价。自动评价使用多种方式,包括BLEU,METEOR,TER以及HyTER。此外NIST从2016 年起开始对稀缺语言资源技术进行评估,其中机器翻译作为其重要组成部分共同参与评测,评测指标主要为BLEU。除对机器翻译系统进行评测之外,NIST在2008 和2010年对于机器翻译的自动评价方法(MetricsMaTr)也进行了评估,以鼓励更多研究人员对现有评价方法进行改进或提出更加贴合人工评价的方法。同时NIST评测所提供的数据集由于数据质量较高受到众多科研人员喜爱,如MT04,MT06等(汉英)平行语料经常被科研人员在实验中使用。不过,近几年NIST评测已经停止。更多NIST的机器翻译评测相关信息可参考官网:\url{https://www.nist.gov/programs-projects/machine-translation}
\vspace{0.5em}
\item 从2004年开始举办的IWSLT也是颇具特色的机器翻译评测,它主要关注口语相关的机器翻译任务,测试数据包括TED talks的多语言字幕以及QED 教育讲座影片字幕等,语言涉及英语、法语、德语、捷克语、汉语、阿拉伯语等众多语言。此外在IWSLT 2016 中还加入了对于日常对话的翻译评测,尝试将微软Skype中一种语言的对话翻译成其他语言。评价方式采用自动评价的模式,评价标准和WMT类似,一般为BLEU 等指标。另外,IWSLT除了对文本到文本的翻译评测外,还有自动语音识别以及语音转另一种语言的文本的评测。更多IWSLT的机器翻译评测相关信息可参考官网:\url{https://workshop2016.iwslt.org/} (链接为IWSLT2016)
\item 从2004年开始举办的IWSLT也是颇具特色的机器翻译评测,它主要关注口语相关的机器翻译任务,测试数据包括TED talks的多语言字幕以及QED 教育讲座影片字幕等,语言涉及英语、法语、德语、捷克语、汉语、阿拉伯语等众多语言。此外在IWSLT 2016 中还加入了对于日常对话的翻译评测,尝试将微软Skype中一种语言的对话翻译成其他语言。评价方式采用自动评价的模式,评价标准和WMT类似,一般为BLEU 等指标。另外,IWSLT除了对文本到文本的翻译评测外,还有自动语音识别以及语音转另一种语言的文本的评测。更多IWSLT的机器翻译评测相关信息可参考IWSLT\ 2019官网:\url{https://workshop2019.iwslt.org/}
\vspace{0.5em}
\item 日本举办的机器翻译评测WAT是亚洲范围内的重要评测之一,由日本科学振兴机构(JST)、情报通信研究机构(NICT)等多家机构共同组织,旨在为亚洲各国之间交流融合提供便宜之处。语言方向主要包括亚洲主流语言(汉语、韩语、印地语等)以及英语对日语的翻译,领域丰富多样,包括学术论文、专利、新闻、食谱等。评价方式包括自动评价(BLEU、RIBES以及AMFM 等)以及人工评价,其特点在于对于测试语料以段落为单位进行评价,考察其上下文关联的翻译效果。更多WAT的机器翻译评测相关信息可参考官网:\url{http://lotus.kuee.kyoto-u.ac.jp/WAT/}
\vspace{0.5em}
\item NTCIR计划是由日本国家科学咨询系统中心策划主办的,旨在建立一个用在自然语言处理以及信息检索相关任务上的日文标准测试集。在NTCIR-9的和NTCIR-10中开设的Patent Machine Translation(PatentMT)任务主要针对专利领域进行翻译测试,其目的在于促进机器翻译在专利领域的发展和应用。在NTCIR-9中,评测方式采取人工评价与自动评价相结合,以人工评价为主导。人工评价主要根据准确度和流畅度进行评估,自动评价采用BLEU、NIST等方式进行。NTCIR-10评价方式在此基础上增加了专利审查评估、时间评估以及多语种评估,分别考察机器翻译系统在专利领域翻译的实用性、耗时情况以及不同语种的翻译效果等。更多NTCIR评测相关信息可参考官网:\url{http://research.nii.ac.jp/ntcir/index-en.html}
\item NTCIR计划是由日本国家科学咨询系统中心策划主办的,旨在建立一个用在自然语言处理以及信息检索相关任务上的日文标准测试集。在NTCIR-9的和NTCIR-10中开设的Patent Machine Translation(PatentMT)任务主要针对专利领域进行翻译测试,其目的在于促进机器翻译在专利领域的发展和应用。在NTCIR-9中,评测方式采取人工评价与自动评价相结合,以人工评价为主导。人工评价主要根据准确度和流畅度进行评估,自动评价采用BLEU、NIST等方式进行。NTCIR-10评价方式在此基础上增加了专利审查评估、时间评估以及多语种评估,分别考察机器翻译系统在专利领域翻译的实用性、耗时情况以及不同语种的翻译效果等。更多NTCIR评测相关信息可参考官网:\url{http://research.nii.ac.jp/ntcir/index-en.html}
\vspace{0.5em}
\end{itemize}
......@@ -727,49 +725,66 @@ His house is on the south bank of the river.
\sectionnewpage
\section{推荐学习资源}
%----------------------------------------------------------------------------------------
% NEW SUBSECTION
%----------------------------------------------------------------------------------------
\subsection{经典书籍}
\parinterval 首先,推荐一本书《Statistical Machine Translation》\cite{koehn2009statistical},其作者是机器翻译领域著名学者Philipp Koehn教授。该书是机器翻译领域内的经典之作,介绍了统计机器翻译技术的进展。该书从语言学和概率学两个方面介绍了统计机器翻译的构成要素,然后介绍了统计机器翻译的主要模型:基于词、基于短语和基于树的模型,以及机器翻译评价、语言建模、判别式训练等方法。此外,作者在该书的最新版本中增加了神经机器翻译的章节,方便研究人员全面了解机器翻译的最新发展趋势\cite{DBLP:journals/corr/abs-1709-07809}
\parinterval 《Foundations of Statistical Natural Language Processing》\cite{manning1999foundations}中文译名《统计自然语言处理基础》,作者是自然语言处理领域的权威Chris Manning教授和Hinrich Sch$\ddot{\textrm{u}}$tze教授。该书对统计自然语言处理方法进行了全面介绍。书中讲解了统计自然语言处理所需的语言学和概率论基础知识,介绍了机器翻译评价、语言建模、判别式训练以及整合语言学信息等基础方法。其中也包含了构建自然语言处理工具所需的基本理论和算法,提供了对数学和语言学基础内容广泛而严格的覆盖,以及统计方法的详细讨论。
\parinterval 《统计自然语言处理》\cite{宗成庆2013统计自然语言处理}由中国科学院自动化所宗成庆教授所著。该书中系统介绍了统计自然语言处理的基本概念、理论方法和最新研究进展,既有对基础知识和理论模型的介绍,也有对相关问题的研究背景、实现方法和技术现状的详细阐述。可供从事自然语言处理、机器翻译等研究的相关人员参考。
\parinterval Ian Goodfellow、Yoshua BengioAaron Courville三位机器学习领域的学者所写的《Deep Learning》\cite{Goodfellow-et-al-2016}也是值得一读的参考书。其讲解了有关深度学习常用的方法,其中很多都会在深度学习模型设计和使用中用到。同时在该书的应用一章中也简单讲解了神经机器翻译的任务定义和发展过程。
\parinterval Ian Goodfellow、Yoshua BengioAaron Courville三位机器学习领域的学者所写的《Deep Learning》\cite{Goodfellow-et-al-2016}也是值得一读的参考书。其讲解了有关深度学习常用的方法,其中很多都会在深度学习模型设计和使用中用到。同时在该书的应用一章中也简单讲解了神经机器翻译的任务定义和发展过程。
\parinterval 《Neural Network Methods for Natural Language Processing》\cite{goldberg2017neural}是Yoav Goldberg编写的面向自然语言处理的深度学习参考书。相比《Deep Learning》,该书聚焦在自然语言处理中的深度学习方法,内容更加易读,非常适合刚入门自然语言处理及深度学习应用的人员参考。
\parinterval 《机器学习》\cite{周志华2016机器学习}由南京大学教授周志华教授所著,作为机器学习领域入门教材,该书尽可能地涵盖了机器学习基础知识的各个方面,试图尽可能少地使用数学知识介绍机器学习方法与思想。
\parinterval 《机器学习》\cite{周志华2016机器学习}由南京大学周志华教授所著,作为机器学习领域入门教材,该书尽可能地涵盖了机器学习基础知识的各个方面,试图尽可能少地使用数学知识介绍机器学习方法与思想。
\parinterval 《统计学习方法》\cite{李航2012统计学习方法}由李航博士所著,该书对机器学习的有监督和无监督等方法进行了全面而系统的介绍。可以作为梳理机器学习的知识体系,同时了解相关基础概念的参考读物。
\parinterval 《神经网络与深度学习》\cite{邱锡鹏2020神经网络与深度学习}由复旦大学邱锡鹏教授所著,全面介绍了神经网络和深度学习的基本概念和常用技术,同时涉及了许多深度学习的前沿方法。该书适合初学者阅读,同时又不失为一本面向专业人士的参考书。
\parinterval 《神经网络与深度学习》\cite{邱锡鹏2020神经网络与深度学习}由复旦大学邱锡鹏教授所著,全面介绍了神经网络和深度学习的基本概念和常用技术,同时涉及了许多深度学习的前沿方法。该书适合初学者阅读,同时又不失为一本面向专业人士的参考书。
\parinterval TensorFlow官网提供了一个有关神经机器翻译的教程,介绍了从数据处理开始如何利用TensorFlow工具从零搭建一个神经机器翻译系统以及如何解码,其地址为\url{https://www.tensorflow.org/tutorials/text/nmt\_with\_attention}。此外谷歌和Facebook也分别提供了基于序列到序列机器翻译模型的高级教程。谷歌的版本是基于TensorFlow实现,网址为:\url{https://github.com/tensorflow/nmt},Facebook的教程主要是基于PyTorch实现,网址为:\url{https://pytorch.org/tutorials/intermediate/seq2seq\_translation\_tutorial.html}。网站上也包含一些综述论文,其中详细的介绍了神经机器翻译的发展历程,问题定义以及目前遇到的问题。
%----------------------------------------------------------------------------------------
% NEW SUBSECTION
%----------------------------------------------------------------------------------------
\subsection{网络资源}
\parinterval TensorFlow官网提供了一个有关神经机器翻译的教程,介绍了从数据处理开始如何利用TensorFlow工具从零搭建一个神经机器翻译系统以及如何解码,其地址为\url{https://www.tensorflow.org/tutorials/text/nmt\_with\_attention}。此外谷歌和Facebook也分别提供了基于序列到序列机器翻译模型的高级教程。谷歌的版本是基于TensorFlow实现,网址为:\url{https://github.com/tensorflow/nmt}。Facebook的教程主要是基于PyTorch实现,网址为:\url{https://pytorch.org/tutorials/intermediate/seq2seq\_translation\_tutorial.html}。网站上也包含一些综述论文,其中详细的介绍了神经机器翻译的发展历程,问题定义以及目前遇到的问题。
\parinterval \url{http://www.statmt.org}是一个介绍机器翻译研究的网站,该网站包含了对统计机器翻译研究的一些介绍资料,一些自然语言处理的会议,常用工具以及语料库。\url{http://www.mt-archive.info}\url{https://www.aclweb.org/anthology}网站上有许多介绍机器翻译和自然语言处理的论文,通过这些网站还可以了解到自然语言处理领域的一些重要期刊和会议。
%----------------------------------------------------------------------------------------
% NEW SUBSECTION
%----------------------------------------------------------------------------------------
\subsection{专业组织和会议}
\parinterval \url{http://www.statmt.org}是一个介绍机器翻译研究的网站,该网站包含了对统计机器翻译研究的一些介绍资料,一些自然语言处理的会议,常用工具以及语料库。\url{http://www.mt-archive.info}\url{https://www.aclweb.org/anthology}\\网站上有许多介绍机器翻译和自然语言处理的论文。通过这个网站可以了解到自然语言处理领域的一些重要的期刊和会议。比如,一些与机器翻译相关的主要会议有:
许多自然语言处理的相关学术组织会定期举办学术会议。与机器翻译相关的会议有:
\begin{itemize}
\vspace{0.5em}
\item ACL,全称Annual Meeting of the Association for Computational Linguistics,是自然语言处理领域最高级别的会议。每年举办一次,主题涵盖计算语言学的所有方向。
\item ACL,全称Annual Conference of the Association for Computational Linguistics,是自然语言处理领域最高级别的会议。每年举办一次,主题涵盖计算语言学的所有方向。
\vspace{0.5em}
\item NAACL,全称The North American Chapter of the Association for Computational Linguistics,为ACL北美分会,在自然语言处理领域也属于顶级会议,每年会选择一个北美城市召开会议。
\item NAACL,全称Annual Conference of the North American Chapter of the Association for Computational Linguistics,为ACL北美分会,在自然语言处理领域也属于顶级会议,每年会选择一个北美城市召开会议。
\vspace{0.5em}
\item EMNLP,全称Conference on Empirical Methods in Natural Language Processing ,自然语言处理另一个顶级会议之一,由ACL当中对语言数据和经验方法有特殊兴趣的团体主办,始于1996年。会议比较偏重于方法和经验性结果。
\vspace{0.5em}
\item COLING,全称International Committee on Computational Linguistics,自然语言处理老牌顶级会议之一。该会议始于1965年,是由ICCL国际计算语言学委员会主办。会议简称为COLING,是谐音瑞典著名作家 Albert Engstr$\ddot{\textrm{o}}$m小说中的虚构人物Kolingen。COLING每两年举办一次。
\item COLING,全称International Conference on Computational Linguistics,自然语言处理老牌顶级会议之一。该会议始于1965年,是由ICCL国际计算语言学委员会主办。会议简称为COLING,是谐音瑞典著名作家 Albert Engstr$\ddot{\textrm{o}}$m小说中的虚构人物Kolingen。COLING每两年举办一次。
\vspace{0.5em}
\item EACL,全称European Chapter of the Association for Computational Linguistics,为ACL欧洲分会,虽然在欧洲召开,会议也吸引了全世界的大量学者投稿并参会。
\item EACL,全称Conference of the European Chapter of the Association for Computational Linguistics,为ACL欧洲分会,虽然在欧洲召开,会议也吸引了全世界的大量学者投稿并参会。
\vspace{0.5em}
\item AACL,全称Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics,为ACL亚太地区分会。2020年会议首次召开,是亚洲地区自然语言处理领域最具影响力的会议之一。
\vspace{0.5em}
\item WMT,全称Workshop on Machine Translation。机器翻译领域一年一度研讨会,是国际公认的顶级机器翻译赛事之一。
\item WMT,全称Conference on Machine Translation。机器翻译领域一年一度研讨会,是国际公认的顶级机器翻译赛事之一。
\vspace{0.5em}
\item AMTA,全称Association for Machine Translation in the Americas。AMTA会议汇聚了学术界、产业界和政府的研究人员、开发人员和用户,让工业界和学术界进行交流。
\item AMTA,全称Conference of the Association for Machine Translation in the Americas。AMTA会议汇聚了学术界、产业界和政府的研究人员、开发人员和用户,让工业界和学术界进行交流。
\vspace{0.5em}
\item CCL,全称Conference on Computational Linguistics,中文为中国计算语言学大会。中国计算语言学大会创办于1991年,由中国中文信息学会计算语言学专业委员会负责组织。经过20余年的发展,中国计算语言学大会已成为国内自然语言处理领域权威性最高、规模和影响最大的学术会议。作为中国中文信息学会(国内一级学会)的旗舰会议,CCL聚焦于中国境内各类语言的智能计算和信息处理,为研讨和传播计算语言学最新学术和技术成果提供了最广泛的高层次交流平台。
\item CCL,全称China National Conference on Computational Linguistics,中文为中国计算语言学大会。中国计算语言学大会创办于1991年,由中国中文信息学会计算语言学专业委员会负责组织。经过20余年的发展,中国计算语言学大会已成为国内自然语言处理领域权威性最高、规模和影响最大的学术会议。作为中国中文信息学会(国内一级学会)的旗舰会议,CCL聚焦于中国境内各类语言的智能计算和信息处理,为研讨和传播计算语言学最新学术和技术成果提供了最广泛的高层次交流平台。
\vspace{0.5em}
\item NLPCC,全称The CCF International Conference on Natural Language Processing and Chinese Computing。NLPCC 是由中国计算机学会(CCF)主办的 CCF 中文信息技术专业委员会年度学术会议,专注于自然语言处理及中文处理领域的研究和应用创新。会议自 2012 年开始举办,主要活动有主题演讲、论文报告、技术测评等多种形式。
\item NLPCC,全称CCF International Conference on Natural Language Processing and Chinese Computing。NLPCC 是由中国计算机学会(CCF)主办的 CCF 中文信息技术专业委员会年度学术会议,专注于自然语言处理及中文处理领域的研究和应用创新。会议自 2012 年开始举办,主要活动有主题演讲、论文报告、技术测评等多种形式。
\vspace{0.5em}
\item CCMT,全称The China Conference on Machine Translation,中国机器翻译研讨会,由中国中文信息学会主办,旨在为国内外机器翻译界同行提供一个平台,促进中国机器翻译事业。CCMT不仅是国内机器翻译领域最具影响力、最权威的学术和评测活动,而且也代表着汉语与民族语言翻译技术的最高水准,对民族语言技术发展具有重要意义。
\item CCMT,全称China Conference on Machine Translation,中国机器翻译研讨会,由中国中文信息学会主办,旨在为国内外机器翻译界同行提供一个平台,促进中国机器翻译事业。CCMT不仅是国内机器翻译领域最具影响力、最权威的学术和评测活动,而且也代表着汉语与民族语言翻译技术的最高水准,对民族语言技术发展具有重要意义。
\vspace{0.5em}
\end{itemize}
......
......@@ -63,7 +63,7 @@
{
\node [anchor=west] (mtinputlabel) at ([xshift=0.29in]inputlabel.east) {{\scriptsize \color{red}{\textbf{实际的输入}}}};
\node [anchor=west] (mtoutputlabel) at ([xshift=0.86in]mtinputlabel.east) {{\scriptsize \color{red}{\textbf{实际的输出}}}};
\node [anchor=west] (mtoutputlabel) at ([xshift=1.0in]mtinputlabel.east) {{\scriptsize \color{red}{\textbf{实际的输出}}}};
\node[rectangle,draw=ublue, inner sep=0mm] [fit = (mtinputlabel) (mtoutputlabel) (inputmarking) (outputmarking)] {};
}
......
