%---------------------------------------------------------------------------------------- % CHAPTER 2 %---------------------------------------------------------------------------------------- \chapterimage{chapter_head_2.pdf} % Chapter heading image \chapter{In-text Elements} \section{Theorems}\index{Theorems} This is an example of theorems. \subsection{Several equations}\index{Theorems!Several Equations} This is a theorem consisting of several equations. \begin{theorem}[Name of the theorem] In $E=\mathbb{R}^n$ all norms are equivalent. It has the properties: \begin{align} & \big| ||\mathbf{x}|| - ||\mathbf{y}|| \big|\leq || \mathbf{x}- \mathbf{y}||\\ & ||\sum_{i=1}^n\mathbf{x}_i||\leq \sum_{i=1}^n||\mathbf{x}_i||\quad\text{where $n$ is a finite integer} \end{align} \end{theorem} \subsection{Single Line}\index{Theorems!Single Line} This is a theorem consisting of just one line. \begin{theorem} A set $\mathcal{D}(G)$ in dense in $L^2(G)$, $|\cdot|_0$. \end{theorem} %------------------------------------------------ \section{Definitions}\index{Definitions} This is an example of a definition. A definition could be mathematical or it could define a concept. \begin{definition}[Definition name] Given a vector space $E$, a norm on $E$ is an application, denoted $||\cdot||$, $E$ in $\mathbb{R}^+=[0,+\infty[$ such that: \begin{align} & ||\mathbf{x}||=0\ \Rightarrow\ \mathbf{x}=\mathbf{0}\\ & ||\lambda \mathbf{x}||=|\lambda|\cdot ||\mathbf{x}||\\ & ||\mathbf{x}+\mathbf{y}||\leq ||\mathbf{x}||+||\mathbf{y}|| \end{align} \end{definition} %------------------------------------------------ \section{Notations}\index{Notations} \begin{notation} Given an open subset $G$ of $\mathbb{R}^n$, the set of functions $\varphi$ are: \begin{enumerate} \item Bounded support $G$; \item Infinitely differentiable; \end{enumerate} a vector space is denoted by $\mathcal{D}(G)$. \end{notation} %------------------------------------------------ \section{Remarks}\index{Remarks} This is an example of a remark. \begin{remark} The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K}=\mathbb{R}$, however, established properties are easily extended to $\mathbb{K}=\mathbb{C}$. \end{remark} %------------------------------------------------ \section{Corollaries}\index{Corollaries} This is an example of a corollary. \begin{corollary}[Corollary name] The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K}=\mathbb{R}$, however, established properties are easily extended to $\mathbb{K}=\mathbb{C}$. \end{corollary} %------------------------------------------------ \section{Propositions}\index{Propositions} This is an example of propositions. \subsection{Several equations}\index{Propositions!Several Equations} \begin{proposition}[Proposition name] It has the properties: \begin{align} & \big| ||\mathbf{x}|| - ||\mathbf{y}|| \big|\leq || \mathbf{x}- \mathbf{y}||\\ & ||\sum_{i=1}^n\mathbf{x}_i||\leq \sum_{i=1}^n||\mathbf{x}_i||\quad\text{where $n$ is a finite integer} \end{align} \end{proposition} \subsection{Single Line}\index{Propositions!Single Line} \begin{proposition} Let $f,g\in L^2(G)$; if $\forall \varphi\in\mathcal{D}(G)$, $(f,\varphi)_0=(g,\varphi)_0$ then $f = g$. \end{proposition} %------------------------------------------------ \section{Examples}\index{Examples} This is an example of examples. \subsection{Equation and Text}\index{Examples!Equation and Text} \begin{example} Let $G=\{x\in\mathbb{R}^2:|x|<3\}$ and denoted by: $x^0=(1,1)$; consider the function: \begin{equation} f(x)=\left\{\begin{aligned} & \mathrm{e}^{|x|} & & \text{si $|x-x^0|\leq 1/2$}\\ & 0 & & \text{si $|x-x^0|> 1/2$}\end{aligned}\right. \end{equation} The function $f$ has bounded support, we can take $A=\{x\in\mathbb{R}^2:|x-x^0|\leq 1/2+\epsilon\}$ for all $\epsilon\in\intoo{0}{5/2-\sqrt{2}}$. \end{example} \subsection{Paragraph of Text}\index{Examples!Paragraph of Text} \begin{example}[Example name] \lipsum[2] \end{example} %------------------------------------------------ \section{Exercises}\index{Exercises} This is an example of an exercise. \begin{exercise} This is a good place to ask a question to test learning progress or further cement ideas into students' minds. \end{exercise} %------------------------------------------------ \section{Problems}\index{Problems} \begin{problem} What is the average airspeed velocity of an unladen swallow? \end{problem} %------------------------------------------------ \section{Vocabulary}\index{Vocabulary} Define a word to improve a students' vocabulary. \begin{vocabulary}[Word] Definition of word. \end{vocabulary} %---------------------------------------------------------------------------------------- % PART %---------------------------------------------------------------------------------------- \part{Part Two}