Commit 3f2d6733 by 曹润柘

update

parent 168ff6e4
......@@ -746,7 +746,7 @@
\end{example}
%----------------------------------------------
\parinterval 在机器翻译任务中,新闻等领域的双语数据相对容易获取,所以机器翻译在这些领域上表现较佳。然而,即使在富资源语种上,化学、医学等专业领域的双语数据依然十分有限。如果直接使用这些低资源领域的数据来训练机器翻译模型,由于数据稀缺问题,会导致模型的性能较差\upcite{DBLP:conf/iccv/SunSSG17}。如果混合多个领域的数据增大训练数据规模,不同领域数据量之间的不平衡会导致数据较少的领域训练不充分,使得在低资源领域上的翻译结果不尽人意\upcite{DBLP:conf/acl/DuhNST13}
\parinterval 在机器翻译任务中,新闻等领域的双语数据相对容易获取,所以机器翻译在这些领域上表现较佳。然而,即使在富资源语种上,化学、医学等专业领域的双语数据十分有限。如果直接使用这些低资源领域的数据来训练机器翻译模型,由于数据稀缺问题,会导致模型的性能较差\upcite{DBLP:conf/iccv/SunSSG17}。如果混合多个领域的数据增大训练数据规模,不同领域数据量之间的不平衡会导致数据较少的领域训练不充分,使得在低资源领域上的翻译结果不尽人意\upcite{DBLP:conf/acl/DuhNST13}
\parinterval 领域适应方法是利用源领域的知识来改进目标领域模型效果的方法,该方法可以有效地减少模型对目标领域数据的依赖。领域适应主要有两类方法:
......@@ -783,7 +783,7 @@
\parinterval 一种观点认为,数据量较少的领域数据应该在训练过程中获得更大的权重,从而使这些更有价值的数据发挥出更大的作用\upcite{DBLP:conf/emnlp/MatsoukasRZ09,DBLP:conf/emnlp/FosterGK10}。实际上,基于数据加权的方法与{\chapterthirteen}中基于样本价值的学习方法是一致的,只是描述的场景略有不同。这类方法本质上在解决{\small\bfnew{类别不均衡问题}}\index{类别不均衡问题}(Class Imbalance Problem\index{Class Imbalance Problem}\upcite{DBLP:conf/emnlp/ZhuH07}。数据加权可以通过修改损失函数,将其缩放$\alpha$ 倍来实现($\alpha$ 是样本的权重)。在具体实践中,也可以直接将低资源的领域数据进行复制\footnote{相当于对数据进行重采样}达到与其相同的效果\upcite{DBLP:conf/wmt/ShahBS10}
\parinterval 数据选择是数据加权的一种特殊情况,它可以被看做是样本权重非零即一的情况。具体来说,可以直接选择与领域相关的数据参与训练\upcite{DBLP:conf/acl/DuhNST13}由于这种方法并不需要使用全量数据进行训练,因此模型的训练成本较低。由于{\chapterthirteen}已经对数据加权和数据选择方法进行了详细介绍,这里不再赘述。
\parinterval 数据选择是数据加权的一种特殊情况,它可以被看做是样本权重非零即一的情况。具体来说,可以直接选择与领域相关的数据参与训练\upcite{DBLP:conf/acl/DuhNST13}这种方法并不需要使用全部数据进行训练,因此模型的训练成本较低。由于{\chapterthirteen}已经对数据加权和数据选择方法进行了详细介绍,这里不再赘述。
%----------------------------------------------------------------------------------------
% NEW SUB-SUB-SECTION
......@@ -797,7 +797,7 @@
%----------------------------------------------------------------------------------------
\subsubsection{3. 多领域数据的使用}
\parinterval 领域适应中的目标领域往往不止一个,想要同时提升多个目标领域的效果,一种简单的思路是使用前文所述的单领域适应方法对每一个目标领域进行领域适应。不过,与多语言翻译一样,多领域适应也往往伴随着严重的数据稀缺问题,由于大多数领域的数据量很小,因此无法保证单个领域的领域适应效果。
\parinterval 领域适应中的目标领域往往不止一个,想要同时提升多个目标领域的效果,一种简单的思路是使用前文所述的单领域适应方法对每一个目标领域进行领域适应。不过,与多语言翻译一样,多领域适应也往往伴随着严重的数据稀缺问题,大多数领域的数据量很小,因此无法保证单个领域的领域适应效果。
\parinterval 解决该问题的一种思路是将所有数据混合使用,并训练一个能够同时适应所有领域的模型。同时,为了区分不同领域的数据,可以在样本上增加领域标签\upcite{DBLP:conf/acl/ChuDK17}。事实上,这种方法与\ref{sec:multi-lang-single-model}节所描述的方法是一样的。它也是一种典型的小样本学习策略,旨在让模型自己从不同类型的样本中寻找联系,进而更加充分地利用数据,改善模型在低资源任务上的表现。
......@@ -862,7 +862,7 @@
\parinterval 另一种方法是不从随机状态开始训练网络,而是使用翻译性能较好的源领域模型作为初始状态,因为源领域模型中包含着一些通用知识可以被目标领域借鉴。比如,想获得口语的翻译模型,可以使用新闻的翻译模型作为初始状态进行训练。这也可以被看作是一种预训练-微调方法。
