Commit 1e079639 by zengxin

19

parent c6b54bfd
......@@ -100,7 +100,7 @@
\parinterval 通常用于构建机器翻译系统的神经网络结构是人为事先确定的,包括预定义层数(深度)和每层宽度等,其实人为事先给定的网络结构对于当前任务来说是否最佳,这个问题没有结论,学术界目前也无法很好回答这个问题。但根据我们的常识性知识可以得知,过于依赖专家经验来设计网络结构肯定不是最佳方案,后来学术界就产生了网络结构搜索研究工作,即如何根据训练数据本身来自动优化模型深层网络结构,争取达到最佳的训练学习效果,是一个非常有趣的研究方向。目前神经机器翻译技术主要依赖于编码器-解码器两层技术框架,把编码和解码阶段分开,类似于将传统的分析和生成阶段分开,但两者又相互依赖,这样做的好处是技术架构简单,不过可能存在表示学习不够充分和错误蔓延等问题的可能性。为了解决这个问题,我们团队做了一个有趣尝试,提出一个新的神经机器翻译技术框架\ \dash \ 基于联合分布的注意力模型Reformer,不依赖于传统编码器-解码器技术框架,而是直接采用一个统一技术框架完成翻译过程,这项工作目前还比较初级,有待于进一步深入研究。
\vspace{0.5em}
\parinterval 最后简单评价一下机器翻译市场发展的趋势。机器翻译本身是个强刚需,用于解决全球用户多语言交流障碍问题。机器翻译产业真正热起来,应该归功于神经机器翻译技术应用,之前基于规则的方法和统计机器翻译技术虽然也在工业界得到了应用,由于翻译品质没有达到用户预期,用户付费欲望比较差,没有良好的商业变现能力,导致机器翻译产业在2017年以前类似于“鸡肋”产业。严格上来说,2016年下半年开始,神经机器翻译技术工业界应用快速激活了用户需求,用户对机器翻译的认可度急剧上升,越来越丰富的应用模式和需求被挖掘出来,除了传统计算机辅助翻译CAT以外,语音和OCR与机器翻译技术结合,大家比较熟悉的语音翻译APP、翻译机、翻译笔、会议AI同传等,还有垂直行业(专利、医药、旅游等)的机器翻译解决方案也逐渐得到了广泛应用。总体来说,机器翻译产学研正处于快速上升期,每年市场规模至少100\%以上增长,随着多模态机器翻译和大数据翻译技术应用,应用场景会越来越丰富,随着5G甚至6G技术发展,视频翻译和电话通讯翻译等应用会进一步爆发。另外,随着人工智能芯片领域的发展,很自然想到机器翻译芯片也会逐渐得到应用,比如嵌入到手机、打印机、复印机、传真机和电视机等智能终端设备,所有内容皆可翻译,任何场景皆可运行,机器翻译服务将进入人们的日常生活中,无所不在,让生活更加美好!
\parinterval 最后简单评价一下机器翻译市场发展的趋势。机器翻译本身是个强刚需,用于解决全球用户多语言交流障碍问题。机器翻译产业真正热起来,应该归功于神经机器翻译技术应用,之前基于规则的方法和统计机器翻译技术虽然也在工业界得到了应用,但由于翻译品质没有达到用户预期,用户付费欲望比较差,没有良好的商业变现能力,导致机器翻译产业在2017年以前类似于“鸡肋”产业。严格上来说,2016年下半年开始,神经机器翻译技术工业界应用快速激活了用户需求,用户对机器翻译的认可度急剧上升,越来越丰富的应用模式和需求被挖掘出来,除了传统计算机辅助翻译CAT以外,语音和OCR与机器翻译技术结合,使得大家比较熟悉的语音翻译APP、翻译机、翻译笔、会议AI同传和垂直行业(专利、医药、旅游等)等的机器翻译解决方案也逐渐得到了广泛应用。总体来说,机器翻译产学研正处于快速上升期,每年市场规模达到至少100\%以上增长,随着多模态机器翻译和大数据翻译技术应用,应用场景会越来越丰富,随着5G甚至6G技术发展,视频翻译和电话通讯翻译等应用会进一步爆发。另外,随着人工智能芯片领域的发展,很自然地机器翻译芯片也会逐渐得到应用,比如嵌入到手机、打印机、复印机、传真机和电视机等智能终端设备,实现所有内容皆可翻译,任何场景皆可运行的目标,机器翻译服务将进入人们的日常生活中,无所不在,让生活更加美好!
\vspace{0.5em}
%----------------------------------------------
\begin{figure}[htp]
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论