Commit 35ddb471 by xiaotong

wording (sec 17)

parent 4f88c767
......@@ -299,6 +299,7 @@
%----------------------------------------------------------------------------------------
\subsection{基于图像增强的文本翻译}
\label{sec:image-augmented-translation}
\parinterval 在文本翻译中引入图像信息是最典型的多模态机器翻译任务。虽然多模态机器翻译还是一种从源语言文本到目标语言文本的转换,但是在转换的过程中,融入了其他模态的信息减少了歧义的产生。例如前文提到的通过与源语言相关的图像信息,将“A medium sized child jumps off of a dusty bank”中“bank”翻译为“河岸”而不是“银行”,因为图像中出现了河床,因此“bank”的歧义大大降低。换句话说,对于同一图像或者视觉场景的描述,源语言和目标语言描述的信息是一致的,只不过,体现在不同语言上会有表达方法上的差异。那么,图像就会存在一些源语言和目标语言的隐含对齐“约束”,而这种“约束”可以捕捉语言中不易表达的隐含信息。
......@@ -382,7 +383,7 @@
\subsection{图像到文本的翻译}
\parinterval 图像到文本的转换也可以看作是广义上的翻译,简单来说,就是把图像作为了源语言的唯一输入,而输出是文本。其中,图像描述生成是最典型的图像到文本的翻译任务。虽然,这部分内容并不是本书的重点,不过为了保证多模态翻译内容的完整性,这里对相关技术进行简要介绍。图像描述有时也被称作图说话、图像字幕生成,它在图像检索、智能导盲、人机交互等领域有着广泛的应用场景。
\parinterval 图像到文本的转换也可以看作是广义上的翻译,简单来说,就是把图像作为了源语言的唯一输入,而输出是文本。其中,图像描述生成是最典型的图像到文本的翻译任务{\color{red} 引用:Automatic Description Generation from Images: A Survey of Models, Datasets, and Evaluation Measures}。虽然,这部分内容并不是本书的重点,不过为了保证多模态翻译内容的完整性,这里对相关技术进行简要介绍。图像描述有时也被称作图说话、图像字幕生成,它在图像检索、智能导盲、人机交互等领域有着广泛的应用场景。
%----------------------------------------------------------------------------------------------------
\begin{figure}[htp]
......@@ -401,7 +402,7 @@
\subsubsection{1. 基础框架}
\parinterval 受到神经机器翻译的启发,编码器-解码器框架也应用到图像描述任务当中。其中,编码器将输入的图像转换为一种新的“表示”形式,这种表示包含了输入图像的所有信息。之后解码器把这种“表示”重新转换为输出的描述。图\ref{fig:17-16}(a)是编码器-解码器框架在图像描述生成中的简单应用\upcite{DBLP:conf/cvpr/VinyalsTBE15}。首先,通过卷积神经网络提取图像特征到一个向量表示。然后,利用长短时记忆网络(LSTM)解码生成文字描述,这个过程中与机器翻译的解码过程类似。这种建模方式存在一定的短板:生成的描述单词不一定需要所有的图像信息,将全局的图像信息送入模型中,可能会引入噪音,使这种“表示”形式不准确。针对这个问题,图\ref{fig:17-16}(b)为了弥补这种建模的局限性,引入了注意力机制\upcite{DBLP:conf/icml/XuBKCCSZB15}。这样,在生成不同单词时,模型不再只关注图像的全局特征,而是关注“应该”关注的图像特征
\parinterval 受到神经机器翻译的启发,编码器-解码器框架也应用到图像描述生成任务当中。其中,编码器将输入的图像转换为一种新的“表示”形式,这种“表示”包含了输入图像的所有信息。之后解码器把这种“表示”转换为自然语言描述。图\ref{fig:17-16}(a)是编码器-解码器框架在图像描述生成中的简单应用\upcite{DBLP:conf/cvpr/VinyalsTBE15}。首先,通过卷积神经网络提取图像特征到一个向量表示。然后,利用长短时记忆网络(LSTM)解码生成文字描述,这个过程中与机器翻译的解码过程类似。这种建模方式存在与\ref{sec:image-augmented-translation}描述一样的问题:生成的描述单词不一定需要所有的图像信息,将全局的图像信息送入模型中,可能会引入噪音。针对这个问题,图\ref{fig:17-16}(b)所示的模型引入了注意力机制\upcite{DBLP:conf/icml/XuBKCCSZB15}
%----------------------------------------------------------------------------------------------------
\begin{figure}[htp]
......@@ -412,15 +413,7 @@
\end{figure}
%----------------------------------------------------------------------------------------------------
\parinterval 图像描述生成基本上沿用了编码器-解码器框架。接下来,从编码器端的改进和解码器端的改进展开讨论。这些改进总体来说是在解决以下两个问题:
\begin{itemize}
\vspace{0.5em}
\item 在编码器端,如何更全面地对图像信息进行编码?