......@@ -44,7 +44,7 @@
\begin{figure}[htp]
\centering
\subfigure[机器翻译系统被看作一个黑盒] {\input{./Chapter2/Figures/figure-mt-system-as-a-black-box} }
\subfigure[机器翻系统 = 前/后处理 + 翻译引擎] {\input{./Chapter2/Figures/figure-mt=language-analysis+translation-engine}}
\subfigure[机器翻系统 = 前/后处理 + 翻译引擎] {\input{./Chapter2/Figures/figure-mt=language-analysis+translation-engine}}
\caption{机器翻译系统的结构}
\label{fig:2-1}
\end{figure}
......@@ -65,7 +65,7 @@
\vspace{0.5em}
\item {\small\bfnew{分词}}\index{分词}(Segmentation)\index{Segmentation}:这个过程会把词串进行切分,切割成最小的单元。因为只有知道了什么是待处理字符串的最小单元,机器翻译系统才能对其进行表示、分析和生成。
\vspace{0.5em}
\item {\small\bfnew{句法分析}}\index{句法分析}(Parsing)\index{Parsing}:这个过程会对分词的结果进行进一步分析,得到句子的句法结构。这种结构是对句子的进一步抽象,比如,NP+VP就可以表示由名词短语(NP)和动词短语(VP)构成的主谓结构。利用这些信息,机器翻译可以更加准确地对语言的结构进行分析和生成。
\item {\small\bfnew{句法分析}}\index{句法分析}(Parsing)\index{Parsing}:这个过程会对分词的结果进行进一步分析,得到句子的句法结构。这种结构是对句子的进一步抽象,比如,NP+VP就可以表示由名词短语(NP)和动词短语(VP)构成的主谓结构。利用这些信息,机器翻译可以更加准确地对语言的结构进行分析和生成。
\vspace{0.5em}
\end{itemize}
......@@ -120,7 +120,7 @@
\end{table}
%--------------------------------------------------------------------
\parinterval 除此之外,概率函数$\textrm{P}(\cdot)$还具有非负性、归一性等特点非负性是指,所有的概率函数$\textrm{P}(\cdot)$都必须是大于等于0的数值,概率函数中不可能出现负数,即$\forall{x},\textrm{P}{(x)}\geq{0}$。归一性,又称规范性,简单的说就是所有可能发生的事件的概率总和为1,即$\sum_{x}\textrm{P}{(x)}={1}$
\parinterval 除此之外,概率函数$\textrm{P}(\cdot)$还具有非负性、归一性等特点非负性是指,所有的概率函数$\textrm{P}(\cdot)$都必须是大于等于0的数值,概率函数中不可能出现负数,即$\forall{x},\textrm{P}{(x)}\geq{0}$。归一性,又称规范性,简单的说就是所有可能发生的事件的概率总和为1,即$\sum_{x}\textrm{P}{(x)}={1}$
\parinterval 对于离散变量$A$$\textrm{P}(A=a)$是个确定的值,可以表示事件$A=a$的可能性大小;而对于连续变量,求在某个定点处的概率是无意义的,只能求其落在某个取值区间内的概率。因此,用{\small\sffamily\bfseries{概率分布函数}}\index{概率分布函数}$F(x)${\small\sffamily\bfseries{概率密度函数}}\index{概率密度函数}$f(x)$来统一描述随机变量取值的分布情况(如图\ref{fig:2-3})。概率分布函数$F(x)$表示取值小于等于某个值的概率,是概率的累加(或积分)形式。假设$A$是一个随机变量,$a$是任意实数,将函数$F(a)=\textrm{P}\{A\leq a\}$$-\infty<a<\infty $定义为$A$的分布函数。通过分布函数,可以清晰地表示任何随机变量的概率。
......@@ -146,7 +146,7 @@ F(x)=\int_{-\infty}^x f(x)dx
\subsection{联合概率、条件概率和边缘概率}
\parinterval {\small\sffamily\bfseries{联合概率}}\index{联合概率}(Joint Probability)\index{Joint Probability}是指多个事件共同发生,每个随机变量满足各自条件的概率,表示为$\textrm{P}(AB)$$\textrm{P}(A\cap{B})${\small\sffamily\bfseries{条件概率}}\index{条件概率}(Conditional Probability)\index{Conditional Probability}是指$A$$B$为任意的两个事件,在事件$A$已出现的前提下,事件$B$出现的概率,使用$\textrm{P}(B \mid A)$表示。
\parinterval 贝叶斯法则(见\ref{sec:2.2.3}小节)是条件概率计算时的重要依据,条件概率可以表示为
\parinterval 贝叶斯法则(见\ref{sec:2.2.3}小节)是条件概率计算时的重要依据,条件概率可以表示为
\begin{eqnarray}
\textrm{P}{(B|A)} & = & \frac{\textrm{P}(A\cap{B})}{\textrm{P}(A)} \nonumber \\
& = & \frac{\textrm{P}(A)\textrm{P}(B|A)}{\textrm{P}(A)} \nonumber \\
......@@ -166,7 +166,7 @@ F(x)=\int_{-\infty}^x f(x)dx
\label{eq:2-4}
\end{eqnarray}
\parinterval 为了更好区分条件概率、边缘概率和联合概率,这里用一个图形面积的计算来举例说明。如图\ref{fig:2-4}所示,矩形$A$代表事件$X$发生所对应的所有可能状态,矩形$B$代表事件$Y$发生所对应的所有可能状态,矩形$C$代表$A$$B$的交集,则
\parinterval 为了更好区分条件概率、边缘概率和联合概率,这里用一个图形面积的计算来举例说明。如图\ref{fig:2-4}所示,矩形$A$代表事件$X$发生所对应的所有可能状态,矩形$B$代表事件$Y$发生所对应的所有可能状态,矩形$C$代表$A$$B$的交集,则
\begin{itemize}
\vspace{0.5em}
......@@ -193,10 +193,10 @@ F(x)=\int_{-\infty}^x f(x)dx
\subsection{链式法则}
\parinterval 条件概率公式$\textrm{P}(a \mid b)=\textrm{P}(ab)/\textrm{P}(b)$反应了事件$b$发生的条件下事件$a$发生的概率。如果将其推广到三个事件$a$$b$$c$,为了计算$\textrm{P}(a,b,c)$,我们可以运用两次$\textrm{P}(a \mid b)=\textrm{P}(ab)/\textrm{P}(b)$,计算过程如下:
\parinterval 条件概率公式$\textrm{P}(A \mid B)=\textrm{P}(AB)/\textrm{P}(B)$反映了事件$B$发生的条件下事件$A$发生的概率。如果将其推广到三个事件$A$$B$$C$,为了计算$\textrm{P}(A,B,C)$,我们可以运用两次$\textrm{P}(A \mid B)=\textrm{P}(AB)/\textrm{P}(B)$,计算过程如下:
\begin{eqnarray}
\textrm{P}(a,b,c) & = & \textrm{P}(a \mid b ,c)\textrm{P}(b,c) \nonumber \\
& = & \textrm{P}(a \mid b,c)\textrm{P}(b \mid c)\textrm{P}(c)
\textrm{P}(A,B,C) & = & \textrm{P}(A \mid B ,C)\textrm{P}(B,C) \nonumber \\
& = & \textrm{P}(A \mid B,C)\textrm{P}(B \mid C)\textrm{P}(C)
\label{eq:2-5}
\end{eqnarray}
......@@ -239,7 +239,7 @@ F(x)=\int_{-\infty}^x f(x)dx
\subsection{贝叶斯法则}\label{sec:2.2.3}
\parinterval 首先介绍一下全概率公式:{\small\bfnew{全概率公式}}\index{全概率公式}(Law of Total Probability)\index{Law of Total Probability}是概率论中重要的公式,它可以将一个复杂事件发生的概率分解成不同情况的小事件发生概率的和。这里先介绍一个概念——划分。集合$S$的一个划分事件为$\{B_1,...,B_n\}$是指它们满足,$\bigcup_{i=1}^n B_i=S \textrm{}B_iB_j=\varnothing , i,j=1,...,n,i\neq j$。此时事件$A$的全概率公式可以被描述为:
\parinterval 首先介绍一下全概率公式:{\small\bfnew{全概率公式}}\index{全概率公式}(Law of Total Probability)\index{Law of Total Probability}是概率论中重要的公式,它可以将一个复杂事件发生的概率分解成不同情况的小事件发生概率的和。这里先介绍一个概念——划分。集合$S$的一个划分事件为$\{B_1,...,B_n\}$是指它们满足$\bigcup_{i=1}^n B_i=S \textrm{}B_iB_j=\varnothing , i,j=1,...,n,i\neq j$。此时事件$A$的全概率公式可以被描述为:
\begin{eqnarray}
\textrm{P}(A)=\sum_{k=1}^n \textrm{P}(A \mid B_k)\textrm{P}(B_k)
......@@ -277,7 +277,7 @@ F(x)=\int_{-\infty}^x f(x)dx
\noindent 其中,等式右端的分母部分使用了全概率公式。由上式,也可以得到贝叶斯公式的另外两种写法:
\begin{eqnarray}
\textrm{P}(A \mid B) & = & \frac { \textrm{P}(A \mid B)\textrm{P}(B) } {\textrm{P}(A)} \nonumber \\
\textrm{P}(B \mid A) & = & \frac { \textrm{P}(A \mid B)\textrm{P}(B) } {\textrm{P}(A)} \nonumber \\
& = & \frac { \textrm{P}(A \mid B)\textrm{P}(B) } {\textrm{P}(A \mid B)\textrm{P}(B)+\textrm{P}(A \mid \bar{B}) \textrm{P}(\bar{B})}
\label{eq:2-12}
\end{eqnarray}
......@@ -379,6 +379,7 @@ F(x)=\int_{-\infty}^x f(x)dx
\parinterval 对于机器翻译系统而言,输入的是已经切分好的单词序列,而不是原始的字符串(图\ref{fig:2-7})。比如,对于一个中文句子,单词之间是没有间隔的,因此需要把一个个的单词切分出来,这样机器翻译系统可以区分不同的翻译单元。甚至,可以对语言学上的单词进行进一步切分,得到词片段序列(比如:中国人$\to$中国/人)。可以把上述过程看作是一种{\small\sffamily\bfseries{分词}}\index{分词}(Segmentation)\index{Segmentation}过程,即:将一个输入的自然语言字符串切割成单元序列(token序列),每个单元都对应可以处理的最小单位。
\vspace{0.5em}
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -397,7 +398,8 @@ F(x)=\int_{-\infty}^x f(x)dx
\vspace{0.5em}
\begin{definition}
语言里最小的可以独立运用的单位:词汇。
\vspace{0.5em}
语言里最小的可以独立运用的单位。
\begin{flushright}——《新华字典》\end{flushright}
单词(word),含有语义内容或语用内容,且能被单独念出来的的最小单位。
......@@ -405,17 +407,14 @@ F(x)=\int_{-\infty}^x f(x)dx
語句中具有完整概念,能獨立自由運用的基本單位。
\begin{flushright}——《国语辞典》\end{flushright}
说话或诗歌、文章、戏剧中的语句。
\begin{flushright}——《现代汉语词典》\end{flushright}
\end{definition}
%-------------------------------------------
\parinterval 从语言学的角度来看,人们普遍认为词是可以单独运用的、包含意义的基本单位。这样可以使用有限的词组合出无限的句子,这也正体现出自然语言的奇妙之处。
\parinterval 不过,机器翻译并不仅仅局限在语言学定义的单词。比如,神经机器翻译中广泛使用的BPE子词切分方法(见第七章),可以被理解为将词的一部分也进行切开,也就是得到词片段送给机器翻译系统使用。比如,对如下英文字符串,可以得到如下切分结果
\vspace{0.5em}
\parinterval 不过,机器翻译并不仅仅局限在语言学定义的单词。比如,神经机器翻译中广泛使用的BPE子词切分方法(见第七章),可以被理解为将词的一部分也进行切开,也就是得到词片段送给机器翻译系统使用。比如,对如下英文字符串,可以得到如下切分结果:
\newpage
\parinterval Interesting \; $\to$ \; Interest/ing selection \hspace{0.08em} $\to$ \;se/lect/ion procession \hspace{0.43em} $\to$ \; pro/cess/ion
\parinterval Interested \hspace{0.62em} $\to$ \; Interest/ed selecting \hspace{0.34em} $\to$ \; se/lect/ing processing \hspace{0.22em} $\to$ \; pro/cess/ing
......@@ -493,7 +492,6 @@ F(x)=\int_{-\infty}^x f(x)dx
%-------------------------------------------
\parinterval\ref{fig:2-10} 给出了一个基于统计建模的汉语分词实例。左侧是标注数据,其中每个句子是已经经过人工标注的分词结果(单词用斜杠分开)。之后,建立一个统计模型,记为$\textrm{P}(\cdot)$。模型通过在标注数据上的学习来对问题进行描述,即学习$\textrm{P}(\cdot)$。最后,对于新的未分词的句子,使用模型$\textrm{P}(\cdot)$对每个可能的切分方式进行概率估计,之后选择概率最高的切分结果输出。
\vspace{-0.5em}
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -701,6 +699,7 @@ F(x)=\int_{-\infty}^x f(x)dx
\parinterval 这样,整个序列$w_1 w_2...w_m$的生成概率可以被重新定义为:
\vspace{0.5em}
\begin{center}
{\footnotesize
\begin{tabular}{l|l|l l|l}
......@@ -717,6 +716,7 @@ F(x)=\int_{-\infty}^x f(x)dx
}
\end{center}
\vspace{-0.8em}
\parinterval 可以看到,1-gram语言模型只是$n$-gram语言模型的一种特殊形式。$n$-gram的优点在于,它所使用的历史信息是有限的,即$n-1$个单词。这种性质也反映了经典的马尔可夫链的思想\cite{liuke-markov-2004}\cite{resnick1992adventures},有时也被称作马尔可夫假设或者马尔可夫属性。因此$n$-gram也可以被看作是变长序列上的一种马尔可夫模型,比如,2-gram语言模型对应着1阶马尔可夫模型,3-gram语言模型对应着2阶马尔可夫模型,以此类推。
\parinterval 那么,如何计算$\textrm{P}(w_m|w_{m-n+1} ... w_{m-1})$呢?有很多种选择,比如:
......@@ -732,14 +732,15 @@ F(x)=\int_{-\infty}^x f(x)dx
其中,$\textrm{count}(\cdot)$是在训练数据中统计频次的函数。
\vspace{0.3em}
\vspace{0.5em}
\item {\small\bfnew{人工神经网络方法}}\index{人工神经网络方法}。构建一个人工神经网络估计$\textrm{P}(w_m|w_{m-n+1} ... w_{m-1})$的值,比如,可以构建一个前馈神经网络来对$n$-gram进行建模。
\end{itemize}
\vspace{0.3em}
\vspace{0.5em}
\parinterval 极大似然估计方法和前面介绍的统计分词中的方法是一致的,它的核心是使用$n$-gram出现的频度进行参数估计,因此也是自然语言处理中一类经典的$n$-gram方法。基于人工神经网络的方法在近些年也非常受关注,它直接利用多层神经网络对问题的输入$(w_{m-n+1}...w_{m-1})$和输出$\textrm{P}(w_m|w_{m-n+1} ... w_{m-1})$进行建模,而模型的参数通过网络中神经元之间连接的权重进行体现。严格意义上了来说,基于人工神经网络的方法并不算基于$n$-gram的方法,或者说它并没有显性记录$n$-gram的生成概率,也不依赖$n$-gram的频度进行参数估计。为了保证内容的连贯性,本章将仍以传统$n$-gram语言模型为基础进行讨论,基于人工神经网络的方法将会在第五章和第六章进行详细介绍。
\parinterval $n$-gram语言模型的使用非常简单。可以像\ref{sec2:statistical-seg}节中一样,直接用它来对词序列出现的概率进行计算。比如,可以使用一个2-gram语言模型计算一个分词序列的概率:
\begin{eqnarray}
& &\textrm{P}_{2-gram}{(\textrm{``确实}/\textrm{现在}/\textrm{数据}/\textrm{}/\textrm{多''})} \nonumber \\
&= & \textrm{P}(\textrm{``确实''}) \times\textrm{P}(\textrm{``现在''}|\textrm{``确实''})\times\textrm{P}(\textrm{``数据''}|\textrm{``现在''}) \times \nonumber \\
......@@ -747,7 +748,7 @@ F(x)=\int_{-\infty}^x f(x)dx
\label{eq:2-25}
\end{eqnarray}
\parinterval$n$-gram语言模型为代表的统计语言模型的应用非常广泛。除了分词,在文本生成、信息检索、摘要等自然语言处理任务中,语言模型都有举足轻重的地位。包括近些年非常受关注的预训练模型,本质上也是统计语言模型。这些技术都会在后续章节进行介绍。值得注意的是,统计语言模型为解决自然语言处理问题提供了一个非常好的建模思路,即:把整个序列生成的问题转化为逐个生成单词的问题。很快我们就会看到,这种建模方式会被广泛用于机器翻译建模,在统计机器翻译和神经机器翻译中都会有明显的体现。
\parinterval$n$-gram语言模型为代表的统计语言模型的应用非常广泛。除了分词,在文本生成、信息检索、摘要等自然语言处理任务中,语言模型都有举足轻重的地位。包括近些年非常受关注的预训练模型,本质上也是统计语言模型。这些技术都会在后续章节进行介绍。值得注意的是,统计语言模型为解决自然语言处理问题提供了一个非常好的建模思路,即:把整个序列生成的问题转化为逐个生成单词的问题。很快我们就会看到,这种建模方式会被广泛用于机器翻译建模,在统计机器翻译和神经机器翻译中都会有明显的体现。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -789,8 +790,8 @@ F(x)=\int_{-\infty}^x f(x)dx
\parinterval 加法平滑方法假设每个$n$-gram出现的次数比实际统计次数多$\theta$次,$0 \le \theta\le 1$。这样,计算概率的时候分子部分不会为0。重新计算$\textrm{P}(\textrm{现在}|\textrm{确实})$,可以得到:
\begin{eqnarray}
\textrm{P}(\textrm{现在}|\textrm{确实}) & = & \frac{\theta + \textrm{count}(\textrm{确实/现在})}{\sum_{w}^{|V|}(\theta + \textrm{count}(\textrm{确实/}w))} \nonumber \\
& = & \frac{\theta + \textrm{count}(\textrm{确实/现在})}{\theta{|V|} + \textrm{count}(\textrm{确实})}
\textrm{P}(\textrm{``现在''}|\textrm{``确实''}) & = & \frac{\theta + \textrm{count}(\textrm{``确实''/``现在''})}{\sum_{w}^{|V|}(\theta + \textrm{count}(\textrm{``确实''/}w))} \nonumber \\
& = & \frac{\theta + \textrm{count}(\textrm{``确实''/``现在''})}{\theta{|V|} + \textrm{count}(\textrm{``确实''})}
\label{eq:2-27}
\end{eqnarray}
......@@ -899,9 +900,9 @@ I cannot see without my reading \underline{\ \ \ \ \ \ \ \ }
\end{center}
\vspace{0.0em}
\noindent 直觉上应该会猜测这个地方的词应该是glasses,但是在训练语料库中Francisco 出现的频率非常高。如果在预测时仍然使用的是标准的1-gram模型,那么系统会高概率选择Francisco填入下划线出,这个结果明显是不合理的。当使用的是混合的插值模型时,如果reading Francisco这种二元语法并没有出现在语料中,就会导致1-gram对结果的影响变大,使得仍然会做出与标准1-gram模型相同的结果,犯下相同的错误。
\noindent 直觉上应该会猜测这个地方的词应该是``glasses'',但是在训练语料库中``Francisco''出现的频率非常高。如果在预测时仍然使用的是标准的1-gram模型,那么系统会高概率选择``Francisco''填入下划线出,这个结果明显是不合理的。当使用的是混合的插值模型时,如果``reading Francisco''这种二元语法并没有出现在语料中,就会导致1-gram对结果的影响变大,使得仍然会做出与标准1-gram模型相同的结果,犯下相同的错误。
\parinterval 观察语料中的2-gram发现,Francisco的前一个词仅可能是San,不会出现reading。这个分析提醒了我们,考虑前一个词的影响是有帮助的,比如仅在前一个词时San时,才给Francisco赋予一个较高的概率值。基于这种想法,改进原有的1-gram模型,创造一个新的1-gram模型$\textrm{P}_{\textrm{continuation}}$,简写为$\textrm{P}_{\textrm{cont}}$。这个模型可以通过考虑前一个词的影响评估当前词作为第二个词出现的可能性。
\parinterval 观察语料中的2-gram发现,``Francisco''的前一个词仅可能是``San'',不会出现``reading''。这个分析提醒了我们,考虑前一个词的影响是有帮助的,比如仅在前一个词时``San''时,才给``Francisco''赋予一个较高的概率值。基于这种想法,改进原有的1-gram模型,创造一个新的1-gram模型$\textrm{P}_{\textrm{continuation}}$,简写为$\textrm{P}_{\textrm{cont}}$。这个模型可以通过考虑前一个词的影响评估当前词作为第二个词出现的可能性。
\parinterval 为了评估$\textrm{P}_{\textrm{cont}}$,统计使用当前词作为第二个词所出现二元语法的种类,二元语法种类越多,这个词作为第二个词出现的可能性越高,呈正比:
\begin{eqnarray}
......@@ -962,7 +963,7 @@ c_{\textrm{KN}}(\cdot) = \left\{\begin{array}{ll}
\sectionnewpage
\section{句法分析(短语结构分析)}
\parinterval 通过前面两节的内容,已经了解什么叫做``词''、如何对分词问题进行统计建模。同时也了解了如何对词序列的生成进行概率描述。无论是分词还是语言模型都是句子浅层词串信息的一种表示。对于一个自然语言句子来说,它更深层次的结构信息可以通过句法信息来描述,而句法信息也是机器翻译和自然语言处理其他任务中常用的知识之一。
\parinterval 通过前面两节的内容,读者已经了解什么叫做``词''、如何对分词问题进行统计建模。同时也了解了如何对词序列的生成进行概率描述。无论是分词还是语言模型都是句子浅层词串信息的一种表示。对于一个自然语言句子来说,它更深层次的结构信息可以通过句法信息来描述,而句法信息也是机器翻译和自然语言处理其他任务中常用的知识之一。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......
