Commit 14278828 by zengxin

11

parent 67b2399b
...@@ -34,7 +34,7 @@ ...@@ -34,7 +34,7 @@
\section{卷积神经网络} \section{卷积神经网络}
\parinterval {\small\bfnew{卷积神经网络}}\index{卷积神经网络}(Convolutional Neural Network,CNN)\index{Convolutional Neural Network,CNN} 是一种前馈神经网络,由若干的卷积层与池化层组成。早期,卷积神经网络被应用在语音识别任务上\upcite{Waibel1989PhonemeRU},之后在图像处理领域取得了很好的效果\upcite{LeCun1989BackpropagationAT,726791}。近年来,卷积神经网络已经成为语音、自然语言处理、图像处理任务的基础框架\upcite{DBLP:conf/icassp/ZhangCJ17,DBLP:conf/icassp/DengAY13,Kalchbrenner2014ACN,Kim2014ConvolutionalNN,DBLP:journals/corr/HeZRS15,DBLP:conf/cvpr/HuangLMW17,Girshick2015FastR,He2020MaskR}。在自然语言处理领域,卷积神经网络已经得到广泛应用,在文本分类\upcite{Kalchbrenner2014ACN,Kim2014ConvolutionalNN,Ma2015DependencybasedCN}、情感分析\upcite{Santos2014DeepCN,}、语言建模\upcite{DBLP:conf/acl/WangLLJL15,Dauphin2017LanguageMW}、机器翻译\upcite{devlin-etal-2014-fast,kalchbrenner-blunsom-2013-recurrent,Gehring2017ACE,DBLP:journals/corr/GehringAGYD17,Kaiser2018DepthwiseSC,Wu2019PayLA}等任务中取得不错的成绩。 \parinterval {\small\bfnew{卷积神经网络}}\index{卷积神经网络}(Convolutional Neural Network,CNN)\index{Convolutional Neural Network} 是一种前馈神经网络,由若干的卷积层与池化层组成。早期,卷积神经网络被应用在语音识别任务上\upcite{Waibel1989PhonemeRU},之后在图像处理领域取得了很好的效果\upcite{LeCun1989BackpropagationAT,726791}。近年来,卷积神经网络已经成为语音、自然语言处理、图像处理任务的基础框架\upcite{DBLP:conf/icassp/ZhangCJ17,DBLP:conf/icassp/DengAY13,Kalchbrenner2014ACN,Kim2014ConvolutionalNN,DBLP:journals/corr/HeZRS15,DBLP:conf/cvpr/HuangLMW17,Girshick2015FastR,He2020MaskR}。在自然语言处理领域,卷积神经网络已经得到广泛应用,在文本分类\upcite{Kalchbrenner2014ACN,Kim2014ConvolutionalNN,Ma2015DependencybasedCN}、情感分析\upcite{Santos2014DeepCN,}、语言建模\upcite{DBLP:conf/acl/WangLLJL15,Dauphin2017LanguageMW}、机器翻译\upcite{devlin-etal-2014-fast,kalchbrenner-blunsom-2013-recurrent,Gehring2017ACE,DBLP:journals/corr/GehringAGYD17,Kaiser2018DepthwiseSC,Wu2019PayLA}等任务中取得不错的成绩。
\parinterval\ref{fig:11-1}展示了全连接层和卷积层的结构对比,可以看到在全连接层中,模型考虑了所有的输入,层输出中的每一个元素都依赖于所有输入。这种全连接层适用于大多数任务,但是当处理图像这种网格数据的时候,规模过大的数据会导致模型参数量过大,难以处理。其次,在一些网格数据中,通常具有局部不变性的特征,比如图像中不同位置的相同物体,语言序列中相同的$n$-gram等。而全连接网络很难提取这些局部不变性特征。为此,一些研究人员提出使用卷积层来替换全连接层\upcite{DBLP:conf/eccv/LiuAESRFB16,DBLP:journals/pami/RenHG017} \parinterval\ref{fig:11-1}展示了全连接层和卷积层的结构对比,可以看到在全连接层中,模型考虑了所有的输入,层输出中的每一个元素都依赖于所有输入。这种全连接层适用于大多数任务,但是当处理图像这种网格数据的时候,规模过大的数据会导致模型参数量过大,难以处理。其次,在一些网格数据中,通常具有局部不变性的特征,比如图像中不同位置的相同物体,语言序列中相同的$n$-gram等。而全连接网络很难提取这些局部不变性特征。为此,一些研究人员提出使用卷积层来替换全连接层\upcite{DBLP:conf/eccv/LiuAESRFB16,DBLP:journals/pami/RenHG017}