\vspace{0.5em}
\item 在解码器端,如何更好的利用编码器端的特征表示?
\vspace{0.5em}
\end{itemize}
\parinterval 图像描述生成基本上沿用了编码器-解码器框架。接下来,将介绍针对编码器和解码器的改进方法。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -428,9 +421,9 @@
\subsubsection{2. 编码器的改进}
\parinterval 要想使编码器-解码器框架在图像描述中充分发挥作用,编码器也要更好的表示图像信息。对于编码器的改进,大多也是从这个角度出发。通常,体现在向编码器中添加图像的语义信息\upcite{DBLP:conf/cvpr/YouJWFL16,DBLP:conf/cvpr/ChenZXNSLC17,DBLP:journals/pami/FuJCSZ17}和位置信息\upcite{DBLP:conf/cvpr/ChenZXNSLC17,DBLP:conf/ijcai/LiuSWWY17}
\parinterval 要想使编码器-解码器框架在图像描述生成中充分发挥作用,编码器也要更好的表示图像信息。对于编码器的改进,大多也是从这个角度出发。通常,体现在向编码器中添加图像的语义信息\upcite{DBLP:conf/cvpr/YouJWFL16,DBLP:conf/cvpr/ChenZXNSLC17,DBLP:journals/pami/FuJCSZ17}和位置信息\upcite{DBLP:conf/cvpr/ChenZXNSLC17,DBLP:conf/ijcai/LiuSWWY17}
\parinterval 图像的语义信息一般是指图像中存在的实体、属性、场景等等。如图\ref{fig:17-17}所示,从图像中利用属性或实体检测器提取出“child”、“river”、“bank”等等的属性词和实体词作为图像的语义信息,提取全局的图像特征初始化循环神经网络,再利用注意力机制计算目标词与属性词或实体词之间的注意力权重,根据该权重计算上下文向量,并送入解码器\upcite{DBLP:conf/cvpr/YouJWFL16},在解码‘bank’单词时,会更关注图像语义信息中的‘bank’。当然,除了图像中的实体和属性作为语义信息外,也可以将图片的场景信息加入到编码器当中\upcite{DBLP:journals/pami/FuJCSZ17}。有关如何做属性、实体和场景的检测,涉及到目标检测任务的工作,例如Faster-RCNN\upcite{DBLP:journals/pami/RenHG017}、YOLO\upcite{DBLP:journals/corr/abs-1804-02767,DBLP:journals/corr/abs-2004-10934}等等,这里不过多赘述。
\parinterval 图像的语义信息一般是指图像中存在的实体、属性、场景等等。如图\ref{fig:17-17}所示,从图像中利用属性或实体检测器提取出“child”、“river”、“bank”等属性词和实体词作为图像的语义信息并初始化编码器,再利用注意力机制计算目标语言单词与这些属性词或实体词之间的注意力权重\upcite{DBLP:conf/cvpr/YouJWFL16}。当然,除了图像中的实体和属性作为语义信息外,也可以将图片的场景信息加入到编码器当中\upcite{DBLP:journals/pami/FuJCSZ17}。有关如何做属性、实体和场景的检测,涉及到目标检测任务的工作,例如Faster-RCNN\upcite{DBLP:journals/pami/RenHG017}、YOLO\upcite{DBLP:journals/corr/abs-1804-02767,DBLP:journals/corr/abs-2004-10934}等等,这里不过多赘述。
%----------------------------------------------------------------------------------------------------
\begin{figure}[htp]
......@@ -441,7 +434,7 @@
\end{figure}
%----------------------------------------------------------------------------------------------------