......@@ -329,7 +329,6 @@
\subsubsection{基础模型}
\vspace{0.5em}
\parinterval 计算句子级翻译概率并不简单。因为自然语言非常灵活,任何数据无法覆盖足够多的句子,因此,无法像公式\ref{eq:3-4}一样直接用简单计数的方式对句子的翻译概率进行估计。这里,采用一个退而求其次的方法:找到一个函数$g(\mathbf{s},\mathbf{t})\ge 0$来模拟翻译概率对译文可能性进行估计。可以定义一个新的函数$g(\mathbf{s},\mathbf{t})$,令其满足:给定$\mathbf{s}$,翻译结果$\mathbf{t}$出现的可能性越大,$g(\mathbf{s},\mathbf{t})$的值越大;$\mathbf{t}$出现的可能性越小,$g(\mathbf{s},\mathbf{t})$的值越小。换句话说,$g(\mathbf{s},\mathbf{t})$的单调性和翻译概率$\textrm{P}(\mathbf{t}|\mathbf{s})$呈正相关。如果存在这样的函数$g(\mathbf{s},\mathbf{t}
)$,可以利用$g(\mathbf{s},\mathbf{t})$近似表示$\textrm{P}(\mathbf{t}|\mathbf{s})$,如下:
\begin{eqnarray}
......@@ -640,23 +639,23 @@ g(\mathbf{s},\mathbf{t}) \equiv \prod_{j,i \in \widehat{A}}{\textrm{P}(s_j,t_i)}
\begin{figure}[htp]
\centering
\input{./Chapter3/Figures/figure-different-alignment-comparison}
\setlength{\belowcaptionskip}{-0.5em}
\caption{不同词对齐对比}
\label{fig:3-15}
\end{figure}
%----------------------------------------------
\vspace{0.5em}
\item 源语言单词可以翻译为空,这时它对应到一个虚拟或伪造的目标语单词$t_0$。在图\ref{fig:3-16}所示的例子中,``在''没有对应到``on the table''中的任意一个词,而是把它对应到$t_0$上。这样,所有的源语言单词都能找到一个目标语单词对应。这种设计也很好地引入了{\small\sffamily\bfseries{空对齐}}\index{空对齐}的思想,即源语言单词不对应任何真实存在的单词的情况。而这种空对齐的情况在翻译中是频繁出现的,比如虚词的翻译。
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter3/Figures/figure-word-alignment-instance}
\setlength{\belowcaptionskip}{-0.5em}
\caption{词对齐实例(``在''对应到$t_0$}
\label{fig:3-16}
\end{figure}
%----------------------------------------------
\vspace{0.5em}
\end{itemize}
\parinterval 通常,把词对齐记为$\mathbf{a}$,它由$a_1$$a_m$$m$个词对齐连接组成,即$\mathbf{a}=a_1...a_m$$a_j$表示第$j$个源语单词$s_j$对应的目标语单词的位置。在图\ref{fig:3-16}的例子中,词对齐关系可以记为$a_1=0, a_2=3, a_3=1$,即第1个源语单词``在''对应到目标语译文的第0个位置,第2个源语单词``桌子''对应到目标语译文的第3个位置,第3个源语单词``上''对应到目标语译文的第1个位置。
......@@ -752,22 +751,20 @@ g(\mathbf{s},\mathbf{t}) \equiv \prod_{j,i \in \widehat{A}}{\textrm{P}(s_j,t_i)}
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\vspace{-0.5em}
\subsection{IBM模型1}
\parinterval IBM模型1对公式\ref{eq:3-18}中的三项进行了简化。具体方法如下:
\begin{itemize}
\vspace{0.5em}
\item 假设$\textrm{P}(m|\mathbf{t})$为常数$\varepsilon$,即源语言的长度的生成概率服从均匀分布,如下:
\begin{eqnarray}
\textrm{P}(m|\mathbf{t})\; \equiv \; \varepsilon
\label{eq:3-20}
\end{eqnarray}
%\vspace{0.5em}
\item 对齐概率$\textrm{P}(a_j|a_1^{j-1},s_1^{j-1},m,\mathbf{t})$仅依赖于译文长度$l$,即每个词对齐连接的概率也服从均匀分布。换句话说,对于任何源语言位置$j$对齐到目标语言任何位置都是等概率的。比如译文为``on the table'',再加上$t_0$共4个位置,相应的,任意源语单词对齐到这4个位置的概率是一样的。具体描述如下:
\begin{eqnarray}
\textrm{P}(a_j|a_1^{j-1},s_1^{j-1},m,\mathbf{t}) \equiv \frac{1}{l+1}
\label{eq:3-21}
\vspace{0.5em}
\end{eqnarray}
\item 源语单词$s_j$的生成概率$\textrm{P}(s_j|a_1^{j},s_1^{j-1},m,\mathbf{t})$仅依赖与其对齐的译文单词$t_{a_j}$,即词汇翻译概率$f(s_j|t_{a_j})$。此时词汇翻译概率满足$\sum_{s_j}{f(s_j|t_{a_j})}=1$。比如在图\ref{fig:3-18}表示的例子中,源语单词``上''出现的概率只和与它对齐的单词``on''有关系,与其他单词没有关系。
......@@ -778,16 +775,6 @@ g(\mathbf{s},\mathbf{t}) \equiv \prod_{j,i \in \widehat{A}}{\textrm{P}(s_j,t_i)}
用一个简单的例子对公式\ref{eq:3-22}进行说明。比如,在图\ref{fig:3-18}中,``桌子''对齐到``table'',可被描述为$f(s_2 |t_{a_2})=f(\textrm{``桌子''}|\textrm{``table''})$,表示给定``table''翻译为``桌子''的概率。通常,$f(s_2 |t_{a_2})$被认为是一种概率词典,它反应了两种语言词汇一级的对应关系。
\end{itemize}
%\vspace{3.0em}
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter3/Figures/figure-zh-en-bilingual-sentence-pairs}
\caption{汉译英双语句对及词对齐}
\label{fig:3-18}
\end{figure}
%----------------------------------------------
\parinterval 将上述三个假设和公式\ref{eq:3-18}代入公式\ref{eq:3-17}中,得到$\textrm{P}(\mathbf{s}|\mathbf{t})$的表达式:
\begin{eqnarray}
......@@ -798,6 +785,15 @@ g(\mathbf{s},\mathbf{t}) \equiv \prod_{j,i \in \widehat{A}}{\textrm{P}(s_j,t_i)}
\label{eq:3-23}
\end{eqnarray}
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter3/Figures/figure-zh-en-bilingual-sentence-pairs}
\caption{汉译英双语句对及词对齐}
\label{fig:3-18}
\end{figure}
%----------------------------------------------
\parinterval 在公式\ref{eq:3-23}中,需要遍历所有的词对齐,即$ \sum_{\mathbf{a}}{\cdot}$。但这种表示不够直观,因此可以把这个过程重新表示为如下形式:
\begin{eqnarray}
\textrm{P}(\mathbf{s}|\mathbf{t})={\sum_{a_1=0}^{l}\cdots}{\sum_{a_m=0}^{l}\frac{\varepsilon}{(l+1)^m}}{\prod_{j=1}^{m}f(s_j|t_{a_j})}
......@@ -1149,6 +1145,8 @@ a(i|j,m,l) &=\frac{\sum_{k=0}^{K}c_{\mathbb{E}}(i|j;\mathbf{s}^{[k]},\mathbf{t}^
\parinterval 这里将会给出另一个翻译模型,能在一定程度上解决上面提到的问题。该模型把译文生成源文的过程分解为如下几个步骤:首先,确定每个目标语言单词生成源语言单词的个数,这里把它称为{\small\sffamily\bfseries{产出率}}\index{产出率}{\small\sffamily\bfseries{繁衍率}}\index{繁衍率}(Fertility)\index{Fertility};其次,决定译文中每个单词生成的源语言单词都是什么,即决定生成的第一个源语言单词是什么,生成的第二个源语言单词是什么,以此类推。这样每个目标语单词就对应了一个源语言单词列表;最后把各组源语言单词列表中的每个单词都放置到合适的位置上,完成目标语言译文到源语言句子的生成。
\parinterval 对于句对$(\mathbf{s},\mathbf{t})$,令$\varphi$表示产出率,同时令${\tau}$表示每个目标语单词对应的源语言单词列表。图{\ref{fig:3-29}}描述了一个英文句子生成中文句子的过程。首先,对于每个英语单词$t_i$决定它的产出率$\varphi_{i}$。比如``Scientists''的产出率是2,可表示为${\varphi}_{1}=2$。这表明它会生成2个中文单词;其次,确定英文句子中每个单词生成的中文单词列表。比如``Scientists''生成``科学家''和``们''两个中文单词,可表示为${\tau}_1=\{{\tau}_{11}=\textrm{``科学家''},{\tau}_{12}=\textrm{``们''}$。这里用特殊的空标记NULL表示翻译对空的情况;最后,把生成的所有中文单词放在合适的位置。比如``科学家''和``们''分别放在$\mathbf{s}$的位置1和位置2。可以用符号$\pi$记录生成的单词在源语言句子$\mathbf{s}$中的位置。比如``Scientists''生成的中文单词在$\mathbf{s}$ 中的位置表示为${\pi}_{1}=\{{\pi}_{11}=1,{\pi}_{12}=2\}$
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -1158,22 +1156,10 @@ a(i|j,m,l) &=\frac{\sum_{k=0}^{K}c_{\mathbb{E}}(i|j;\mathbf{s}^{[k]},\mathbf{t}^
\end{figure}
%----------------------------------------------
\parinterval 对于句对$(\mathbf{s},\mathbf{t})$,令$\varphi$表示产出率,同时令${\tau}$表示每个目标语单词对应的源语言单词列表。图{\ref{fig:3-29}}描述了一个英文句子生成中文句子的过程。首先,对于每个英语单词$t_i$决定它的产出率$\varphi_{i}$。比如``Scientists''的产出率是2,可表示为${\varphi}_{1}=2$。这表明它会生成2个中文单词;其次,确定英文句子中每个单词生成的中文单词列表。比如``Scientists''生成``科学家''和``们''两个中文单词,可表示为${\tau}_1=\{{\tau}_{11}=\textrm{``科学家''},{\tau}_{12}=\textrm{``们''}$。这里用特殊的空标记NULL表示翻译对空的情况;最后,把生成的所有中文单词放在合适的位置。比如``科学家''和``们''分别放在$\mathbf{s}$的位置1和位置2。可以用符号$\pi$记录生成的单词在源语言句子$\mathbf{s}$中的位置。比如``Scientists''生成的中文单词在$\mathbf{s}$ 中的位置表示为${\pi}_{1}=\{{\pi}_{11}=1,{\pi}_{12}=2\}$
\parinterval 为了表述清晰,我们重新说明每个符号的含义。$\mathbf{s}$$\mathbf{t}$$m$$l$分别表示源语言句子、目标语译文、源语言单词数量以及译文单词数量。$\mathbf{\varphi}$$\mathbf{\tau}$$\mathbf{\pi}$分别记录产出率、生成的源语言单词以及它们在源文中的位置。${\varphi}_{i}$表示第$i$个译文单词$t_i$的产出率。${\tau}_{i}$${\pi}_i$分别表示$t_i$生成的源语言单词列表及其在源语言句子$\mathbf{s}$中的位置列表。
\parinterval 可以看出,一组$\tau$$\pi$(记为$<\tau,\pi>$)可以决定一个对齐$\mathbf{a}$和一个源语句子$\mathbf{s}$
\vspace{0.5em}
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter3/Figures/figure-example-of-t-s-generate}
\caption{不同$\tau$$\pi$对应相同的源语言句子和词对齐的情况}
\label{fig:3-30}
\end{figure}
%----------------------------------------------
\vspace{-0.2em}
\noindent 相反的,一个对齐$\mathbf{a}$和一个源语句子$\mathbf{s}$可以对应多组$<\tau,\pi>$。如图\ref{fig:3-30}所示,不同的$<\tau,\pi>$对应同一个源语言句子和词对齐。它们的区别在于目标语单词``Scientists''生成的源语言单词``科学家''和``们''的顺序不同。这里把不同的$<\tau,\pi>$对应到的相同的源语句子$\mathbf{s}$和对齐$\mathbf{a}$记为$<\mathbf{s},\mathbf{a}>$。因此计算$\textrm{P}(\mathbf{s},\mathbf{a}| \mathbf{t})$时需要把每个可能结果的概率加起来,如下:
\begin{equation}
\textrm{P}(\mathbf{s},\mathbf{a}| \mathbf{t})=\sum_{{<\tau,\pi>}\in{<\mathbf{s},\mathbf{a}>}}{\textrm{P}(\tau,\pi|\mathbf{t}) }
......@@ -1182,6 +1168,15 @@ a(i|j,m,l) &=\frac{\sum_{k=0}^{K}c_{\mathbb{E}}(i|j;\mathbf{s}^{[k]},\mathbf{t}^
\parinterval 不过$<\mathbf{s},\mathbf{a}>$中有多少个元素呢?通过图\ref{fig:3-29}中的例子,可以推出$<\mathbf{s},\mathbf{a}>$应该包含$\prod_{i=0}^{l}{\varphi_i !}$个不同的二元组$<\tau,\pi>$。 这是因为在给定源语言句子和词对齐时,对于每一个$\tau_i$都有$\varphi_{i}!$种排列。
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter3/Figures/figure-example-of-t-s-generate}
\caption{不同$\tau$$\pi$对应相同的源语言句子和词对齐的情况}
\label{fig:3-30}
\end{figure}
%----------------------------------------------
\parinterval 进一步,$\textrm{P}(\tau,\pi|\mathbf{t})$可以被表示如图\ref{fig:3-31}的形式。其中$\tau_{i1}^{k-1}$表示$\tau_{i1}\tau_{i2}\cdots \tau_{i(k-1)}$$\pi_{i1}^{ k-1}$表示$\pi_{i1}\pi_{i2}\cdots \pi_{i(k-1)}$。可以把图\ref{fig:3-31}中的公式分为5个部分,并用不同的序号和颜色进行标注。每部分的具体含义是:
\begin{itemize}
......@@ -1197,22 +1192,25 @@ a(i|j,m,l) &=\frac{\sum_{k=0}^{K}c_{\mathbb{E}}(i|j;\mathbf{s}^{[k]},\mathbf{t}^
\item $i=0$时的扭曲度建模({\color{gray!70} 灰色}),即空标记$t_0$生成的源语言单词在源语言句子中位置的概率。
\end{itemize}
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\subsection{IBM 模型3}
\parinterval IBM模型3通过一些假设对图\ref{fig:3-31}所表示的基本模型进行了化简。具体来说,对于每个$i\in[1,l]$,假设$\textrm{P}(\varphi_i |\varphi_1^{i-1},\mathbf{t})$仅依赖于$\varphi_i$$t_i$$\textrm{P}(\pi_{ik}|\pi_{i1}^{k-1},\pi_1^{i-1},\tau_0^l,\varphi_0^l,\mathbf{t})$仅依赖于$\pi_{ik}$$i$$m$$l$。而对于所有的$i\in[0,l]$,假设$\textrm{P}(\tau_{ik}|\tau_{i1}^{k-1},\tau_1^{i-1},\phi_0^l,\mathbf{t})$仅依赖于$\tau_{ik}$$t_i$。形式化这些假设,可以得到:
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter3/Figures/figure-expression}
\caption{{$\textrm{P}(\tau,\pi|t)$}的详细表达式}
\setlength{\belowcaptionskip}{-0.5em}
\label{fig:3-31}
\end{figure}
%----------------------------------------------
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\subsection{IBM 模型3}
\parinterval IBM模型3通过一些假设对图\ref{fig:3-31}所表示的基本模型进行了化简。具体来说,对于每个$i\in[1,l]$,假设$\textrm{P}(\varphi_i |\varphi_1^{i-1},\mathbf{t})$仅依赖于$\varphi_i$$t_i$$\textrm{P}(\pi_{ik}|\pi_{i1}^{k-1},\pi_1^{i-1},\tau_0^l,\varphi_0^l,\mathbf{t})$仅依赖于$\pi_{ik}$$i$$m$$l$。而对于所有的$i\in[0,l]$,假设$\textrm{P}(\tau_{ik}|\tau_{i1}^{k-1},\tau_1^{i-1},\phi_0^l,\mathbf{t})$仅依赖于$\tau_{ik}$$t_i$。形式化这些假设,可以得到:
\vspace{-3.0em}
\begin{eqnarray}
\textrm{P}(\varphi_i|\varphi_1^{i-1},\mathbf{t}) & = &{\textrm{P}(\varphi_i|t_i)} \label{eq:3-67} \\
\textrm{P}(\tau_{ik} = s_j |\tau_{i1}^{k-1},\tau_{1}^{i-1},\varphi_0^t,\mathbf{t}) & = & t(s_j|t_i) \label{eq:3-68} \\
......@@ -1263,14 +1261,11 @@ p_0+p_1 & = & 1 \label{eq:3-56}
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\vspace{-2em}
\subsection{IBM 模型4}
\parinterval IBM模型3仍然存在问题,比如,它不能很好地处理一个目标语言单词生成多个源语言单词的情况。这个问题在模型1和模型2中也存在。如果一个目标语言单词对应多个源语言单词,往往这些源语言单词构成短语或搭配。但是模型1-3把这些源语言单词看成独立的单元,而实际上它们是一个整体。这就造成了在模型1-3中这些源语言单词可能会``分散''开。为了解决这个问题,模型4对模型3进行了进一步修正。
\parinterval 为了更清楚的阐述,这里引入新的术语\ \dash \ {\small\bfnew{概念单元}}\index{概念单元}{\small\bfnew{概念}}\index{概念}(Concept)\index{Concept}。词对齐可以被看作概念之间的对应。这里的概念是指具有独立语法或语义功能的一组单词。依照Brown等人的表示方法\cite{Peter1993The},可以把概念记为cept.。每个句子都可以被表示成一系列的cept.。这里要注意的是,源语言句子中的cept.数量不一定等于目标句子中的cept.数量。因为有些cept. 可以为空,因此可以把那些空对的单词看作空cept.。比如,在图\ref{fig:3-32}的实例中,``了''就对应一个空cept.。
\vspace{3em}
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -1280,6 +1275,8 @@ p_0+p_1 & = & 1 \label{eq:3-56}
\end{figure}
%----------------------------------------------
\parinterval 为了更清楚的阐述,这里引入新的术语\ \dash \ {\small\bfnew{概念单元}}\index{概念单元}{\small\bfnew{概念}}\index{概念}(Concept)\index{Concept}。词对齐可以被看作概念之间的对应。这里的概念是指具有独立语法或语义功能的一组单词。依照Brown等人的表示方法\cite{Peter1993The},可以把概念记为cept.。每个句子都可以被表示成一系列的cept.。这里要注意的是,源语言句子中的cept.数量不一定等于目标句子中的cept.数量。因为有些cept. 可以为空,因此可以把那些空对的单词看作空cept.。比如,在图\ref{fig:3-32}的实例中,``了''就对应一个空cept.。
\parinterval 在IBM模型的词对齐框架下,目标语的cept.只能是那些非空对齐的目标语单词,而且每个cept.只能由一个目标语单词组成(通常把这类由一个单词组成的cept.称为独立单词cept.)。这里用$[i]$表示第$i$ 个独立单词cept.在目标语言句子中的位置。换句话说,$[i]$表示第$i$个非空对的目标语单词的位置。比如在本例中``mind''在$\mathbf{t}$中的位置表示为$[3]$
\parinterval 另外,可以用$\odot_{i}$表示位置为$[i]$的目标语言单词对应的那些源语言单词位置的平均值,如果这个平均值不是整数则对它向上取整。比如在本例中,目标语句中第4个cept. (``.'')对应在源语言句子中的第5个输出值。可表示为${\odot}_{4}=5$
......
