%----------------------------------------------------------------------------------------
%	CHAPTER 2
%----------------------------------------------------------------------------------------
\chapterimage{chapter_head_2.pdf} % Chapter heading image
\chapter{In-text Elements}

\section{Theorems}\index{Theorems}

This is an example of theorems.

\subsection{Several equations}\index{Theorems!Several Equations}
This is a theorem consisting of several equations.

\begin{theorem}[Name of the theorem]
In $E=\mathbb{R}^n$ all norms are equivalent. It has the properties:
\begin{align}
& \big| ||\mathbf{x}|| - ||\mathbf{y}|| \big|\leq || \mathbf{x}- \mathbf{y}||\\
&  ||\sum_{i=1}^n\mathbf{x}_i||\leq \sum_{i=1}^n||\mathbf{x}_i||\quad\text{where $n$ is a finite integer}
\end{align}
\end{theorem}

\subsection{Single Line}\index{Theorems!Single Line}
This is a theorem consisting of just one line.

\begin{theorem}
A set $\mathcal{D}(G)$ in dense in $L^2(G)$, $|\cdot|_0$. 
\end{theorem}

%------------------------------------------------

\section{Definitions}\index{Definitions}

This is an example of a definition. A definition could be mathematical or it could define a concept.

\begin{definition}[Definition name]
Given a vector space $E$, a norm on $E$ is an application, denoted $||\cdot||$, $E$ in $\mathbb{R}^+=[0,+\infty[$ such that:
\begin{align}
& ||\mathbf{x}||=0\ \Rightarrow\ \mathbf{x}=\mathbf{0}\\
& ||\lambda \mathbf{x}||=|\lambda|\cdot ||\mathbf{x}||\\
& ||\mathbf{x}+\mathbf{y}||\leq ||\mathbf{x}||+||\mathbf{y}||
\end{align}
\end{definition}

%------------------------------------------------

\section{Notations}\index{Notations}

\begin{notation}
Given an open subset $G$ of $\mathbb{R}^n$, the set of functions $\varphi$ are:
\begin{enumerate}
\item Bounded support $G$;
\item Infinitely differentiable;
\end{enumerate}
a vector space is denoted by $\mathcal{D}(G)$. 
\end{notation}

%------------------------------------------------

\section{Remarks}\index{Remarks}

This is an example of a remark.

\begin{remark}
The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K}=\mathbb{R}$, however, established properties are easily extended to $\mathbb{K}=\mathbb{C}$.
\end{remark}

%------------------------------------------------

\section{Corollaries}\index{Corollaries}

This is an example of a corollary.

\begin{corollary}[Corollary name]
The concepts presented here are now in conventional employment in mathematics. Vector spaces are taken over the field $\mathbb{K}=\mathbb{R}$, however, established properties are easily extended to $\mathbb{K}=\mathbb{C}$.
\end{corollary}

%------------------------------------------------

\section{Propositions}\index{Propositions}

This is an example of propositions.

\subsection{Several equations}\index{Propositions!Several Equations}

\begin{proposition}[Proposition name]
It has the properties:
\begin{align}
& \big| ||\mathbf{x}|| - ||\mathbf{y}|| \big|\leq || \mathbf{x}- \mathbf{y}||\\
&  ||\sum_{i=1}^n\mathbf{x}_i||\leq \sum_{i=1}^n||\mathbf{x}_i||\quad\text{where $n$ is a finite integer}
\end{align}
\end{proposition}

\subsection{Single Line}\index{Propositions!Single Line}

\begin{proposition} 
Let $f,g\in L^2(G)$; if $\forall \varphi\in\mathcal{D}(G)$, $(f,\varphi)_0=(g,\varphi)_0$ then $f = g$. 
\end{proposition}

%------------------------------------------------

\section{Examples}\index{Examples}

This is an example of examples.

\subsection{Equation and Text}\index{Examples!Equation and Text}

\begin{example}
Let $G=\{x\in\mathbb{R}^2:|x|<3\}$ and denoted by: $x^0=(1,1)$; consider the function:
\begin{equation}
f(x)=\left\{\begin{aligned} & \mathrm{e}^{|x|} & & \text{si $|x-x^0|\leq 1/2$}\\
& 0 & & \text{si $|x-x^0|> 1/2$}\end{aligned}\right.
\end{equation}
The function $f$ has bounded support, we can take $A=\{x\in\mathbb{R}^2:|x-x^0|\leq 1/2+\epsilon\}$ for all $\epsilon\in\intoo{0}{5/2-\sqrt{2}}$.
\end{example}

\subsection{Paragraph of Text}\index{Examples!Paragraph of Text}

\begin{example}[Example name]
\lipsum[2]
\end{example}

%------------------------------------------------

\section{Exercises}\index{Exercises}

This is an example of an exercise.

\begin{exercise}
This is a good place to ask a question to test learning progress or further cement ideas into students' minds.
\end{exercise}

%------------------------------------------------

\section{Problems}\index{Problems}

\begin{problem}
What is the average airspeed velocity of an unladen swallow?
\end{problem}

%------------------------------------------------

\section{Vocabulary}\index{Vocabulary}

Define a word to improve a students' vocabulary.

\begin{vocabulary}[Word]
Definition of word.
\end{vocabulary}

%----------------------------------------------------------------------------------------
%	PART
%----------------------------------------------------------------------------------------

\part{Part Two}