\parinterval 以上的方法大都是将图像中的实体、属性、场景等映射到文字上,并把这些信息显式地添加到编码器中。另一种方式,把图像中的语义特征隐式地作用到编码器上\upcite{DBLP:conf/cvpr/ChenZXNSLC17}。例如,图像数据可以分解为三个通道(红、绿、蓝),简单来说,就是将图像的每一个像素点按照红色、绿色、蓝色分成三个部分,这样就将图像分成了三个通道。在很多图像中,不同通道伴随的特征是不一样的,可以将其作用于编码器。另一种方法是基于位置信息的编码器增强。位置信息指的是图像中对象(物体)的位置。利用目标检测技术检测系统获得图中的对象和对应的特征,这样就确定了图中的对象位置。显然,这些信息也可以加入到编码器端,以加强编码器的表示能力\upcite{DBLP:conf/eccv/YaoPLM18}
\parinterval 以上的方法大都是将图像中的实体、属性、场景等映射到文字上,并把这些信息显式地添加到编码器中。另一种方式,把图像中的语义特征隐式地引入编码中\upcite{DBLP:conf/cvpr/ChenZXNSLC17}。例如,图像数据可以分解为三个通道(红、绿、蓝),简单来说,就是将图像的每一个像素点按照红色、绿色、蓝色分成三个部分,这样就将图像分成了三个通道。在很多图像中,不同通道伴随的特征是不一样的,可以将其作用于编码器。另一种方法是基于位置信息的编码器增强。位置信息指的是图像中对象(物体)的位置。利用目标检测技术检测系统获得图中的对象和对应的特征,这样就确定了图中的对象位置。显然,这些信息可以加强编码器的表示能力\upcite{DBLP:conf/eccv/YaoPLM18}
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -449,9 +442,9 @@
\subsubsection{3. 解码器的改进}
\parinterval 由于解码器输出的是语言文字序列,因此需要考虑语言的特点对其进行改进。 例如,解码过程中, “the”,“on”,“at”这种介词或者冠词与图像的相关性较低,这时图像信息的引入就会产生负面影响\upcite{DBLP:conf/cvpr/LuXPS17}。因此,可以通过门等结构,控制视觉信号作用于文字生成的程度。另外,在解码过程中,生成的每个单词对应着图像的区域可能是不同的。因此也可以设计更为有效的注意力机制来捕捉解码器端对不同图像局部信息的关注程度\upcite{DBLP:conf/cvpr/00010BT0GZ18}
\parinterval 由于解码器输出的是语言文字序列,因此需要考虑语言的特点对其进行改进。 例如,解码过程中, “the”,“on”,“at”这种介词或者冠词与图像的相关性较低\upcite{DBLP:conf/cvpr/LuXPS17}。因此,可以通过门控单元,控制视觉信号作用于文字生成的程度。另外,在解码过程中,生成的每个单词对应着图像的区域可能是不同的。因此也可以设计更为有效的注意力机制来捕捉解码器端对不同图像局部信息的关注程度\upcite{DBLP:conf/cvpr/00010BT0GZ18}
\parinterval 除了更好地使生成文本与图像特征进行相互作用以外,还有一些其他的解码器改进的方法。例如:用其它结构(如卷积神经网络或者Transformer)代替解码器所使用的循环神经网络\upcite{DBLP:conf/cvpr/AnejaDS18}。或者使用更深层的神经网络学习动词或者名词等视觉中不易表现出来的单词\upcite{DBLP:journals/mta/FangWCT18},其思想与深层神经机器翻译模型有相通之处({\chapterfifteen})。
\parinterval 除了更好地使生成文本与图像特征进行相互作用以外,还有一些改进方法。例如,用卷积神经网络或者Transformer代替解码器所使用的循环神经网络\upcite{DBLP:conf/cvpr/AnejaDS18}。或者使用更深层的神经网络学习动词或者名词等视觉中不易表现出来的单词\upcite{DBLP:journals/mta/FangWCT18},其思想与深层神经机器翻译模型有相通之处(见{\chapterfifteen})。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -459,11 +452,11 @@
\subsection{图像、文本到图像的翻译}
\parinterval 当生成的目标对象是图像时,问题就变为了图像生成问题。虽然,这个领域本身并不属于机器翻译,但是其使用的基本方法与机器翻译有类似之处。二者也可以相互借鉴。因此,这里对图像生成问题也进行简要描述
