Commit 1b78804d by xiaotong

bug fixes

parent c2cfd270
......@@ -1073,9 +1073,9 @@ c_{\mathbb{E}}(s_u|t_v)=\sum\limits_{i=1}^{N} c_{\mathbb{E}}(s_u|t_v;s^{[i]},t^
\label{eq:5-46}
\end{eqnarray}
\parinterval 于是有$f(s_u|t_v)$的计算公式和迭代过程图\ref{fig:5-27}所示。完整的EM算法如图\ref{fig:5-28}所示。其中E-Step对应4-5行,目的是计算$c_{\mathbb{E}}(\cdot)$;M-Step对应6-9行,目的是计算$f(\cdot)$
\parinterval 于是有$f(s_u|t_v)$的计算公式和迭代过程图\ref{fig:5-27}所示。完整的EM算法如图\ref{fig:5-28}所示。其中E-Step对应4-5行,目的是计算$c_{\mathbb{E}}(\cdot)$;M-Step对应6-9行,目的是计算$f(\cdot|\cdot)$
\parinterval 至此,本章完成了对IBM模型1训练方法的介绍。其可以通过图\ref{fig:5-27}所示的算法进行实现。算法最终的形式并不复杂,因为只需要遍历每个句对,之后计算$f(\cdot)$的期望频次,最后估计新的$f(\cdot)$,这个过程迭代直至$f(\cdot)$收敛至稳定状态。
\parinterval 至此,本章完成了对IBM模型1训练方法的介绍。其可以通过图\ref{fig:5-27}所示的算法进行实现。算法最终的形式并不复杂,因为只需要遍历每个句对,之后计算$f(\cdot|\cdot)$的期望频次,最后估计新的$f(\cdot|\cdot)$,这个过程迭代直至$f(\cdot|\cdot)$收敛至稳定状态。
\vspace{-1.5em}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论