...@@ -242,7 +242,7 @@ ...@@ -242,7 +242,7 @@
\begin{itemize} \begin{itemize}
\item {\small\bfnew{位置编码}}\index{位置编码}(Position Embedding)\index{Position Embedding}:图中绿色背景框表示源语言端词嵌入部分。相比于基于循环神经网络的翻译模型中的词嵌入,该模型还引入了位置编码,帮助模型获得词位置信息。位置编码具体实现在图\ref{fig:11-12}中没有显示,详见\ref{sec:11.2.1}节。 \item {\small\bfnew{位置编码}}\index{位置编码}(Position Embedding)\index{Position Embedding}:图中绿色背景框表示源语言端词嵌入部分。相比于基于循环神经网络的翻译模型中的词嵌入,该模型还引入了位置编码,帮助模型获得词位置信息。位置编码具体实现在图\ref{fig:11-12}中没有显示,详见\ref{sec:11.2.1}节。
\item {\small\bfnew{卷积层}}{\small\bfnew{门控线性单元}}(Gated Linear Units, GLU\index{Gated Linear Units, GLU}):黄色背景框是卷积模块,这里使用门控线性单元作为非线性函数,之前的研究工作\upcite{Dauphin2017LanguageMW} 表明这种非线性函数更适合于序列建模任务。图中为了简化,只展示了一层卷积,但在实际中为了更好地捕获句子信息,通常使用多层卷积的叠加。 \item {\small\bfnew{卷积层}}{\small\bfnew{门控线性单元}}(Gated Linear Units, GLU\index{Gated Linear Units}):黄色背景框是卷积模块,这里使用门控线性单元作为非线性函数,之前的研究工作\upcite{Dauphin2017LanguageMW} 表明这种非线性函数更适合于序列建模任务。图中为了简化,只展示了一层卷积,但在实际中为了更好地捕获句子信息,通常使用多层卷积的叠加。
\item {\small\bfnew{残差连接}}\index{残差连接}(Residual Connection)\index{Residual Connection}:源语言端和目标语言端的卷积层网络之间,都存在一个从输入到输出的额外连接,即跳接\upcite{DBLP:journals/corr/HeZRS15}。该连接方式确保每个隐层输出都能包含输入序列中的更多信息,同时能够有效提高深层网络的信息传递效率(该部分在图\ref{fig:11-12}中没有显示,具体结构详见\ref{sec:11.2.3}节)。 \item {\small\bfnew{残差连接}}\index{残差连接}(Residual Connection)\index{Residual Connection}:源语言端和目标语言端的卷积层网络之间,都存在一个从输入到输出的额外连接,即跳接\upcite{DBLP:journals/corr/HeZRS15}。该连接方式确保每个隐层输出都能包含输入序列中的更多信息,同时能够有效提高深层网络的信息传递效率(该部分在图\ref{fig:11-12}中没有显示,具体结构详见\ref{sec:11.2.3}节)。
...@@ -418,7 +418,7 @@ ...@@ -418,7 +418,7 @@
\parinterval ConvS2S模型应用了很多工程方面的调整,主要包括: \parinterval ConvS2S模型应用了很多工程方面的调整,主要包括:
\begin{itemize} \begin{itemize}
\vspace{0.5em} \vspace{0.5em}
\item ConvS2S模型使用了{\small\bfnew{Nesterov加速梯度下降法}} \index{Nesterov加速梯度下降法}(Nesterov Accelerated Gradient,NAG)\index{Nesterov Accelerated Gradient,NAG},动量累计的系数设置为0.99,当梯度范数超过0.1时重新进行规范化\upcite{Sutskever2013OnTI} \item ConvS2S模型使用了{\small\bfnew{Nesterov加速梯度下降法}} \index{Nesterov加速梯度下降法}(Nesterov Accelerated Gradient,NAG)\index{Nesterov Accelerated Gradient},动量累计的系数设置为0.99,当梯度范数超过0.1时重新进行规范化\upcite{Sutskever2013OnTI}
\vspace{0.5em} \vspace{0.5em}
\item ConvS2S模型中设置学习率为0.25,每当模型在校验集上的困惑度不再下降时,便在每轮的训练后将学习率降低一个数量级,直至学习率小于一定的阈值(如0.0004)。 \item ConvS2S模型中设置学习率为0.25,每当模型在校验集上的困惑度不再下降时,便在每轮的训练后将学习率降低一个数量级,直至学习率小于一定的阈值(如0.0004)。
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论