\parinterval 当生成的目标对象是图像时,问题就变为了图像生成任务。虽然,这个领域本身并不属于机器翻译,但是其使用的基本方法与机器翻译有类似之处。二者也可以相互借鉴
\parinterval 在计算机视觉中,图像风格变换、图像超分辨率等任务,都可以被视为{\small\bfnew{图像到图像的翻译}}\index{图像到图像的翻译}(Image-to-Image Translation)\index{Image-to-Image Translation}问题。与机器翻译类似,这些问题的共同目标是学习从一个对象到另一个对象的映射,只不过这里的对象是指图像,而非机器翻译中的文字。例如,给定物体的轮廓生成真实物体图片,或者给定白天照片生成夜晚的照片等。图像到图像的翻译有广阔的应用场景,如图片补全、风格迁移等。{\small\bfnew{文本到图像的翻译}}\index{文本到图像的翻译}(Text-to-Image Translation)\index{Text-to-Image Translation}是指给定描述物体颜色和形状等细节的自然语言文字,生成对应的图像。该任务也可以看作是图像描述任务的逆任务。
\parinterval 在计算机视觉中,图像风格变换、图像超分辨率重建等任务,都可以被视为{\small\bfnew{图像到图像的翻译}}\index{图像到图像的翻译}(Image-to-Image Translation)\index{Image-to-Image Translation}问题。与机器翻译类似,这些问题的共同目标是学习从一个对象到另一个对象的映射,只不过这里的对象是指图像,而非机器翻译中的文字。例如,给定物体的轮廓生成真实物体图片,或者给定白天照片生成夜晚的照片等。图像到图像的翻译有广阔的应用场景,如图片补全、风格迁移等。{\small\bfnew{文本到图像的翻译}}\index{文本到图像的翻译}(Text-to-Image Translation)\index{Text-to-Image Translation}是指给定描述物体颜色和形状等细节的自然语言文字,生成对应的图像。该任务也可以看作是图像描述任务的逆任务。
\parinterval 无论是图像到图像的生成,还是文本到图像的生成,一种广泛使用的方法是对抗神经网络\upcite{DBLP:conf/nips/GoodfellowPMXWOCB14,DBLP:journals/corr/abs-1908-06616,DBLP:conf/icml/ReedAYLSL16,DBLP:journals/corr/DashGALA17}。在{\chapterthirteen}已经介绍了对抗样本训练,这里的思想与之类似。具体来说,对抗生成网络包括两个部分:生成器和判别器。基于输入生成器生成一个结果,而判别器要判别生成的结果和真实结果是否是相同的。对抗的思想是,通过强化生成器的生成能力和判别器的判别能力,当生成器生成的结果可以“骗”过判别器时,即判别器无法分清真实结果和生成结果,则认为模型学到了这种映射关系。以图像到图像翻译为例,根据输入图像,生成器可以生成图像,判别器判别是否为目标图像,多次迭代后,生成图像被判别为目标图像时,则模型学习到了图像翻译的能力
\parinterval 无论是图像到图像的生成,还是文本到图像的生成,也可直接使用编码器-解码器框架进行实现。比如,在文本到图像生成中,可以使用机器翻译中的编码器对输入文本进行编码,之后用反卷积网络将编码结果转化为图像。近些年,图像生成类任务也取得了很大的进展,这主要得益于对抗神经网络的使用\upcite{DBLP:conf/nips/GoodfellowPMXWOCB14,DBLP:journals/corr/abs-1908-06616,DBLP:conf/icml/ReedAYLSL16,DBLP:journals/corr/DashGALA17}。在{\chapterthirteen}已经介绍了对抗神经网络,而且图像生成也不是本书的重点,感兴趣的读者可以参考{\chapterthirteen}的内容或者自行查阅相关文献进行了解
%----------------------------------------------------------------------------------------
% NEW SECTION
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论