......@@ -111,7 +111,7 @@
\subsection{句子的结构信息}
\parinterval 使用短语的优点在于可以捕捉具有完整意思的连续词串,因此能够对局部上下文信息进行建模。当单词之间的搭配和依赖关系出现在连续词串中时,短语可以很好地对其进行描述。但是,当单词之间距离很远时,使用短语的``效率''很低。同$n$-gram语言模型一样,当短语长度变长时,数据会变得非常稀疏。比如,很多实验已经证明,测试数据中超过5个的连续单词在训练数据中往往是很低频的现象,更长的短语甚至都很难在训练数据中找到。当然,可以使用平滑算法对长短语的概率进行估计,但是使用过长的短语在实际系统研发中仍然不现实。图\ref{fig:4-6}展示了一个汉语到英语的翻译实例。源语言的两个短语(蓝色和红色高亮)在译文中产生了调序。但是,这两个短语在源语言句子中横跨11个单词。如果直接使用这个11个单词构成的短语进行翻译,显然会有非常严重的数据稀疏问题,因为很难期望在训练数据中见到一模一样的短语。
\parinterval 使用短语的优点在于可以捕捉具有完整意思的连续词串,因此能够对局部上下文信息进行建模。当单词之间的搭配和依赖关系出现在连续词串中时,短语可以很好地对其进行描述。但是,当单词之间距离很远时,使用短语的``效率''很低。同$n$-gram语言模型一样,当短语长度变长时,数据会变得非常稀疏。比如,很多实验已经证明,测试数据中超过5个的连续单词在训练数据中往往是很低频的现象,更长的短语甚至都很难在训练数据中找到。
%----------------------------------------------
\begin{figure}[htp]
......@@ -122,7 +122,9 @@
\end{figure}
%-------------------------------------------
\parinterval 如果仅仅使用连续词串不能处理所有的翻译问题,根本的原因在于句子的表层串很难描述片段之间大范围的依赖。一个新的思路是使用句子的结构信息进行建模。第二章已经介绍了句子的句法表示形式。对于每个句子,都可以用句法树描述它的结构。图\ref{fig:4-7}就展示了一棵英文句法树(短语结构树)。句法树描述了一种递归的结构,每个句法结构都可以用一个子树来描述,子树之间的组合可以构成更大的子树,最终完成整个句子的表示。相比线性的序列模型,树结构更容易处理大片段之间的关系。比如,两个在序列中距离``很远''的单词,在树结构中可能会``很近''。
\parinterval 当然,可以使用平滑算法对长短语的概率进行估计,但是使用过长的短语在实际系统研发中仍然不现实。图\ref{fig:4-6}展示了一个汉语到英语的翻译实例。源语言的两个短语(蓝色和红色高亮)在译文中产生了调序。但是,这两个短语在源语言句子中横跨11个单词。如果直接使用这个11个单词构成的短语进行翻译,显然会有非常严重的数据稀疏问题,因为很难期望在训练数据中见到一模一样的短语。
\parinterval 如果仅仅使用连续词串不能处理所有的翻译问题,根本的原因在于句子的表层串很难描述片段之间大范围的依赖。一个新的思路是使用句子的结构信息进行建模。第二章已经介绍了句子的句法表示形式。对于每个句子,都可以用句法树描述它的结构。
%----------------------------------------------
\begin{figure}[htp]
......@@ -133,7 +135,7 @@
\end{figure}
%-------------------------------------------
\parinterval 句法树结构可以赋予机器翻译一种对语言进一步抽象的能力,这样,并不需要使用连续词串,而是通过句法结构来对大范围的译文生成和调序进行建模。图\ref{fig:4-8}是一个在翻译中融入源语言(中文)句法信息的实例。这个例子中,介词短语包含15个单词,因此,使用短语很难涵盖``在 $...$ 后''这样的片段。这时,系统会把``在 $...$ 后''错误的翻译为``In $...$''。通过句法树,可以知道``在 $...$ 后''对应着一个完整的子树结构PP(介词短语)。因此也很容易知道介词短语中``在 $...$ 后''是一个模板(红色),而``在''和``后''之间的部分构成从句部分(蓝色)。最终得到正确的译文``After $...$''。
\parinterval \ref{fig:4-7}就展示了一棵英文句法树(短语结构树)。句法树描述了一种递归的结构,每个句法结构都可以用一个子树来描述,子树之间的组合可以构成更大的子树,最终完成整个句子的表示。相比线性的序列模型,树结构更容易处理大片段之间的关系。比如,两个在序列中距离``很远''的单词,在树结构中可能会``很近''。
%----------------------------------------------
\begin{figure}[htp]
......@@ -144,6 +146,8 @@
\end{figure}
%-------------------------------------------
\parinterval 句法树结构可以赋予机器翻译一种对语言进一步抽象的能力,这样,并不需要使用连续词串,而是通过句法结构来对大范围的译文生成和调序进行建模。图\ref{fig:4-8}是一个在翻译中融入源语言(中文)句法信息的实例。这个例子中,介词短语包含15个单词,因此,使用短语很难涵盖``在 $...$ 后''这样的片段。这时,系统会把``在 $...$ 后''错误的翻译为``In $...$''。通过句法树,可以知道``在 $...$ 后''对应着一个完整的子树结构PP(介词短语)。因此也很容易知道介词短语中``在 $...$ 后''是一个模板(红色),而``在''和``后''之间的部分构成从句部分(蓝色)。最终得到正确的译文``After $...$''。
\parinterval 使用句法信息在机器翻译中不新鲜。在基于规则和模板的翻译模型中,就大量地使用了句法等结构信息。只是由于早期句法分析技术不成熟,系统的整体效果并不突出。在统计机器翻译时代,句法可以很好地融合在统计建模中。通过概率化的文法设计,可以对翻译过程进行很好的描述。在本章的\ref{section-4.3}节和\ref{section-4.4}节中将会详细讨论句法信息在统计机器翻译中的应用。
%----------------------------------------------------------------------------------------
......@@ -380,7 +384,7 @@ d = {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)} \c
\vspace{0.5em}
\end{itemize}
\parinterval 在基于短语的翻译模型中,通常包含三类特征:短语翻译特征、调序特征、语言模型相关的特征。这些特征都需要从训练数据中学习。图\ref{fig:4-11}展示了一个基于短语的机器翻译模型的搭建流程。其中的训练数据包括双语平行语料和目标语言单语语料。首先,需要从双语平行数据中学习短语的翻译,并形成一个短语翻译表;然后,再从双语平行数据中学习调序模型;最后,从目标语单语数据中学习语言模型。短语翻译表、调序模型、语言模型都会作为特征被送入判别式模型,由解码器完成对新句子的翻译。而这些特征的权重可以在额外的开发集上进行调优。关于短语翻译、调序模型和特征权重的学习,会在本章的\ref{subsection-4.2.3}-\ref{subsection-4.2.6}节进行介绍
在基于短语的翻译模型中,通常包含三类特征:短语翻译特征、调序特征、语言模型相关的特征。这些特征都需要从训练数据中学习
%----------------------------------------------
\begin{figure}[htp]
......@@ -391,6 +395,8 @@ d = {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)} \c
\end{figure}
%-------------------------------------------
\parinterval\ref{fig:4-11}展示了一个基于短语的机器翻译模型的搭建流程。其中的训练数据包括双语平行语料和目标语言单语语料。首先,需要从双语平行数据中学习短语的翻译,并形成一个短语翻译表;然后,再从双语平行数据中学习调序模型;最后,从目标语单语数据中学习语言模型。短语翻译表、调序模型、语言模型都会作为特征被送入判别式模型,由解码器完成对新句子的翻译。而这些特征的权重可以在额外的开发集上进行调优。关于短语翻译、调序模型和特征权重的学习,会在本章的\ref{subsection-4.2.3}-\ref{subsection-4.2.6}节进行介绍。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
......@@ -465,7 +471,7 @@ d = {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)} \c
\subsubsection{获取词对齐}
\parinterval 如何获得词对齐呢?上一章介绍的IBM模型本身就是一个词对齐模型,因此一种常用的方法是直接使用IBM模型生成词对齐。IBM模型约定每个源语言单词必须对应、也只能对应到一个目标语单词。因此,IBM 模型得到的词对齐结果是不对称的。正常情况下词对齐可以是一个源语言单词对应多个目标语言单词,或者多对一,甚至多对多的情况。为了获得对称的词对齐,一种简单的方法是,分别进行正向翻译和反向翻译的词对齐,然后利用启发性方法生成对称的词对齐,例如,双向词对齐取交集、并集等。如图\ref{fig:4-16}中,左边两个图就是正向和反向两种词对齐的结果。右边的图是融合双向词对齐的结果,取交集是蓝色的方框,取并集是红色的方框。当然,还可以设计更多的启发性规则生成词对齐\cite{koehn2000estimating,koehn2007factored}
\parinterval 如何获得词对齐呢?上一章介绍的IBM模型本身就是一个词对齐模型,因此一种常用的方法是直接使用IBM模型生成词对齐。IBM模型约定每个源语言单词必须对应、也只能对应到一个目标语单词。因此,IBM 模型得到的词对齐结果是不对称的。正常情况下词对齐可以是一个源语言单词对应多个目标语言单词,或者多对一,甚至多对多的情况。为了获得对称的词对齐,一种简单的方法是,分别进行正向翻译和反向翻译的词对齐,然后利用启发性方法生成对称的词对齐,例如,双向词对齐取交集、并集等。
%----------------------------------------------
\begin{figure}[htp]
......@@ -476,7 +482,9 @@ d = {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)} \c
\end{figure}
%-------------------------------------------
\parinterval 除此之外,一些外部工具也可以用来获取词对齐,如Fastalign\cite{dyer2013a}、Berkeley Word Aligner\cite{taskar2005a}等。词对齐的质量通常使用词对齐错误率(AER)来评价\cite{DBLP:conf/coling/OchN00}。但是词对齐并不是一个独立的系统,它一般会服务于其他任务。因此,也可以使用下游任务来评价词对齐的好坏。比如,改进词对齐后观察机器翻译系统性能的变化。\\ \\ \\
\parinterval 如图\ref{fig:4-16}中,左边两个图就是正向和反向两种词对齐的结果。右边的图是融合双向词对齐的结果,取交集是蓝色的方框,取并集是红色的方框。当然,还可以设计更多的启发性规则生成词对齐\cite{koehn2000estimating,koehn2007factored}
\parinterval 除此之外,一些外部工具也可以用来获取词对齐,如Fastalign\cite{dyer2013a}、Berkeley Word Aligner\cite{taskar2005a}等。词对齐的质量通常使用词对齐错误率(AER)来评价\cite{DBLP:conf/coling/OchN00}。但是词对齐并不是一个独立的系统,它一般会服务于其他任务。因此,也可以使用下游任务来评价词对齐的好坏。比如,改进词对齐后观察机器翻译系统性能的变化。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -498,6 +506,8 @@ d = {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)} \c
\label{eq:4-14}
\end{eqnarray}
\parinterval 它表达的意思是短语$\bar{s}$$\bar{t}$存在词汇级的对应关系,其中$w$表示词汇翻译概率用来度量两个单词之间翻译的可能性大小(见第三章),作为两个词之间对应的强度。
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -507,9 +517,7 @@ d = {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)} \c
\end{figure}
%-------------------------------------------
\parinterval 它表达的意思是短语$\bar{s}$$\bar{t}$存在词汇级的对应关系,其中$w$表示词汇翻译概率用来度量两个单词之间翻译的可能性大小(见第三章),作为两个词之间对应的强度。下面来看一个具体的例子,如图\ref{fig:4-17}所示。对于一个双语短语,将它们的词对齐关系代入到上面的公式就会得到短语的词汇翻译概率。对于词汇翻译概率,可以使用IBM 模型中的单词翻译表,也可以通过统计获得\cite{koehn2002learning}。如果一个单词的词对齐为空,则用$N$表示它翻译为空的概率。和短语翻译概率一样,可以使用双向的词汇化翻译概率来评价双语短语的好坏。
\parinterval 经过上面的介绍,可以从双语平行语料中把双语短语抽取出来,同时得到相应的翻译概率(即特征),组成{\small\bfnew{短语表}}\index{短语表}(Phrase Table)\index{Phrase Table}。图\ref{fig:4-18}展示了一个真实短语表的片段。其中包括源语言短语和目标语言短语,用|||进行分割。每个双语对应的得分,包括正向和反向的词汇翻译概率以及短语翻译概率,还包括词对齐信息(0-0、1-1)等其他信息。
\parinterval 下面来看一个具体的例子,如图\ref{fig:4-17}所示。对于一个双语短语,将它们的词对齐关系代入到上面的公式就会得到短语的词汇翻译概率。对于词汇翻译概率,可以使用IBM 模型中的单词翻译表,也可以通过统计获得\cite{koehn2002learning}。如果一个单词的词对齐为空,则用$N$表示它翻译为空的概率。和短语翻译概率一样,可以使用双向的词汇化翻译概率来评价双语短语的好坏。
%----------------------------------------------
\begin{figure}[htp]
......@@ -520,13 +528,15 @@ d = {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)} \c
\end{figure}
%-------------------------------------------
\parinterval 经过上面的介绍,可以从双语平行语料中把双语短语抽取出来,同时得到相应的翻译概率(即特征),组成{\small\bfnew{短语表}}\index{短语表}(Phrase Table)\index{Phrase Table}。图\ref{fig:4-18}展示了一个真实短语表的片段。其中包括源语言短语和目标语言短语,用|||进行分割。每个双语对应的得分,包括正向和反向的词汇翻译概率以及短语翻译概率,还包括词对齐信息(0-0、1-1)等其他信息。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\subsection{调序}\label{subsection-4.2.4}
\parinterval 尽管已经知道了如何将一个源语言短语翻译成目标语言短语,但是想要获得一个高质量的译文,仅有互译的双语短语是远远不够的。如图\ref{fig:4-19}所示,按照从左到右的顺序对一个句子``在\ \ 桌子\ \ \ \ \ \ 苹果''进行翻译,得到的译文``on the table the apple''的语序是不对的。虽然可以使用$n$-gram语言模型对语序进行建模,但是此处仍然需要用更加准确的方式描述目标语短语间的次序。一般,把这个问题称为短语调序,或者简称{\small\bfnew{调序}}\index{调序}(Reordering)\index{Reordering}。通常,基于短语的调序模型会作为判别式模型的特征参与到翻译过程中来。接下来,会介绍3 种不同的调序方法,分别是基于距离的调序、基于方向的调序(MSD模型)以及基于分类的调序。
\parinterval 尽管已经知道了如何将一个源语言短语翻译成目标语言短语,但是想要获得一个高质量的译文,仅有互译的双语短语是远远不够的。
%----------------------------------------------
\begin{figure}[htp]
......@@ -537,6 +547,8 @@ d = {(\bar{s}_{\bar{a}_1},\bar{t}_1)} \circ {(\bar{s}_{\bar{a}_2},\bar{t}_2)} \c
\end{figure}
%-------------------------------------------
\parinterval 如图\ref{fig:4-19}所示,按照从左到右的顺序对一个句子``在\ \ 桌子\ \ \ \ \ \ 苹果''进行翻译,得到的译文``on the table the apple''的语序是不对的。虽然可以使用$n$-gram语言模型对语序进行建模,但是此处仍然需要用更加准确的方式描述目标语短语间的次序。一般,把这个问题称为短语调序,或者简称{\small\bfnew{调序}}\index{调序}(Reordering)\index{Reordering}。通常,基于短语的调序模型会作为判别式模型的特征参与到翻译过程中来。接下来,会介绍3 种不同的调序方法,分别是基于距离的调序、基于方向的调序(MSD模型)以及基于分类的调序。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
......@@ -553,6 +565,8 @@ dr = start_i-end_{i-1}-1
\parinterval 在图\ref{fig:4-20}的例子中,``the apple''所对应的调序距离为4,``在桌子上的''所对应的调序距离为-5。显然,如果两个源语短语按顺序翻译,则$start_i = end_{i-1} + 1$,这时调序距离为0。
\parinterval 如果把调序距离作为特征,一般会使用指数函数$f(dr) = a^{|dr|}$作为特征函数(或者调序代价的函数),其中$a$是一个参数,控制调序距离对整个特征值的影响。调序距离$dr$的绝对值越大,调序代价越高。基于距离的调序模型比较适用于像法–英翻译这样的任务,因为两种语言的语序基本上是一致的。但是,对于汉–日翻译,由于句子结构存在很大差异(日语是谓词后置,而汉语中谓词放在宾语前),使用基于距离的调序会带来一些问题。因此,具体应用时应该根据语言之间的差异性有选择的使用该模型。
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -562,8 +576,6 @@ dr = start_i-end_{i-1}-1
\end{figure}
%-------------------------------------------
\parinterval 如果把调序距离作为特征,一般会使用指数函数$f(dr) = a^{|dr|}$作为特征函数(或者调序代价的函数),其中$a$是一个参数,控制调序距离对整个特征值的影响。调序距离$dr$的绝对值越大,调序代价越高。基于距离的调序模型比较适用于像法–英翻译这样的任务,因为两种语言的语序基本上是一致的。但是,对于汉–日翻译,由于句子结构存在很大差异(日语是谓词后置,而汉语中谓词放在宾语前),使用基于距离的调序会带来一些问题。因此,具体应用时应该根据语言之间的差异性有选择的使用该模型。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
......@@ -589,8 +601,6 @@ dr = start_i-end_{i-1}-1
\noindent 其中,$o_i$表示(目标语言)第$i$个短语的调序方向,$\mathbf{o}=\{o_i\}$表示短语序列的调序方向,$K$表示短语的数量。短语之间的调序概率是由双语短语以及短语对齐决定的,$o$表示调序的种类,可以取M、S、D 中的任意一种。而整个句子调序的好坏就是把相邻的短语之间的调序概率相乘(对应取log后的加法)。这样,公式\ref{eq:4-16}把调序的好坏定义为新的特征,对于M、S、D总共就有三个特征。除了当前短语和前一个短语的调序特征,还可以定义当前短语和后一个短语的调序特征,即将上述公式中的$a_{i-1}$换成$a_{i+1}$。 于是,又可以得到三个特征。因此在MSD调序中总共可以有6个特征。
\parinterval 具体实现中,通常使用词对齐对两个短语间的调序关系进行判断。图\ref{fig:4-22}展示了这个过程。先判断短语的左上角和右上角是否存在词对齐,再根据其位置对调序类型进行划分。每个短语对应的调序概率都可以用相对频率估计进行计算。而MSD调序模型也相当于在短语表中的每个双语短语后添加6个特征。不过,调序模型一般并不会和短语表一起存储,因此在系统中通常会看到两个独立的模型文件,分别保存短语表和调序模型。
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -599,7 +609,9 @@ dr = start_i-end_{i-1}-1
\label{fig:4-22}
\end{figure}
%-------------------------------------------
\vspace{1.0em}
\parinterval 具体实现时,通常使用词对齐对两个短语间的调序关系进行判断。图\ref{fig:4-22}展示了这个过程。先判断短语的左上角和右上角是否存在词对齐,再根据其位置对调序类型进行划分。每个短语对应的调序概率都可以用相对频率估计进行计算。而MSD调序模型也相当于在短语表中的每个双语短语后添加6个特征。不过,调序模型一般并不会和短语表一起存储,因此在系统中通常会看到两个独立的模型文件,分别保存短语表和调序模型。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
......@@ -630,7 +642,7 @@ dr = start_i-end_{i-1}-1