\parinterval 不过这种方法经常会带来灾难性遗忘问题,即在目标领域上过拟合,导致在源领域上的翻译性能大幅度下降(见{\chapterthirteen})。如果想要保证模型在目标领域和源领域上都有较好的性能,一个比较常用的方法是进行混合微调\upcite{DBLP:conf/acl/ChuDK17}。具体做法是先在源领域数据上训练一个神经机器翻译模型,然后将目标领域数据复制数倍和源领域数据量相等,之后将数据混合后对神经机器翻译模型进行微调。混合微调方法既降低了目标领域数据量小导致的过拟合问题,又带来了更好的微调性能。除了混合微调外,也可以使用知识蒸馏方法缓解灾难性遗忘问题(见\ref{multilingual-translation-model}节),即对源领域和目标领域进行多次循环知识蒸馏,迭代学习对方领域的知识,可以保证在源领域和目标领域上的翻译性能共同逐步上升\upcite{DBLP:conf/emnlp/ZengLSGLYL19}。此外,还可以使用L2正则化和Dropout方法来缓解这个问题\upcite{barone2017regularization}
\parinterval 不过这种方法经常会带来灾难性遗忘问题,即在目标领域上过拟合,导致在源领域上的翻译性能大幅度下降(见{\chapterthirteen})。如果想要保证模型在目标领域和源领域上都有较好的性能,一个比较常用的方法是进行混合微调\upcite{DBLP:conf/acl/ChuDK17}。具体做法是先在源领域数据上训练一个神经机器翻译模型,然后将目标领域数据复制数倍和源领域数据量相等,之后将数据混合对神经机器翻译模型进行微调。混合微调方法既降低了目标领域数据量小导致的过拟合问题的影响,又带来了更好的微调性能。除了混合微调外,也可以使用知识蒸馏方法缓解灾难性遗忘问题(见\ref{multilingual-translation-model}节),即对源领域和目标领域进行多次循环知识蒸馏,迭代学习对方领域的知识,可以保证在源领域和目标领域上的翻译性能共同逐步上升\upcite{DBLP:conf/emnlp/ZengLSGLYL19}。此外,还可以使用L2正则化和Dropout方法来缓解这个问题\upcite{barone2017regularization}
%----------------------------------------------------------------------------------------
% NEW SUB-SUB-SECTION
......@@ -882,7 +882,7 @@
\begin{itemize}
\vspace{0.5em}
\item 如何更高效地利用已有双语数据或单语数据进行数据增强始终是一个热点问题。研究人员分别探索了源语言单语数据和目标语言单语数据的使用方法\upcite{DBLP:conf/emnlp/ZhangZ16,DBLP:conf/emnlp/WuWXQLL19,DBLP:conf/acl/XiaKAN19},以及如何对已有双语数据进行修改\upcite{DBLP:conf/emnlp/WangPDN18,DBLP:conf/acl/GaoZWXQCZL19}。经过数据增强得到的伪数据的质量时好时坏,如何提高伪数据的质量,以及更好地利用伪数据进行训练也是十分重要的问题\upcite{DBLP:conf/emnlp/FadaeeM18,DBLP:conf/nlpcc/XuLXLLXZ19,DBLP:conf/wmt/CaswellCG19,DBLP:journals/corr/abs200403672,DBLP:conf/emnlp/WangLWLS19}。此外,还有一些工作对数据增强技术进行了理论分析\upcite{DBLP:conf/emnlp/LiLHZZ19,DBLP:conf/acl/MarieRF20}
\item 如何更高效地利用已有双语数据或单语数据进行数据增强始终是一个热点问题。研究人员分别探索了源语言单语数据和目标语言单语数据的使用方法\upcite{DBLP:conf/emnlp/ZhangZ16,DBLP:conf/emnlp/WuWXQLL19,DBLP:conf/acl/XiaKAN19},以及如何对已有双语数据进行修改的问题\upcite{DBLP:conf/emnlp/WangPDN18,DBLP:conf/acl/GaoZWXQCZL19}。经过数据增强得到的伪数据的质量时好时坏,如何提高伪数据的质量,以及更好地利用伪数据进行训练也是十分重要的问题\upcite{DBLP:conf/emnlp/FadaeeM18,DBLP:conf/nlpcc/XuLXLLXZ19,DBLP:conf/wmt/CaswellCG19,DBLP:journals/corr/abs200403672,DBLP:conf/emnlp/WangLWLS19}。此外,还有一些工作对数据增强技术进行了理论分析\upcite{DBLP:conf/emnlp/LiLHZZ19,DBLP:conf/acl/MarieRF20}
\vspace{0.5em}
\item 预训练模型也是自然语言处理的重要突破之一,也给低资源机器翻译提供了新的思路。除了基于语言模型或掩码语言模型的方法,也有很多新的架构和模型被提出,如排列语言模型、降噪自编码器等\upcite{DBLP:conf/nips/YangDYCSL19,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/iclr/LanCGGSS20,DBLP:conf/acl/ZhangHLJSL19}。预训练技术也逐渐向多语言领域扩展\upcite{DBLP:conf/nips/ConneauL19,DBLP:conf/emnlp/HuangLDGSJZ19,song2019mass},甚至不再只局限于文本任务\upcite{DBLP:conf/iccv/SunMV0S19,DBLP:conf/nips/LuBPL19,DBLP:conf/interspeech/ChuangLLL20}。对于如何将预训练模型高效地应用到下游任务中,也进行了很多的经验性对比与分析\upcite{Peters2018DeepCW,DBLP:conf/rep4nlp/PetersRS19,DBLP:conf/cncl/SunQXH19}
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论