\parinterval 词典归纳(Bilingual Dictionary Induction,BDI),也叫词典推断,是实现语种间单词级别翻译的任务。在统计机器翻译中,词典归纳是一项核心的任务,它从双语平行语料中发掘互为翻译的单词,是翻译知识的主要来源\upcite{黄书剑0统计机器翻译中的词对齐研究}。在端到端的神经机器翻译中,词典归纳通常作为一个下游任务被用到无监督机器翻译、多语言机器翻译等任务中(Do We Really Need Fully Unsupervised Cross-Lingual Embeddings?)。在神经机器翻译中,单词通过连续化的向量来表示,词表分布在一个高维的空间中,基于人们对embedding空间的观察发现:连续的单词嵌入空间在各种语言中显示出类似的结构,这使得直接利用embedding来诱导双语词典成为可能(Exploiting similarities among languages for machine translation)。其基本想法是先将来自不同语言的embedding投影到共享嵌入空间中,然后在此共享空间中诱导出双语词典。研究人员们进行了众多的尝试,较早的尝试是使用一个包含数千词对的种子词典作为锚点来学习从源语到目标语词嵌入空间的线性映射,将两个语言的词汇投影到共享的嵌入空间之后,执行一些对齐算法即可得到双语词典\upcite{DBLP:journals/corr/MikolovLS13}。此后的一些研究表明,词典归纳可以在更弱的监督信号下被诱导,这些监督信号可以是数百对小词典\upcite{DBLP:conf/acl/VulicK16}、相同的字符串\upcite{DBLP:conf/iclr/SmithTHH17},甚至仅仅是共享的数字\upcite{DBLP:conf/acl/ArtetxeLA17}。