\vspace{0.5em}
\item 短语翻译概率(取对数),包含正向翻译概率$\textrm{log}(\textrm{P}(\bar{t}|\bar{s}))$和反向翻译概率$\textrm{log}(\textrm{P}(\bar{s}$\\$|\bar{t}))$,它们是基于短语的模型中最主要的特征;
\vspace{0.5em}
\item 词汇化翻译概率(取对数),同样包含正向词汇化翻译概率$\textrm{log(P}_{\textrm{lex}}(\bar{t}|\bar{s}\textrm{))}$和反向词汇化翻译概率$\textrm{log(P}_{\textrm{lex}}(\bar{s}|\bar{t}\textrm{))}$,它们用来描述双语短语中单词间对应的好坏;
\item 词汇化翻译概率(取对数),同样包含正向词汇化翻译概率$\textrm{log(P}_{\textrm{lex}}(\bar{t}|\bar{s}\textrm{))}$和反向词汇化翻译概率$\textrm{log(P}_{\textrm{lex}}(\bar{s}|\bar{t}\textrm{))}$,它们用来描述双语短语中单词间对应的好坏;
\vspace{0.5em}
\item $n$-gram语言模型,用来度量译文的流畅程度,可以通过大规模目标端单语数据得到;
\vspace{0.5em}
......@@ -761,6 +773,15 @@ dr = start_i-end_{i-1}-1
\parinterval 然而想要找到得分最高的翻译推导并不是一件简单的事情。对于每一句源语言句子,可能的翻译结果是指数级的。而机器翻译解码也已经被证明是一个NP难问题\cite{knight1999decoding}。简单的暴力搜索显然不现实。因此,在机器翻译中会使用特殊的解码策略来确保搜索的效率。本节将介绍基于栈的自左向右解码方法。它是基于短语的模型中的经典解码方法,非常适于处理语言生成的各种任务。
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter4/Figures/basic-process-of-translation}
\caption{翻译的基本流程}
\label{fig:4-26}
\end{figure}
%-------------------------------------------
\parinterval 首先,看一下翻译一个句子的基本流程。如图\ref{fig:4-26}所示,首先需要得到译文句子的第一个单词。在基于短语的模型中,可以从源语言端找出生成句首译文的短语,之后把译文放到目标语言端,例如,源语言的``有''对应的译文是``There is''。这个过程可以重复执行,直到生成完整句子的译文。但是,有两点需要注意:
\begin{itemize}
......@@ -773,22 +794,13 @@ dr = start_i-end_{i-1}-1
\parinterval 前者对应了一种{\small\bfnew{覆盖度模型}}\index{覆盖度模型}(Coverage Model)\index{Coverage Model};后者定义了解码的方向,这样可以确保$n$-gram语言模型的计算是准确的。这样,就得到了一个简单的基于短语的机器翻译解码框架。每次从源语言句子中找到一个短语,作为译文最右侧的部分,重复执行直到整个译文被生成出来。
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter4/Figures/basic-process-of-translation}
\caption{翻译的基本流程}
\label{fig:4-26}
\end{figure}
%-------------------------------------------
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
\subsubsection{翻译候选匹配}
\parinterval 在解码时,首先要知道每个源语言短语可能的译文都是什么。对于一个源语言短语,每个可能的译文也被称作{\small\bfnew{翻译候选}}\index{翻译候选}(Translation Candidate)\index{Translation Candidate}。实现翻译候选的匹配很简单。只需要遍历输入的源语言句子中所有可能的短语,之后在短语表中找到相应的翻译即可。比如,图\ref{fig:4-27}展示了句子``桌子\ \ \ 一个\ 苹果''的翻译候选匹配结果。可以看到,不同的短语会对应若干翻译候选。这些翻译候选会保存在所对应的跨度中。比如,``upon the table''是短语``桌子 上 有''的翻译候选,即对应源语言跨度[0,3]。\\ \\ \\
\parinterval 在解码时,首先要知道每个源语言短语可能的译文都是什么。对于一个源语言短语,每个可能的译文也被称作{\small\bfnew{翻译候选}}\index{翻译候选}(Translation Candidate)\index{Translation Candidate}。实现翻译候选的匹配很简单。只需要遍历输入的源语言句子中所有可能的短语,之后在短语表中找到相应的翻译即可。比如,图\ref{fig:4-27}展示了句子``桌子\ \ \ 一个\ 苹果''的翻译候选匹配结果。可以看到,不同的短语会对应若干翻译候选。这些翻译候选会保存在所对应的跨度中。比如,``upon the table''是短语``桌子 上 有''的翻译候选,即对应源语言跨度[0,3]。
%----------------------------------------------
\begin{figure}[htp]
......@@ -805,7 +817,7 @@ dr = start_i-end_{i-1}-1
\subsubsection{翻译假设扩展}
\parinterval 下一步,需要使用这些翻译候选生成完整的译文。在机器翻译中,一个很重要的概念是{\small\bfnew{翻译假设}}\index{翻译假设}(Translation Hypothesis)\index{Translation Hypothesis}。 它可以被当作是一个局部译文所对应的短语翻译推导。在解码开始时,只有一个空假设,也就是任何译文单词都没有被生成出来。接着,可以挑选翻译选项来扩展当前的翻译假设。\ref{fig:4-28}展示了翻译假设扩展的过程。在翻译假设扩展时,需要保证新加入的翻译候选放置在旧翻译假设译文的右侧,也就是要确保翻译自左向右的连续性。而且,同一个翻译假设可以使用不同的翻译候选进行扩展。例如,扩展第一个翻译假设时,可以选择``桌子''的翻译候选``table'';也可以选择``有''的翻译候选``There is''。扩展完之后需要记录输入句子中已翻译的短语,同时计算当前所有翻译假设的模型得分。这个过程相当于生成了一个图的结构,每个节点代表了一个翻译假设。当翻译假设覆盖了输入句子所有的短语,不能被继续扩展时,就生成了一个完整的翻译假设(译文)。最后需要找到得分最高的完整翻译假设,它对应了搜索图中的最优路径。
\parinterval 下一步,需要使用这些翻译候选生成完整的译文。在机器翻译中,一个很重要的概念是{\small\bfnew{翻译假设}}\index{翻译假设}(Translation Hypothesis)\index{Translation Hypothesis}。 它可以被当作是一个局部译文所对应的短语翻译推导。在解码开始时,只有一个空假设,也就是任何译文单词都没有被生成出来。接着,可以挑选翻译选项来扩展当前的翻译假设。
%----------------------------------------------
\begin{figure}[htp]
......@@ -815,7 +827,9 @@ dr = start_i-end_{i-1}-1
\label{fig:4-28}
\end{figure}
%-------------------------------------------
\vspace{4.0em}
\parinterval\ref{fig:4-28}展示了翻译假设扩展的过程。在翻译假设扩展时,需要保证新加入的翻译候选放置在旧翻译假设译文的右侧,也就是要确保翻译自左向右的连续性。而且,同一个翻译假设可以使用不同的翻译候选进行扩展。例如,扩展第一个翻译假设时,可以选择``桌子''的翻译候选``table'';也可以选择``有''的翻译候选``There is''。扩展完之后需要记录输入句子中已翻译的短语,同时计算当前所有翻译假设的模型得分。这个过程相当于生成了一个图的结构,每个节点代表了一个翻译假设。当翻译假设覆盖了输入句子所有的短语,不能被继续扩展时,就生成了一个完整的翻译假设(译文)。最后需要找到得分最高的完整翻译假设,它对应了搜索图中的最优路径。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
......@@ -836,6 +850,15 @@ dr = start_i-end_{i-1}-1
\parinterval 对翻译假设进行重新组合又被称作{\small\bfnew{假设重组}}\index{假设重组}(Hypothesis Recombination)\index{Hypothesis Recombination}。其核心思想是,把代表同一个译文的不同翻译假设融合为一个翻译假设。如图29所示,对于给定的输入短语``一个\ \ 苹果'',系统可能将两个单词``一个''、``苹果''分别翻译成``an''和``apple'',也可能将这两个单词作为一个短语直接翻译成``an apple''。虽然这两个翻译假设得到的译文相同,并且覆盖了相同的源语言短语,但是却是两个不同的翻译假设,模型给它们的打分也是不一样的。这时,可以舍弃两个翻译假设中分数较低的那个,因为分数较低的翻译假设永远不可能成为最优路径的一部分。这也就相当于把两个翻译假设重组为一个假设。
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter4/Figures/example-of-hypothesis-recombination}
\caption{假设重组示例}
\label{fig:4-29}
\end{figure}
%-------------------------------------------
\parinterval 即使翻译假设对应的译文不同也可以进行假设重组。图\ref{fig:4-29}的下半部分给出了一个这样的实例。在两个翻译假设中,第一个单词分别被翻译成了``it''和``he'',紧接着它们后面的部分都被翻译成了``is not''。这两个翻译假设是非常相似的,因为它们译文的最后两个单词是相同的,而且翻译假设都覆盖了相同的源语言部分。这时,也可以对这两个翻译假设进行假设重组:如果得分较低的翻译假设和得分较高的翻译假设都使用相同的翻译候选进行扩展,且两个翻译假设都覆盖相同的源语言单词,分数低的翻译假设可以被剪枝掉。此外,还有两点需要注意:
\begin{itemize}
......@@ -850,15 +873,6 @@ dr = start_i-end_{i-1}-1
\parinterval 翻译假设的重组有效地减少了解码过程中相同或者相似翻译假设带来的冗余。因此这些方法在机器翻译中被广泛使用。包括本章后面将要介绍的基于句法的翻译模型解码中,也可以使用假设重组进行系统加速。
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter4/Figures/example-of-hypothesis-recombination}
\caption{假设重组示例}
\label{fig:4-29}
\end{figure}
%-------------------------------------------
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
......@@ -869,8 +883,6 @@ dr = start_i-end_{i-1}-1
\parinterval 目前比较通用的做法是将翻译假设进行整理,放进一种栈结构中。这里所说的``栈''是为了描述方便的一种说法。它实际上就是保存多个翻译假设的一种数据结构\footnote[4]{虽然被称作栈,实际上使用一个堆进行实现。这样可以根据模型得分对翻译假设进行排序。}。当放入栈的翻译假设超过一定阈值时(比如200),可以删除掉模型得分低的翻译假设。一般,会使用多个栈来保存翻译假设,每个栈代表覆盖源语言单词数量相同的翻译假设。比如,第一个堆栈包含了覆盖一个源语言单词的翻译假设,第二个堆栈包含了覆盖两个源语言单词的翻译假设,以此类推。利用覆盖源语言单词数进行栈的划分的原因在于:翻译相同数量的单词所对应的翻译假设一般是``可比的'',因此在同一个栈里对它们进行剪枝带来的风险较小。
\parinterval 在基于栈的解码中,每次都会从所有的栈中弹出一个翻译假设,并选择一个或者若干个翻译假设进行扩展,之后把新得到的翻译假设重新压入解码栈中。这个过程不断执行,并可以配合束剪枝、假设重组等技术。最后在覆盖所有源语言单词的栈中得到整个句子的译文。图\ref{fig:4-30}展示了一个简单的栈解码过程。第一个栈(0号栈)用来存放空翻译假设。之后通过假设扩展,不断将翻译假设填入对应的栈中。
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -880,6 +892,8 @@ dr = start_i-end_{i-1}-1
\end{figure}
%-------------------------------------------
\parinterval 在基于栈的解码中,每次都会从所有的栈中弹出一个翻译假设,并选择一个或者若干个翻译假设进行扩展,之后把新得到的翻译假设重新压入解码栈中。这个过程不断执行,并可以配合束剪枝、假设重组等技术。最后在覆盖所有源语言单词的栈中得到整个句子的译文。图\ref{fig:4-30}展示了一个简单的栈解码过程。第一个栈(0号栈)用来存放空翻译假设。之后通过假设扩展,不断将翻译假设填入对应的栈中。
%----------------------------------------------------------------------------------------
% NEW SECTION
%----------------------------------------------------------------------------------------
......@@ -916,8 +930,6 @@ dr = start_i-end_{i-1}-1
\parinterval 显然,利用过长的短语来处理长距离的依赖并不是一种十分有效的方法。过于低频的长短语无法提供可靠的信息,而且使用长短语会导致模型体积急剧增加。
\parinterval 再来看一个翻译实例\cite{Chiang2012Hope}。图\ref{fig:4-31}是一个基于短语的机器翻译系统的翻译结果。这个例子中的调序有一些复杂,比如,``少数\ 国家\ 之一''和``与\ 北韩\ \ 邦交''的英文翻译都需要进行调序,分别是``one of the few countries''和``have diplomatic relations with North Korea''。基于短语的系统可以很好地处理这些调序问题,因为它们仅仅使用了局部的信息。但是,系统却无法在这两个短语(1和2)之间进行正确的调序。
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -927,6 +939,8 @@ dr = start_i-end_{i-1}-1
\end{figure}
%-------------------------------------------
\parinterval 再来看一个翻译实例\cite{Chiang2012Hope},图\ref{fig:4-31}是一个基于短语的机器翻译系统的翻译结果。这个例子中的调序有一些复杂,比如,``少数\ 国家\ 之一''和``与\ 北韩\ \ 邦交''的英文翻译都需要进行调序,分别是``one of the few countries''和``have diplomatic relations with North Korea''。基于短语的系统可以很好地处理这些调序问题,因为它们仅仅使用了局部的信息。但是,系统却无法在这两个短语(1和2)之间进行正确的调序。
\parinterval 这个例子也在一定程度上说明了长距离的调序需要额外的机制才能得到更好地被处理。实际上,两个短语(1和2)之间的调序现象本身对应了一种结构,或者说模板。也就是汉语中的:
\begin{eqnarray}
\text{}\ \ \text{[什么东西]}\ \ \text{}\ \ \text{[什么事]} \quad \nonumber
......@@ -1256,7 +1270,6 @@ h_i (d,\mathbf{t},\mathbf{s})=\sum_{r \in d}h_i (r)
%-------------------------------------------
比如,如图\ref{fig:4-35} 所示,每个单词左右都有一个数字来表示序号。可以用序号的范围来表示跨度,例如:
\begin{eqnarray}
span\textrm{[0,1]}&=&\textrm{``猫''} \nonumber \\
span\textrm{[2,4]}&=&\textrm{``吃} \quad \textrm{鱼''} \nonumber \\
......@@ -1273,7 +1286,7 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
\vspace{0.5em}
\end{itemize}
\parinterval 对于第一种情况,简单匹配字符串即可;对于第二种情况,需要把当前的跨度进一步分割为两部分,并检查左半部分是否已经被归纳为B,右半部分是否已经被归纳为C。如果可以匹配,会在这个跨度上保存匹配结果。后面,可以访问这个结果(也就是A)来生成更大跨度上的分析结果。CKY算法的伪代码如图\ref{fig:4-36}所示。整个算法的执行顺序是按跨度的长度($l$)组织的。对于每个$span[j,j + l]$,会在位置$k$进行切割。之后,判断$span[j,k]$$span[k,j +l]$是否可以形成一个规则的右部。也就是判断$span[j,k]$是否生成了B,同时判断$span[k,j + l]$是否生成了C,如果文法中有规则A$\to$BC,则把这个规则放入$span[j,j+l]$。这个过程由Compose函数完成。如果$span[j,j + l]$可以匹配多条规则,所有生成的推导都会被记录在$span[j,j + l]$所对应的一个列表里\footnote[6]{通常,这个列表会用优先队列实现。这样可以对推导按模型得分进行排序,方便后续的剪枝操作。}
\parinterval 对于第一种情况,简单匹配字符串即可;对于第二种情况,需要把当前的跨度进一步分割为两部分,并检查左半部分是否已经被归纳为B,右半部分是否已经被归纳为C。如果可以匹配,会在这个跨度上保存匹配结果。后面,可以访问这个结果(也就是A)来生成更大跨度上的分析结果。
%----------------------------------------------
\begin{figure}[htp]
......@@ -1284,10 +1297,10 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
\end{figure}
%-------------------------------------------
\parinterval \ref{fig:4-37}展示了CKY方法的一个运行实例(输入词串是aabbc)。算法在处理完最后一个跨度后会得到覆盖整个词串的分析结果,即句法树的根结点S
\parinterval CKY算法的伪代码如图\ref{fig:4-36}所示。整个算法的执行顺序是按跨度的长度($l$)组织的。对于每个$span[j,j + l]$,会在位置$k$进行切割。之后,判断$span[j,k]$$span[k,j +l]$是否可以形成一个规则的右部。也就是判断$span[j,k]$是否生成了B,同时判断$span[k,j + l]$是否生成了C,如果文法中有规则A$\to$BC,则把这个规则放入$span[j,j+l]$。这个过程由Compose函数完成。如果$span[j,j + l]$可以匹配多条规则,所有生成的推导都会被记录在$span[j,j + l]$所对应的一个列表里\footnote[6]{通常,这个列表会用优先队列实现。这样可以对推导按模型得分进行排序,方便后续的剪枝操作。}
%----------------------------------------------
\begin{figure}[htp]
\begin{figure}[t]
\centering
\input{./Chapter4/Figures/example-of-cky-algorithm-execution-label}
\input{./Chapter4/Figures/example-of-cky-algorithm-execution}
......@@ -1296,6 +1309,8 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
\end{figure}
%----------------------------------------------
\parinterval\ref{fig:4-37}展示了CKY方法的一个运行实例(输入词串是aabbc)。算法在处理完最后一个跨度后会得到覆盖整个词串的分析结果,即句法树的根结点S。
\parinterval 不过,CKY方法并不能直接用于层次短语模型。有两个问题:
\begin{itemize}
......@@ -1331,6 +1346,10 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\subsection{立方剪枝}
\parinterval 相比于基于短语的模型,基于层次短语的模型引入了``变量''的概念。这样,可以根据变量周围的上下文信息对变量进行调序。变量的内容由其所对应的跨度上的翻译假设进行填充。图\ref{fig:4-38}展示了一个层次短语规则匹配词串的实例。可以看到,规则匹配词串之后,变量X的位置对应了一个跨度。这个跨度上所有标记为X的局部推导都可以作为变量的内容。
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -1340,11 +1359,6 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
\end{figure}
%-------------------------------------------
\subsection{立方剪枝}
\parinterval 相比于基于短语的模型,基于层次短语的模型引入了``变量''的概念。这样,可以根据变量周围的上下文信息对变量进行调序。变量的内容由其所对应的跨度上的翻译假设进行填充。图\ref{fig:4-38}展示了一个层次短语规则匹配词串的实例。可以看到,规则匹配词串之后,变量X的位置对应了一个跨度。这个跨度上所有标记为X的局部推导都可以作为变量的内容。
\parinterval 真实的情况会更加复杂。对于一个规则的源语言端,可能会有多个不同的目标语言端与之对应。比如,如下规则的源语言端完全相同,但是译文不同:
\begin{eqnarray}
\textrm{X} & \to & \langle\ \textrm{X}_1\ \text{大幅度}\ \text{下降}\ \text{},\ \textrm{X}_1\ \textrm{have}\ \textrm{drastically}\ \textrm{fallen}\ \rangle \nonumber \\
......@@ -1365,10 +1379,14 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
\parinterval 假设有$n$个规则源语言端相同,规则中每个变量可以被替换为$m$个结果,对于只含有一个变量的规则,一共有$nm$种不同的组合。如果规则含有两个变量,这种组合的数量是$n{m}^2$。由于翻译中会进行大量的规则匹配,如果每个匹配的源语言端都考虑所有$n{m}^2$种译文的组合,解码速度会很慢。
\parinterval 在层次短语系统中,会进一步对搜索空间剪枝。简言之,此时并不需要对所有$n{m}^2$种组合进行遍历,而是只考虑其中的一部分组合。这种方法也被称作{\small\bfnew{立方剪枝}}\index{立方剪枝}(Cube Pruning)\index{Cube Pruning}。所谓`` 立方''是指组合译文时的三个维度:规则的目标语端、第一个变量所对应的翻译候选、第二个变量所对应的翻译候选。立方剪枝假设所有的译文候选都经过排序,比如,按照短语翻译概率排序。这样,每个译文都对应一个坐标,比如,$(i,j,k)$就表示第$i$个规则目标语端、第二个变量的第$j$个翻译候选、第三个变量的第$k$个翻译候选的组合。于是,可以把每种组合看作是一个三维空间中的一个点。在立方剪枝中,开始的时候会看到$(0,0,0)$这个翻译假设,并把这个翻译假设放入一个优先队列中。之后每次从这个优先队里中弹出最好的结果,之后沿着三个维度分别将坐标加1,比如,如果优先队列弹出$(i,j,k)$,则会生成$(i+1,j,k)$$(i,j+1,k)$$(i,j,k+1)$这三个新的翻译假设。之后,计算出它们的模型得分,并压入优先队列。这个过程不断被执行,直到达到终止条件,比如,扩展次数达到一个上限。图\ref{fig:4-40}展示了立方剪枝的过程(规则只含有一个变量的情况)。可以看到,每个步骤中,算法只会扩展当前最好结果周围的两个点(对应两个维度,横轴对应变量被替换的内容,纵轴对应规则的目标语端)。
\parinterval 在层次短语系统中,会进一步对搜索空间剪枝。简言之,此时并不需要对所有$n{m}^2$种组合进行遍历,而是只考虑其中的一部分组合。这种方法也被称作{\small\bfnew{立方剪枝}}\index{立方剪枝}(Cube Pruning)\index{Cube Pruning}。所谓`` 立方''是指组合译文时的三个维度:规则的目标语端、第一个变量所对应的翻译候选、第二个变量所对应的翻译候选。立方剪枝假设所有的译文候选都经过排序,比如,按照短语翻译概率排序。这样,每个译文都对应一个坐标,比如,$(i,j,k)$就表示第$i$个规则目标语端、第二个变量的第$j$个翻译候选、第三个变量的第$k$个翻译候选的组合。于是,可以把每种组合看作是一个三维空间中的一个点。在立方剪枝中,开始的时候会看到$(0,0,0)$这个翻译假设,并把这个翻译假设放入一个优先队列中。之后每次从这个优先队里中弹出最好的结果,之后沿着三个维度分别将坐标加1,比如,如果优先队列弹出$(i,j,k)$,则会生成$(i+1,j,k)$$(i,j+1,k)$$(i,j,k+1)$这三个新的翻译假设。之后,计算出它们的模型得分,并压入优先队列。这个过程不断被执行,直到达到终止条件,比如,扩展次数达到一个上限。
\parinterval\ref{fig:4-40}展示了立方剪枝的过程(规则只含有一个变量的情况)。可以看到,每个步骤中,算法只会扩展当前最好结果周围的两个点(对应两个维度,横轴对应变量被替换的内容,纵轴对应规则的目标语端)。
\parinterval 理论上,立方剪枝最多访问$n{m}^2$个点。但是在实践中发现,如果终止条件设计的合理,搜索的代价基本上与$m$或者$n$呈线性关系。因此,立方剪枝可以大大提高解码速度。立方剪枝实际上是一种启发性的搜索方法。它把搜索空间表示为一个三维空间。它假设:如果空间中某个点的模型得分较高,那么它``周围''的点的得分也很可能较高。这也是对模型得分沿着空间中不同维度具有连续性的一种假设。这种方法也大量的使用在句法分析中,并取得了很好的效果。\\
%----------------------------------------------
\begin{figure}[htp]
\begin{figure}[t]
\centering
\input{./Chapter4/Figures/execution-of-cube-pruning}
\caption{立方剪枝执行过程(行表示规则,列表示变量可替换的内容)}
......@@ -1376,8 +1394,6 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
\end{figure}
%-------------------------------------------
\parinterval 理论上,立方剪枝最多访问$n{m}^2$个点。但是在实践中发现,如果终止条件设计的合理,搜索的代价基本上与$m$或者$n$呈线性关系。因此,立方剪枝可以大大提高解码速度。立方剪枝实际上是一种启发性的搜索方法。它把搜索空间表示为一个三维空间。它假设:如果空间中某个点的模型得分较高,那么它``周围''的点的得分也很可能较高。这也是对模型得分沿着空间中不同维度具有连续性的一种假设。这种方法也大量的使用在句法分析中,并取得了很好的效果。
%----------------------------------------------------------------------------------------
% NEW SECTION
%----------------------------------------------------------------------------------------
......@@ -1431,7 +1447,9 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
\end{figure}
%-------------------------------------------
\parinterval 显然,使用语言学句法对机器翻译进行建模也是一种不错的选择。不过,语言学句法有很多种,因此首先需要确定使用何种形式的句法。比如,在自然语言处理中经常使用的是短语结构分析和依存分析(图\ref{fig:4-43})。二者的区别已经在第二章进行了讨论。在机器翻译中,这两种句法信息都可以被使用。不过为了后续讨论的方便,这里仅介绍基于短语结构树的机器翻译建模。使用短语结构树的原因在于,它提供了较为丰富的句法信息,而且相关句法分析工具比较成熟。如果没有特殊说明,本章中所提到的句法树都是指短语结构树(或成分句法树),有时也会把句法树简称为树。此外,这里也假设所有句法树都可以由句法分析器自动生成\footnote[7]{对于汉语、英语等大语种,句法分析器的选择有很多。不过,对于一些小语种,句法标注数据有限,句法分析可能并不成熟,这时在机器翻译中使用语言学句法信息会面临较大的挑战。}
\parinterval 显然,使用语言学句法对机器翻译进行建模也是一种不错的选择。不过,语言学句法有很多种,因此首先需要确定使用何种形式的句法。比如,在自然语言处理中经常使用的是短语结构分析和依存分析(图\ref{fig:4-43})。二者的区别已经在第二章进行了讨论。
\parinterval 在机器翻译中,上述这两种句法信息都可以被使用。不过为了后续讨论的方便,这里仅介绍基于短语结构树的机器翻译建模。使用短语结构树的原因在于,它提供了较为丰富的句法信息,而且相关句法分析工具比较成熟。如果没有特殊说明,本章中所提到的句法树都是指短语结构树(或成分句法树),有时也会把句法树简称为树。此外,这里也假设所有句法树都可以由句法分析器自动生成\footnote[7]{对于汉语、英语等大语种,句法分析器的选择有很多。不过,对于一些小语种,句法标注数据有限,句法分析可能并不成熟,这时在机器翻译中使用语言学句法信息会面临较大的挑战。}
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -1479,7 +1497,7 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
}\end{table}
%----------------------------------------------
\parinterval 基于句法的翻译模型可以被分为两类:基于形式化文法的模型和语言学上基于句法的模型(图\ref{fig:4-44})。基于形式化文法的模型的典型代表包括,吴德恺提出的基于反向转录文法的模型\cite{wu1997stochastic}和David Chiang提出的基于层次短语的模型\cite{chiang2007hierarchical}。而语言学上基于句法的模型包括,句法树到串的模型\cite{liu2006tree,huang2006statistical}、串到句法树的模型\cite{galley2006scalable,galley2004s}、句法树到句法树的模型\cite{eisner2003learning,zhang2008tree,liu2009improving,chiang2010learning}等。通常来说,基于形式化文法的模型并不需要句法分析技术的支持。这类模型只是把翻译过程描述为一系列形式化文法规则的组合过程。而语言学上基于句法的模型则需要源语言和(或者)目标语言句法分析的支持,以获取更丰富的语言学信息来提高模型的翻译能力。这也是本节所关注的重点。当然,所谓分类也没有唯一的标准,比如,还可以把句法模型分为基于软约束的模型和基于硬约束的模型,或者分为基于树的模型和基于串的模型。
\parinterval 基于句法的翻译模型可以被分为两类:基于形式化文法的模型和语言学上基于句法的模型(图\ref{fig:4-44})。基于形式化文法的模型的典型代表包括,吴德恺提出的基于反向转录文法的模型\cite{wu1997stochastic}和David Chiang提出的基于层次短语的模型\cite{chiang2007hierarchical}。而语言学上基于句法的模型包括,句法树到串的模型\cite{liu2006tree,huang2006statistical}、串到句法树的模型\cite{galley2006scalable,galley2004s}、句法树到句法树的模型\cite{eisner2003learning,zhang2008tree,liu2009improving,chiang2010learning}等。
%----------------------------------------------
\begin{figure}[htp]
......@@ -1490,7 +1508,7 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
\end{figure}
%-------------------------------------------
\parinterval \ref{tab:4-3}进一步对比了不同模型的区别。其中,树到串和树到树模型都使用了源语言句法信息,串到树和树到树模型使用了目标语言句法信息。不过,这些模型都依赖句法分析器的输出,因此会对句法分析的错误比较敏感。相比之下,基于形式文法的模型并不依赖句法分析器,因此会更健壮一些
\parinterval 通常来说,基于形式化文法的模型并不需要句法分析技术的支持。这类模型只是把翻译过程描述为一系列形式化文法规则的组合过程。而语言学上基于句法的模型则需要源语言和(或者)目标语言句法分析的支持,以获取更丰富的语言学信息来提高模型的翻译能力。这也是本节所关注的重点。当然,所谓分类也没有唯一的标准,比如,还可以把句法模型分为基于软约束的模型和基于硬约束的模型,或者分为基于树的模型和基于串的模型
%----------------------------------------------
\begin{table}[htp]{
......@@ -1514,13 +1532,15 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
}\end{table}
%-------------------------------------------
\parinterval\ref{tab:4-3}进一步对比了不同模型的区别。其中,树到串和树到树模型都使用了源语言句法信息,串到树和树到树模型使用了目标语言句法信息。不过,这些模型都依赖句法分析器的输出,因此会对句法分析的错误比较敏感。相比之下,基于形式文法的模型并不依赖句法分析器,因此会更健壮一些。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\subsection{基于树结构的文法}
\parinterval 基于句法的翻译模型的一个核心问题是要对树结构进行建模,进而完成树之间或者树和串之间的转换。在计算机领域中,所谓树就是由一些节点组成的层次关系的集合。计算机领域的树和自然世界中的树没有任何关系,只是借用了相似的概念,因为这种层次结构很像一个倒过来的树。在使用树时,经常会把树的层次结构转化为序列结构,称为树结构的{\small\bfnew{序列化}}\index{序列化}或者{\small\bfnew{线性化}}\index{线性化}(Linearization)\index{Linearization}比如,使用树的先序遍历就可以得到一个树的序列表示。图\ref{fig:4-45}就对比了同一棵树的不同表示方式。实际上,树的序列表示是非常适合计算机进行读取和处理的。因此,本章也会使用树的序列化结果来表示句法结构。
\parinterval 基于句法的翻译模型的一个核心问题是要对树结构进行建模,进而完成树之间或者树和串之间的转换。在计算机领域中,所谓树就是由一些节点组成的层次关系的集合。计算机领域的树和自然世界中的树没有任何关系,只是借用了相似的概念,因为这种层次结构很像一个倒过来的树。在使用树时,经常会把树的层次结构转化为序列结构,称为树结构的{\small\bfnew{序列化}}\index{序列化}或者{\small\bfnew{线性化}}\index{线性化}(Linearization)\index{Linearization}
%----------------------------------------------
\begin{figure}[htp]
......@@ -1531,6 +1551,8 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
\end{figure}
%-------------------------------------------
\parinterval 比如,使用树的先序遍历就可以得到一个树的序列表示。图\ref{fig:4-45}就对比了同一棵树的不同表示方式。实际上,树的序列表示是非常适合计算机进行读取和处理的。因此,本章也会使用树的序列化结果来表示句法结构。
\parinterval 在基于语言学句法的机器翻译中,两个句子间的转化仍然需要使用文法规则进行描述。有两种类型的规则:
\begin{itemize}
......@@ -1566,23 +1588,27 @@ span\textrm{[0,4]}&=&\textrm{``猫} \quad \textrm{喜欢} \quad \textrm{吃} \qu
\begin{displaymath}
\langle\ \alpha_h, \beta_h\ \rangle \to \langle\ \alpha_r, \beta_r, \sim\ \rangle
\end{displaymath}
其中,规则左部由非终结符$\alpha_h \in N_s$$\beta_h \in N_t$构成;规则右部由三部分组成,$\alpha_r$表示由源语言终结符和非终结符组成的树结构;$\beta_r$ 表示由目标语言终结符和非终结符组成的树结构;$\sim$表示$\alpha_r$$\beta_r$中叶子非终结符的1-1对应关系。
\end{enumerate}
}
\end{definition}
%-------------------------------------------
\parinterval 基于树结构的规则非常适合于描述树结构到树结构的映射。比如,图\ref{fig:4-46}是一个汉语句法树结构到一个英语句法树结构的对应。其中的树结构可以被看作是完整句法树上的一个片段,称为{\small\bfnew{树片段}}\index{树片段}(Tree Fragment)\index{Tree Fragment}树片段的叶子节点既可以是终结符(单词)也可以是非终结符。当叶子节点为非终结符时,表示这个非终结符会被进一步替换,因此它可以被看作是变量。而源语言树结构和目标语言树结构中的变量是一一对应的,对应关系用虚线表示。
\parinterval 基于树结构的规则非常适合于描述树结构到树结构的映射。比如,图\ref{fig:4-46}是一个汉语句法树结构到一个英语句法树结构的对应。其中的树结构可以被看作是完整句法树上的一个片段,称为{\small\bfnew{树片段}}\index{树片段}(Tree Fragment)\index{Tree Fragment}
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter4/Figures/example-of-tree-structure-correspondence}
\vspace{-2em}
\caption{汉语句法树到英语句法树的结构对应}
\label{fig:4-46}
\end{figure}
%-------------------------------------------
\parinterval 树片段的叶子节点既可以是终结符(单词)也可以是非终结符。当叶子节点为非终结符时,表示这个非终结符会被进一步替换,因此它可以被看作是变量。而源语言树结构和目标语言树结构中的变量是一一对应的,对应关系用虚线表示。
\parinterval 这个双语映射关系可以被表示为一个基于树结构的文法规则,套用规则的定义$\langle\ \alpha_h, \beta_h\ \rangle \to \langle\ \alpha_r, \beta_r, \sim\ \rangle$形式,可以知道:
\begin{eqnarray}
\langle\ \alpha_h, \beta_h\ \rangle &=& \langle\ \textrm{VP}, \textrm{VP}\ \rangle \nonumber \\
......@@ -1650,9 +1676,7 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
& & \ \ \textrm{S(NP(DT(the) NNS(imports))}\ \textrm{VP(VBP}^{[6]}\ \textrm{ADVP(RB(drastically)}\ \textrm{VBN}^{[5]})))\ \rangle \nonumber \\
& \xrightarrow[r_4]{\textrm{VV}^{[5]} \Leftrightarrow \textrm{VBN}^{[5]}} & \langle\ \textrm{IP(NN(进口)}\ \textrm{VP(AD(大幅度)}\ \textrm{VP(VV(减少)}\ \textrm{AS}^{[6]}))), \hspace{10em} \nonumber \\
& & \ \ \textrm{S(NP(DT(the) NNS(imports))}\ \textrm{VP(VBP}^{[6]}\ \nonumber \\
& & \ \ \textrm{ADVP(RB(drastically)}\ \textrm{VBN(fallen)})))\ \rangle \nonumber
\end{eqnarray}
\begin{eqnarray}
& & \ \ \textrm{ADVP(RB(drastically)}\ \textrm{VBN(fallen)})))\ \rangle \nonumber \\
& \xrightarrow[r_6]{\textrm{AS}^{[6]} \Leftrightarrow \textrm{VBP}^{[6]}} & \langle\ \textrm{IP(NN(进口)}\ \textrm{VP(AD(大幅度)}\ \textrm{VP(VV(减少)}\ \textrm{AS(了)}))), \nonumber \\
& & \ \ \textrm{S(NP(DT(the) NNS(imports))}\ \textrm{VP(VBP(have)}\ \nonumber \\
& & \ \ \textrm{ADVP(RB(drastically)}\ \textrm{VBN(fallen)})))\ \rangle \hspace{15em} \nonumber
......@@ -1729,17 +1753,9 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\subsubsection{树的切割与最小规则}
\parinterval 获取树到串规则就是要找到源语言树片段与目标语言词串之间的对应关系。一棵句法树会有很多个树片段,那么哪些树片段可以和目标语言词串产生对应关系呢?在GHKM方法中,源语言树片段和目标语言词串的对应是由词对齐决定的。GHKM假设:一个合法的树到串翻译规则,不应该违反词对齐。这个假设和双语短语抽取中的词对齐一致性约束是一样的(见\ref{subsection-4.2.3}节)。简单来说,规则中两种语言互相对应的部分不应包含对齐到外部的词对齐连接。为了说明这个问题,来看一个例子。图\ref{fig:4-50}包含了一棵句法树、一个词串和它们之间的词对齐结果。图中包含如下规则:
\begin{eqnarray}
\textrm{PP(P(对)}\ \textrm{NP(NN(回答)))} \rightarrow \textrm{with}\ \textrm{the}\ \textrm{answer} \nonumber
\end{eqnarray}
\parinterval 该规则是一条满足词对齐约束的规则(对应于图\ref{fig:4-50}中红色部分),因为不存在从规则的源语言或目标语言部分对齐到规则外部的情况。但是,如下的规则却是一条不合法的规则:
\begin{eqnarray}
\textrm{NN(满意)} \rightarrow \textrm{satisfied} \nonumber
\end{eqnarray}
\parinterval 获取树到串规则就是要找到源语言树片段与目标语言词串之间的对应关系。一棵句法树会有很多个树片段,那么哪些树片段可以和目标语言词串产生对应关系呢?
\parinterval 这是因为,``satisfied''除了对齐到``满意'',还对齐到``表示''。也就是,这条规则会产生歧义,因为``satisfied''不应该只由``满意''生成
\parinterval 在GHKM方法中,源语言树片段和目标语言词串的对应是由词对齐决定的。GHKM假设:一个合法的树到串翻译规则,不应该违反词对齐。这个假设和双语短语抽取中的词对齐一致性约束是一样的(见\ref{subsection-4.2.3}节)。简单来说,规则中两种语言互相对应的部分不应包含对齐到外部的词对齐连接
%----------------------------------------------
\begin{figure}[htp]
......@@ -1750,7 +1766,19 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\end{figure}
%-------------------------------------------
\parinterval 为了能够获得与词对齐相兼容的规则,GHKM引入了几个概念。首先,GHKM定义了Span和Complement Span:
\parinterval 为了说明这个问题,来看一个例子。图\ref{fig:4-50}包含了一棵句法树、一个词串和它们之间的词对齐结果。图中包含如下规则:
\begin{eqnarray}
\textrm{PP(P(对)}\ \textrm{NP(NN(回答)))} \rightarrow \textrm{with}\ \textrm{the}\ \textrm{answer} \nonumber
\end{eqnarray}
\parinterval 该规则是一条满足词对齐约束的规则(对应于图\ref{fig:4-50}中红色部分),因为不存在从规则的源语言或目标语言部分对齐到规则外部的情况。但是,如下的规则却是一条不合法的规则:
\begin{eqnarray}
\textrm{NN(满意)} \rightarrow \textrm{satisfied} \nonumber
\end{eqnarray}
\parinterval 这是因为,``satisfied''除了对齐到``满意'',还对齐到``表示''。也就是,这条规则会产生歧义,因为``satisfied''不应该只由``满意''生成。
\parinterval 为了能够获得与词对齐相兼容的规则,GHKM引入了几个概念。首先,GHKM方法中定义了Span和Complement Span:
%-------------------------------------------
\vspace{0.5em}
......@@ -1774,6 +1802,15 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\parinterval Span定义了每个节点覆盖的源语言片段所对应的目标语言片段。实际上,它表示了目标语言句子上的一个跨度,这个跨度代表了这个源语言句法树节点所能达到的最大范围。因此Span实际上是一个目标语单词索引的范围。Complement Span是与Span相对应的一个概念,它定义了句法树中一个节点之外的部分对应到目标语的范围,但是这个范围并不必须是连续的。
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter4/Figures/syntax-tree-with-admissible-node}
\caption{标注了可信节点信息的句法树}
\label{fig:4-51}
\end{figure}
%-------------------------------------------
\parinterval 有了Span和Complement Span的定义之后,可以进一步定义:
%-------------------------------------------
......@@ -1788,15 +1825,6 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\parinterval 可信节点表示这个树节点$node$和树中的其他部分(不包括$node$的祖先和孩子)没有任何词对齐上的歧义。也就是说,这个节点可以完整的对应到目标语言句子的一个连续范围,不会出现在这个范围中的词对应到其他节点的情况。如果节点不是可信节点,则表示它会引起词对齐的歧义,因此不能作为树到串规则中源语言树片段的根节点或者变量部分。图\ref{fig:4-51}给出了一个可信节点的实例。
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter4/Figures/syntax-tree-with-admissible-node}
\caption{标注了可信节点信息的句法树}
\label{fig:4-51}
\end{figure}
%-------------------------------------------
\parinterval 进一步,可以定义树到串模型中合法的树片段:
%-------------------------------------------
......@@ -1809,13 +1837,6 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\end{definition}
%-------------------------------------------
\parinterval\ref{fig:4-52}是一个基于可信节点得到的树到串规则:
\begin{eqnarray}
\textrm{VP(PP(P(对)}\ \textrm{NP(NN(回答)))}\ \textrm{VP}_1) \rightarrow \textrm{VP}_1\ \textrm{with}\ \textrm{the}\ \textrm{answer} \nonumber
\end{eqnarray}
\noindent 其中,蓝色部分表示可以抽取到的规则,显然它的根节点和叶子非终结符节点都是可信节点。由于源语言树片段中包含一个变量(VP),因此需要对VP节点的Span所表示的目标语言范围进行泛化(红色方框部分)。
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -1825,6 +1846,13 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\end{figure}
%-------------------------------------------
\parinterval\ref{fig:4-52}是一个基于可信节点得到的树到串规则:
\begin{eqnarray}
\textrm{VP(PP(P(对)}\ \textrm{NP(NN(回答)))}\ \textrm{VP}_1) \rightarrow \textrm{VP}_1\ \textrm{with}\ \textrm{the}\ \textrm{answer} \nonumber
\end{eqnarray}
\noindent 其中,蓝色部分表示可以抽取到的规则,显然它的根节点和叶子非终结符节点都是可信节点。由于源语言树片段中包含一个变量(VP),因此需要对VP节点的Span所表示的目标语言范围进行泛化(红色方框部分)。
\parinterval 至此,对于任何一个树片段都能够使用上述方法判断它是否合法。如果合法,就可以抽取相应的树到串规则。但是,枚举句子中的所有树片段并不是一个很高效的方法,因为对于任何一个节点,以它为根的树片段数量随着其深度和宽度的增加呈指数增长。在GHKM方法中,为了避免低效的枚举操作,可以使用另一种方法抽取规则。实际上,可信节点确定了哪些地方可以作为规则的边界(合法树片段的根节点或者叶子节点),可以把所有的可信节点看作是一个{\small\bfnew{边缘集合}}\index{边缘集合}(Frontier Set)\index{Frontier Set}。所谓边缘集合就是定义了哪些地方可以被``切割'',通过这种切割可以得到一个个合法的树片段,这些树片段无法再被切割为更小的合法树片段。图\ref{fig:4-53}给出了一个通过边缘集合定义的树切割。图右侧中的矩形框表示切割得到的树片段。
%----------------------------------------------
......@@ -1838,8 +1866,6 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\parinterval 需要注意的是,因为``NP$\rightarrow$PN$\rightarrow$他''对应着一个单目生成的过程,所以这里``NP(PN(他))''被看作是一个最小的树片段。当然,也可以把它当作两个树片段``NP( PN)''和``PN(他)'',不过这种单目产生式往往会导致解码时推导数量的膨胀。因此,这里约定把连续的单目生成看作是一个生成过程,它对应一个树片段,而不是多个。
\parinterval 将树进行切割之后,可以得到若干树片段,每个树片段都可以对应一个树到串规则。由于这些树片段不能被进一步切割,因此这样得到的规则也被称作{\small\bfnew{最小规则}}\index{最小规则}(Minimal Rules)\index{Minimal Rules}。它们就构成了树到串模型中最基本的翻译单元。图\ref{fig:4-54}展示了基于树切割得到的最小规则。其中左侧的每条规则都对应着右侧相同编号的树片段。
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -1851,6 +1877,8 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\end{figure}
%-------------------------------------------
\parinterval 将树进行切割之后,可以得到若干树片段,每个树片段都可以对应一个树到串规则。由于这些树片段不能被进一步切割,因此这样得到的规则也被称作{\small\bfnew{最小规则}}\index{最小规则}(Minimal Rules)\index{Minimal Rules}。它们就构成了树到串模型中最基本的翻译单元。图\ref{fig:4-54}展示了基于树切割得到的最小规则。其中左侧的每条规则都对应着右侧相同编号的树片段。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
......@@ -1859,17 +1887,7 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\parinterval 空对齐是翻译中的常见现象。比如,一些虚词经常找不到在另一种语言中的对应,因此不会被翻译,这种情况也被称作空对齐。比如,在图\ref{fig:4-54}中目标语中的``was''就是一个空对齐单词。空对齐的使用可以大大增加翻译的灵活度。具体到树到串规则抽取任务,需要把空对齐考虑进来,这样能够覆盖更多的语言现象。
\parinterval 处理空对齐单词的手段非常简单。只需要把空对齐单词附着在它周围的规则上即可。也就是,检查每条最小规则,如果空对齐单词能够作为规则的一部分进行扩展,就可以生成一条新的规则。图\ref{fig:4-55}展示了前面例子中``was''被附着在周围的规则上的结果。其中,含有红色``was''的规则是通过附着空对齐单词得到的新规则。比如,对于规则:
\begin{eqnarray}
\textrm{NP(PN(他))} \rightarrow \textrm{he} \nonumber
\end{eqnarray}
\parinterval ``was''紧挨着这个规则目标端的单词``he'',因此可以把``was''包含在规则的目标端,形成新的规则:
\begin{eqnarray}
\textrm{NP(PN(他))} \rightarrow \textrm{he}\ \textrm{was} \nonumber
\end{eqnarray}
\parinterval 通常,在规则抽取中考虑空对齐可以大大增加规则的覆盖度。
\parinterval 处理空对齐单词的手段非常简单。只需要把空对齐单词附着在它周围的规则上即可。也就是,检查每条最小规则,如果空对齐单词能够作为规则的一部分进行扩展,就可以生成一条新的规则。
%----------------------------------------------
\begin{figure}[htp]
......@@ -1882,6 +1900,18 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\end{figure}
%-------------------------------------------
\parinterval\ref{fig:4-55}展示了前面例子中``was''被附着在周围的规则上的结果。其中,含有红色``was''的规则是通过附着空对齐单词得到的新规则。比如,对于规则:
\begin{eqnarray}
\textrm{NP(PN(他))} \rightarrow \textrm{he} \nonumber
\end{eqnarray}
\parinterval ``was''紧挨着这个规则目标端的单词``he'',因此可以把``was''包含在规则的目标端,形成新的规则:
\begin{eqnarray}
\textrm{NP(PN(他))} \rightarrow \textrm{he}\ \textrm{was} \nonumber
\end{eqnarray}
\parinterval 通常,在规则抽取中考虑空对齐可以大大增加规则的覆盖度。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
%----------------------------------------------------------------------------------------
......@@ -2037,7 +2067,7 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\subsubsection{基于对齐矩阵的规则抽取}
\parinterval 同词对齐一样,节点对齐也会存在错误,这样就不可避免的造成规则抽取的错误。既然单一的对齐中含有错误,那能否让系统看到更多样的对齐结果,进而提高正确规则被抽取到的几率呢?答案是肯定的。实际上,在基于短语的模型中就有基于多个词对齐(如$n$-best词对齐)进行规则抽取的方法,这种方法可以在一定程度上提高短语的召回率。在树到树规则抽取中也同样适用,比如可以使用多个节点对齐结果进行规则抽取。但是,简单使用多个对齐结果会使系统运行代价线性增长,而且即使是$n$-best对齐,也无法保证涵盖到正确的对齐结果。对于这个问题,另一种思路是使用对齐矩阵进行规则的``软''抽取。
\parinterval 同词对齐一样,节点对齐也会存在错误,这样就不可避免的造成规则抽取的错误。既然单一的对齐中含有错误,那能否让系统看到更多样的对齐结果,进而提高正确规则被抽取到的几率呢?答案是肯定的。实际上,在基于短语的模型中就有基于多个词对齐(如$n$-best词对齐)进行规则抽取的方法,这种方法可以在一定程度上提高短语的召回率。在树到树规则抽取中也可以使用多个节点对齐结果进行规则抽取。但是,简单使用多个对齐结果会使系统运行代价线性增长,而且即使是$n$-best对齐,也无法保证涵盖到正确的对齐结果。对于这个问题,另一种思路是使用对齐矩阵进行规则的``软''抽取。
\parinterval 所谓对齐矩阵,是描述两个句法树节点之间对应强度的数据结构。矩阵的每个单元中都是一个0到1之间的数字。规则抽取时,可以认为所有节点之间都存在对齐,这样可以抽取出很多$n$-best对齐中无法覆盖的规则。图\ref{fig:4-63}展示了一个用对齐矩阵的进行规则抽取的实例。其中矩阵1(Matrix 1)表示的标准的1-best节点对齐,矩阵2(Matrix 2)表示的是一种概率化的对齐矩阵。可以看到使用矩阵2可以抽取到更多样的规则。另外,值得注意的是,基于对齐矩阵的方法也同样适用于短语和层次短语规则的抽取。关于对齐矩阵的生成可以参考相关论文的内容\cite{xiao2013unsupervised,liu2009weighted,sun2010exploring,sun2010discriminative}
......@@ -2134,13 +2164,7 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\end{definition}
%-------------------------------------------
\parinterval 与传统的有向图不同,超图中的每一个边(超边)的尾可以包含多个节点。也就是说,每个超边从若干个节点出发最后指向同一个节点。这种定义完美契合了CFG的要求。比如,如果把节点看作是一个推导所对应树结构的根节点(含有句法标记),那么每个超边就可以表示一条CFG规则。图\ref{fig:4-64}就展示了一个简单的超图。其中每个节点都有一个句法标记,句法标记下面记录了这个节点的跨度。超边edge1和edge2分别对应了两条CFG规则:
\begin{eqnarray}
\textrm{VP} \rightarrow \textrm{VV}\ \textrm{NP} \nonumber \\
\textrm{NP} \rightarrow \textrm{NN}\ \textrm{NP} \nonumber
\end{eqnarray}
\parinterval 对于规则``$\textrm{VP} \rightarrow \textrm{VV}\ \textrm{NP}$'',超边的头指向VP,超边的尾表示规则右部的两个变量VV和NP。规则``$\textrm{NP} \rightarrow \textrm{NN}\ \textrm{NP}$''也可以进行类似的解释。
\parinterval 与传统的有向图不同,超图中的每一个边(超边)的尾可以包含多个节点。也就是说,每个超边从若干个节点出发最后指向同一个节点。这种定义完美契合了CFG的要求。比如,如果把节点看作是一个推导所对应树结构的根节点(含有句法标记),那么每个超边就可以表示一条CFG规则。
%----------------------------------------------
\begin{figure}[htp]
......@@ -2151,6 +2175,14 @@ r_9: \quad \textrm{IP(}\textrm{NN}_1\ \textrm{VP}_2) \rightarrow \textrm{S(}\tex
\end{figure}
%-------------------------------------------
\parinterval\ref{fig:4-64}就展示了一个简单的超图。其中每个节点都有一个句法标记,句法标记下面记录了这个节点的跨度。超边edge1和edge2分别对应了两条CFG规则:
\begin{eqnarray}
\textrm{VP} \rightarrow \textrm{VV}\ \textrm{NP} \nonumber \\
\textrm{NP} \rightarrow \textrm{NN}\ \textrm{NP} \nonumber
\end{eqnarray}
\parinterval 对于规则``$\textrm{VP} \rightarrow \textrm{VV}\ \textrm{NP}$'',超边的头指向VP,超边的尾表示规则右部的两个变量VV和NP。规则``$\textrm{NP} \rightarrow \textrm{NN}\ \textrm{NP}$''也可以进行类似的解释。
\parinterval 不难发现,超图提供了一种非常紧凑的数据结构来表示多个推导,因为不同推导之间可以共享节点。如果把图\ref{fig:4-64}中的蓝色和红色部分看作是两个推导,那么它们就共享了同一个节点NN[1,2]。能够想象,简单枚举一个句子所有的推导几乎是不可能的,但是用超图的方式却可以很有效地对指数级数量的推导进行表示。另一方面,超图上的运算常常被看作是一种基于半环的代数系统,而且人们发现许多句法分析和机器翻译问题本质上都是{\small\bfnew{半环分析}}\index{半环分析}(Semi-ring Parsing)\index{Semi-ring Parsing}。不过,由于篇幅有限,这里不会对半环等结构展开讨论。感兴趣的读者可以查阅相关文献\cite{goodman1999semiring,eisner2002parameter}
\parinterval 从句法分析的角度看,超图最大程度地复用了局部的分析结果,使得分析可以``结构化''。比如,有两个推导:
......@@ -2171,8 +2203,6 @@ d_1 = {d'} \circ {r_5}
\parinterval 在句法分析中,超图的结构往往被组织为一种Chart结构。所谓Chart,就是一个表格,每个格代表了一个跨度,因此可以把所有覆盖这个跨度的推导都放入相应的表格单元(Chart Cell)。对于上下文无关文法,表格里的每一项还会增加一个句法标记,用来区分不同句法功能的推导。
如图\ref{fig:4-65}所示,覆盖相同跨度的节点会被放入同一个Chart Cell,但是不同句法标记的节点会被看作是不同的项(Item)。这种组织方式建立了一个索引,通过索引可以很容易的访问同一个跨度下的所有推导。比如,如果采用自下而上的分析,可以从小跨度的Chart Cell开始,构建推导,并填写Chart Cell。这个过程中,可以访问之前的Chart Cell来获得所需的局部推导(类似于前面提到的$d'$)。该过程重复执行,直到处理完最大跨度的Chart Cell。而最后一个Chart Cell就保存了完整推导的根节点。通过回溯的方式,能够把所有推导都生成出来。
%----------------------------------------------
\begin{figure}[htp]
\centering
......@@ -2182,9 +2212,9 @@ d_1 = {d'} \circ {r_5}
\end{figure}
%-------------------------------------------
\parinterval 基于句法的机器翻译仍然可以使用超图进行翻译推导的表示。和句法分析一样,超图的每条边可以对应一个基于树结构的文法,超边的头代表文法的左部,超边的尾代表规则中变量所对应的超图中的节点\footnote[10]{ 也可以把每个终结符看作是一个节点,这样一个超边的尾就对应规则的树片段中所有的叶子。}。图\ref{fig:4-66} 给出了一个使用超图来表示机器翻译推导的实例。可以看到,超图的结构是按源语言组织的,但是每个规则(超边)会包含目标语言的信息。由于同步翻译文法可以确保规则的源语言端和目标语言端都覆盖连续的词串,因此超图中的每个节点都对应一个源语言跨度,同时对应一个目标语的连续译文。这样,每个节点实际上代表了一个局部的翻译结果
\parinterval 如图\ref{fig:4-65}所示,覆盖相同跨度的节点会被放入同一个Chart Cell,但是不同句法标记的节点会被看作是不同的项(Item)。这种组织方式建立了一个索引,通过索引可以很容易的访问同一个跨度下的所有推导。比如,如果采用自下而上的分析,可以从小跨度的Chart Cell开始,构建推导,并填写Chart Cell。这个过程中,可以访问之前的Chart Cell来获得所需的局部推导(类似于前面提到的$d'$)。该过程重复执行,直到处理完最大跨度的Chart Cell。而最后一个Chart Cell就保存了完整推导的根节点。通过回溯的方式,能够把所有推导都生成出来
\parinterval 不过,机器翻译与句法分析也有不同之处。最主要的区别在于机器翻译使用了语言模型作为一个特征,比如$n$-gram语言模型。因为语言模型并不是上下文无关的,因此机器翻译中计算最优推导的方法和句法分析会有不同。常用的方法是,直接在每个Chart Cell中融合语言模型的分数,保留前$k$个结果;或者,在构建超图时不计算语言模型得分,等到构建完整个超图之后对最好的若干个推导用语言模型重新排序;再或者,将译文和语言模型都转化为加权有限状态自动机,之后直接对两个自动机做{\small\bfnew{组合}}\index{组合}(Composition)\index{Composition}得到新的自动机,最后得到融合语言模型得分的译文表示
\parinterval 基于句法的机器翻译仍然可以使用超图进行翻译推导的表示。和句法分析一样,超图的每条边可以对应一个基于树结构的文法,超边的头代表文法的左部,超边的尾代表规则中变量所对应的超图中的节点\footnote[10]{ 也可以把每个终结符看作是一个节点,这样一个超边的尾就对应规则的树片段中所有的叶子。}。图\ref{fig:4-66} 给出了一个使用超图来表示机器翻译推导的实例。可以看到,超图的结构是按源语言组织的,但是每个规则(超边)会包含目标语言的信息。由于同步翻译文法可以确保规则的源语言端和目标语言端都覆盖连续的词串,因此超图中的每个节点都对应一个源语言跨度,同时对应一个目标语的连续译文。这样,每个节点实际上代表了一个局部的翻译结果
%----------------------------------------------
\begin{figure}[htp]
......@@ -2195,6 +2225,8 @@ d_1 = {d'} \circ {r_5}
\end{figure}
%-------------------------------------------
\parinterval 不过,机器翻译与句法分析也有不同之处。最主要的区别在于机器翻译使用了语言模型作为一个特征,比如$n$-gram语言模型。因为语言模型并不是上下文无关的,因此机器翻译中计算最优推导的方法和句法分析会有不同。常用的方法是,直接在每个Chart Cell中融合语言模型的分数,保留前$k$个结果;或者,在构建超图时不计算语言模型得分,等到构建完整个超图之后对最好的若干个推导用语言模型重新排序;再或者,将译文和语言模型都转化为加权有限状态自动机,之后直接对两个自动机做{\small\bfnew{组合}}\index{组合}(Composition)\index{Composition}得到新的自动机,最后得到融合语言模型得分的译文表示。
\parinterval 基于超图的推导表示方法有着很广泛的应用。比如,\ref{section-4.3}节介绍的层次短语系统也可以使用超图进行建模,因为它也使用了同步文法。从这个角度说,基于层次短语的模型和基于语言学句法的模型本质上是一样的。它们的主要区别在于规则中的句法标记和抽取规则的方法不同。
%----------------------------------------------------------------------------------------
......@@ -2224,19 +2256,7 @@ d_1 = {d'} \circ {r_5}
\hline
\rule{0pt}{15pt}解码方法 & $\hat{d} = \arg\max_{d \in D_{\textrm{tree}}} \textrm{score} (d)$ & $\hat{d} = \arg\max_{d \in D} \textrm{score} (d)$ \\
\rule{0pt}{15pt}搜索空间 & 与输入的源语句法树兼容的推导$D_{\textrm{tree}}$ & 所有的推导$D$ \\
\rule{0pt}{15pt}适用模型 & 树到串、树到树 & 所有的句法模型
\end{tabular}
}
\end{center}
}\end{table}
\begin{table}[htp]{
\begin{center}
\vspace{1em}
{
\begin{tabular}{l | p{16.5em} l}
对比 & 基于树的解码 & 基于串的解码 \\
\hline
\rule{0pt}{15pt}适用模型 & 树到串、树到树 & 所有的句法模型 \\
\rule{0pt}{15pt}解码算法 & Chart解码 & CKY + 规则二叉化 \\
\rule{0pt}{15pt}速度 && 一般较慢
\end{tabular}
......@@ -2303,7 +2323,7 @@ d_1 = {d'} \circ {r_5}
\parinterval 基于串的解码过程和句法分析几乎一样。对于输入的源语言句子,基于串的解码需要找到这个句子上的最优推导。唯一不同的地方在于,机器翻译需要考虑译文的生成(语言模型的引入会使问题稍微复杂一些),但是源语言部分的处理和句法分析是一样的。因为不要求用户输入句法树,所以这种方法同时适用于树到串、串到树、树到树等多种模型。本质上,基于串的解码可以探索更多潜在的树结构,并增大搜索空间(相比基于树的解码),因此该方法更有可能找到高质量翻译结果。
\parinterval 基于串的解码仍然可以用Chart来组织翻译推导。不过,一个比较有挑战的问题是如何找到每个规则能够匹配的源语言跨度。也就是,对于每个Chart Cell,需要知道哪些规则可以被填入其中。因为,没有用户输入的句法树做指导,理论上输入句子的所有子串要与所有规则进行匹配。匹配时,需要考虑规则中源语言端的符号串(或者树结构的叶子序列)与输入词串匹配的全部可能性。\ref{fig:4-70}展示了规则匹配输入句子(包含13个词)的所有可能。可以看到,规则源语言端的连续变量会使得匹配情况变得复杂。对于长度为$n$的词串,匹配含有$m$个连续变量的规则的时间复杂度是O($n^{m-1}$)。显然当变量个数增加时规则匹配是相当耗时的操作,甚至当变量个数过多时解码无法在可接受的时间内完成。
\parinterval 基于串的解码仍然可以用Chart来组织翻译推导。不过,一个比较有挑战的问题是如何找到每个规则能够匹配的源语言跨度。也就是,对于每个Chart Cell,需要知道哪些规则可以被填入其中。因为,没有用户输入的句法树做指导,理论上输入句子的所有子串要与所有规则进行匹配。匹配时,需要考虑规则中源语言端的符号串(或者树结构的叶子序列)与输入词串匹配的全部可能性。
%----------------------------------------------
\begin{figure}[htp]
......@@ -2314,6 +2334,8 @@ d_1 = {d'} \circ {r_5}
\end{figure}
%-------------------------------------------
\parinterval\ref{fig:4-70}展示了规则匹配输入句子(包含13个词)的所有可能。可以看到,规则源语言端的连续变量会使得匹配情况变得复杂。对于长度为$n$的词串,匹配含有$m$个连续变量的规则的时间复杂度是O($n^{m-1}$)。显然当变量个数增加时规则匹配是相当耗时的操作,甚至当变量个数过多时解码无法在可接受的时间内完成。
\parinterval 对于这个问题,有两种常用的解决办法:
\begin{itemize}
\vspace{0.5em}
......
......@@ -27,10 +27,10 @@
\draw [->,thick] ([yshift=0.1em]e4.north)--([yshift=-0.1em]node14.south);
{
\node [anchor=south,rnnnode,fill=blue!30!white] (node21) at ([yshift=1.5em]node11.north) {\scriptsize{Softmax($\cdot$)}};
\node [anchor=south,rnnnode,fill=blue!30!white] (node22) at ([yshift=1.5em]node12.north) {\scriptsize{Softmax($\cdot$)}};
\node [anchor=south,rnnnode,fill=blue!30!white] (node23) at ([yshift=1.5em]node13.north) {\scriptsize{Softmax($\cdot$)}};
\node [anchor=south,rnnnode,fill=blue!30!white] (node24) at ([yshift=1.5em]node14.north) {\scriptsize{Softmax($\cdot$)}};
\node [anchor=south,rnnnode] (node21) at ([yshift=1.5em]node11.north) {\scriptsize{RNN Cell}};
\node [anchor=south,rnnnode] (node22) at ([yshift=1.5em]node12.north) {\scriptsize{RNN Cell}};
\node [anchor=south,rnnnode] (node23) at ([yshift=1.5em]node13.north) {\scriptsize{RNN Cell}};
\node [anchor=south,rnnnode] (node24) at ([yshift=1.5em]node14.north) {\scriptsize{RNN Cell}};
\node [anchor=south,rnnnode,fill=blue!30!white] (node31) at ([yshift=1.5em]node21.north) {\scriptsize{Softmax($\cdot$)}};
\node [anchor=south,rnnnode,fill=blue!30!white] (node32) at ([yshift=1.5em]node22.north) {\scriptsize{Softmax($\cdot$)}};
......
......@@ -17,7 +17,7 @@
\renewcommand\tablename{}%将figure改为图
\definecolor{ublue}{rgb}{0.152,0.250,0.545}
\definecolor{ugreen}{rgb}{0,0.5,0}
\chapterimage{chapter_head_1} % Chapter heading image
\chapterimage{fig-NEU-7.jpg} % Chapter heading image
%----------------------------------------------------------------------------------------
% CHAPTER 6
......@@ -51,15 +51,15 @@
\parinterval 神经机器翻译的迅速崛起确实让所有人都有些措手不及,甚至有一种一觉醒来天翻地覆的感觉。也有人评价,神经机器翻译的出现给整个机器翻译领域带来了前所未有的发展机遇。不过,客观地看,机器翻译达到今天这样的状态也是一种历史必然,其中有几方面原因:
\begin{itemize}
\vspace{0.5em}
\vspace{0.3em}
\item 自上世纪末所发展起来的基于数据驱动的方法为神经机器翻译提供了很好的基础。本质上,神经机器翻译仍然是一种基于统计建模的数据驱动的方法,因此无论是对问题的基本建模方式,还是训练统计模型所使用到的带标注数据,都可以复用机器翻译领域以前的研究成果。特别是机器翻译长期的发展已经积累了大量的双语、单语数据,这些数据在统计机器翻译时代就发挥了很大作用。随着时间的推移,数据规模和质量又得到进一步提升,包括一些评测基准、任务设置都已经非常完备,研究者可以直接在数据条件全部具备的情况下开展神经机器翻译的研究工作,这些都省去了大量的时间成本。从这个角度说,神经机器翻译是站在巨人的肩膀上才发展起来的。
\vspace{0.5em}
\vspace{0.3em}
\item 深度学习经过长时间的酝酿终于爆发,为机器翻译等自然语言处理任务提供了新的思路和技术手段。神经机器翻译的不断壮大伴随着深度学习技术的发展。在深度学习的视角下,语言文字可以被表示成抽象的实数向量。这种文字的表示方法可以被自动学习,为机器翻译建模提供了更大的灵活性。相对于神经机器翻译,深度学习的发展更加曲折。虽然深度学习经过了漫长的起伏过程,但是神经机器翻译恰好出现在深度学习逐渐走向成熟的阶段。反过来说,受到深度学习及相关技术空前发展的影响,自然语言处理的范式也发生了变化,神经机器翻译的出现只是这种趋势下的一种必然。
\vspace{0.5em}
\vspace{0.3em}
\item 此外,计算机算力的提升也为神经机器翻译提供了很好的支撑。与很多神经网络方法一样,神经机器翻译也依赖大量的基于浮点数的矩阵运算。在2000年前,大规模的矩阵运算仍然依赖非常昂贵的CPU集群系统,但是随着GPU等相关技术的发展,在相对低成本的设备上已经可以完成非常复杂的浮点并行运算。这使得包括神经机器翻译在内的很多基于深度学习的系统可以进行大规模实验,随着实验周期的缩短,相关研究和系统的迭代周期大大缩短。实际上,计算机硬件运算能力一直是稳定提升的,神经机器翻译只是受益于运算能力的阶段性突破。
\vspace{0.5em}
\vspace{0.3em}
\item 还有,翻译需求的不断增加也为机器翻译技术提供了新的机会。在近几年,无论是翻译品质,还是翻译语种数量,甚至不同的翻译场景,都对机器翻译有了更高的要求。人们迫切需要一种品质更高、翻译效果稳定的机器翻译方法,神经机器翻译恰好满足了这些要求。当然,应用端需求的增加也会反推机器翻译技术的发展,二者相互促进。
\vspace{0.5em}
\vspace{0.3em}
\end{itemize}
\parinterval 至今,神经机器翻译已经成为带有时代特征的标志性方法。当然,机器翻译的发展也远没有达到终点。下面将介绍神经机器翻译的起源和优势,以便读者在正式了解神经机器翻译的技术方法前对其现状有一个充分的认识。
......@@ -67,7 +67,7 @@
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\vspace{-0.2em}
\vspace{-0.3em}
\subsection{神经机器翻译的起源}
\parinterval 从广义上讲,神经机器翻译是一种基于人工神经网络的方法,它把翻译过程描述为可以用人工神经网络表示的函数。所有的训练和推断都在这些函数上进行。由于神经机器翻译中的神经网络可以用连续可微函数表示,因此这类方法也可以用基于梯度的方法进行优化,相关技术非常成熟。更为重要的是,在神经网络的设计中,研究者引入了{\small\bfnew{分布式表示}} \index{分布式表示}(Distributed Representation)\index{Distributed Representation}的概念,这也是近些年自然语言处理领域的重要成果之一。传统统计机器翻译仍然把词序列看作离散空间里的由多个特征函数描述的点,类似于$n$-gram语言模型,这类模型对数据稀疏问题非常敏感。此外,人工设计特征也在一定程度上限制了模型对问题的表示能力。神经机器翻译把文字序列表示为实数向量,一方面避免了特征工程繁重的工作,另一方面使得系统可以对文字序列的``表示''进行学习。可以说,神经机器翻译的成功很大程度上源自`` 表示学习''这种自然语言处理的新范式的出现。在表示学习的基础上,注意力机制、深度神经网络等技术都被应用于神经机器翻译,使其得以进一步发展。
......
......@@ -17,13 +17,13 @@
\renewcommand\tablename{}% Table => 表
\definecolor{ublue}{rgb}{0.152,0.250,0.545} % Color of deep blue
\definecolor{ugreen}{rgb}{0,0.5,0} % Color of deep green
\chapterimage{chapter_head_1} % Chapter heading image
\chapterimage{fig-NEU-8.jpg} % Chapter heading image
%----------------------------------------------------------------------------------------
% CHAPTER 7
%----------------------------------------------------------------------------------------
\chapter{神经机器翻译实战 \ \dash \ 参加一次比赛}
\chapter{神经机器翻译实战}
\parinterval 作为机器翻译的前沿方向,神经机器翻译方法是近些年来最受关注的热点之一。凭借其高品质的译文,神经机器翻译的身影在各种机器翻译比赛和产品中随处可见。第六章已经介绍了神经机器翻译的基础模型,包括:基于循环神经网络的翻译模型、基于Transformer的翻译模型、注意力机制等等。但是,简单使用这些模型和方法显然无法取得最好的结果。实际上,先进的系统往往依赖多种技术的综合运用,是一项庞大的系统工程。
......
......@@ -48,7 +48,7 @@
\vspace{0.5em}
\end{itemize}
其中,第一章是对机器翻译的整体介绍。第二章和第五章是对统计建模和深度学习方法的介绍,分别建立了两个机器翻译范式的基础知识体系 \ \dash \ 统计机器翻译和神经机器翻译。统计机器翻译部分(第三、四章)涉及早期的基于单词的翻译模型,以及本世纪初流行的基于短语和句法的翻译模型。神经机器翻译(第六、七章)代表了当今机器翻译的前沿,内容主要涉及了基于端到端表示学习的机器翻译建模方法。特别,第七章对一些最新的神经机器翻译方法进行了讨论,为相关科学问题的研究和实用系统的开发提供了可落地的思路。图\ref{fig:preface}展示了本书各个章节及核心概念之间的关系。
其中,第一章是对机器翻译的整体介绍。第二章和第五章是对统计建模和深度学习方法的介绍,分别建立了两个机器翻译范式的基础知识体系 \ \dash \ 统计机器翻译和神经机器翻译。统计机器翻译部分(第三、四章)涉及早期的基于单词的翻译模型,以及本世纪初流行的基于短语和句法的翻译模型。神经机器翻译(第六、七章)代表了当今机器翻译的前沿,内容主要涉及了基于端到端表示学习的机器翻译建模方法。特别,第七章对一些最新的神经机器翻译方法进行了讨论,为相关科学问题的研究和实用系统的开发提供了可落地的思路。图\ref{fig:preface}展示了本书各个章节及核心概念之间的关系。
{\red 用最简单的方式阐述机器翻译的基本思想}是笔者所期望达到的目标。但是,书中不可避免会使用一些形式化定义和算法的抽象描述,因此,笔者尽所能通过图例进行解释(本书共320张插图)。不过,本书所包含的内容较为广泛,难免会有疏漏,望读者海涵,并指出不当之处。
......@@ -57,8 +57,6 @@
\centering
\centering
\input{./ChapterPreface/Figures/figure-preface}
\caption{本书各章节及核心概念关系图}
\label{fig:preface}
\end{figure}
%-------------------------------------------
......
......@@ -84,7 +84,7 @@
% section 7
\node [secnode,anchor=south,purple,fill=white,minimum height=6.3em] (sec7) at ([yshift=3em]sec6.north) {};
\node [anchor=north] (sec7label) at (sec7.north) {\small{神经机器翻译实战\ \dash \ 参加一次比赛}};
\node [anchor=north] (sec7label) at (sec7.north) {\small{神经机器翻译实战}};
\node [anchor=north west,draw=purple,thick,fill=white,rounded corners] (sec7title) at ([xshift=-0.3em,yshift=0.3em]sec7.north west) {{\footnotesize\bfnew{\color{purple} 第七章}}};
\node [conceptnode,minimum width=4em,anchor=south west,fill=ublue!15,thin,align=left,minimum height=4.2em] (sec7box1) at ([xshift=0.5em,yshift=0.4em]sec7.south west) {\tiny{数据处理、}\\\tiny{子词切分}};
......@@ -107,5 +107,8 @@
\draw [->,very thick] ([yshift=0.2em]sec6.north) -- ([yshift=-0.2em]sec7.south);
\draw [->,very thick,dotted] ([yshift=0.2em,xshift=-3em]sec4.north) .. controls +(north:7.0em) and +(west:6em) .. ([xshift=-0.2em]sec7.west);
%caption
\node [anchor=north] (caption) at ([xshift=0.4em,yshift=-1em]sec1.south) {\footnotesize{本书各章节及核心概念关系图}};
\end{tikzpicture}
......@@ -87,6 +87,8 @@
\noindent \textsc{东北大学自然语言处理实验室\ $\cdot$\ 小牛翻译}\\
\noindent 顾问:姚天顺\ \ 王宝库\\
\noindent \textsc{\url{https://opensource.niutrans.com/mtbook/index.html}}\\
\noindent \textsc{\url{https://github.com/NiuTrans/MTBook}}\\
......@@ -103,9 +105,9 @@
\thispagestyle{empty}
{\large
\noindent {\color{red} 在此感谢所有为本书做出贡献的人} \\
\noindent {\color{red} 在此感谢为本书做出贡献的小牛团队(部分)成员} \\
\noindent 曹润柘、曾信、孟霞、单韦乔、姜雨帆、王子扬、刘辉、许诺、李北、刘继强、张哲旸、周书含、周涛、张裕浩、李炎洋、林野、陈贺轩、刘晓倩、牛蕊、田丰宁、杜权、张春良、王会珍、张俐、杨木润、宁义明、李洋、秦浩 \\
\noindent 曹润柘、曾信、孟霞、单韦乔、姜雨帆、王子扬、刘辉、许诺、李北、刘继强、张哲旸、周书含、周涛、张裕浩、李炎洋、林野、陈贺轩、刘晓倩、牛蕊、田丰宁、杜权、李垠桥、许晨、张裕浩、胡驰、冯凯、王泽洋、刘腾博、刘兴宇、徐萍、赵闯、高博、张春良、王会珍、张俐、杨木润、宁义明、李洋、秦浩、胡明涵 \\
}
%----------------------------------------------------------------------------------------
......
xelatex mt-book-xelatex
biber mt-book-xelatex
makeindex mt-book-xelatex
xelatex mt-book-xelatex
......@@ -273,10 +273,10 @@
\newtheorem{problem}{Problem}[chapter]
\newtheorem{exerciseT}{Example}[chapter]
\theoremstyle{blacknumex}
\newtheorem{exampleT}{Example}[chapter]
\newtheorem{exampleT}{实例}[chapter]
\theoremstyle{blacknumbox}
\newtheorem{vocabulary}{Vocabulary}[chapter]
\newtheorem{definitionT}{Definition}[section]
\newtheorem{definitionT}{定义}[section]
\newtheorem{corollaryT}[dummy]{Corollary}
\theoremstyle{ocrenum}
\newtheorem{proposition}[dummy]{Proposition}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论