Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
M
mtbookv2
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
mtbookv2
Commits
5030054d
Commit
5030054d
authored
Nov 08, 2020
by
xiaotong
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
minor updates (sec 9)
parent
757a00c9
隐藏空白字符变更
内嵌
并排
正在显示
3 个修改的文件
包含
17 行增加
和
15 行删除
+17
-15
Chapter9/Figures/figure-4-gram.tex
+2
-0
Chapter9/Figures/figure-parallel.tex
+4
-4
Chapter9/chapter9.tex
+11
-11
没有找到文件。
Chapter9/Figures/figure-4-gram.tex
查看文件 @
5030054d
...
...
@@ -26,9 +26,11 @@
\draw
[->,line width=1pt] ([yshift=0.1em]h1.north) -- ([yshift=-0.1em]ylabel.south);
{
\begin{pgfonlayer}
{
background
}
\draw
[->,dashed,red,line width=1pt] ([xshift=1em,yshift=0.1em]e1.north) -- ([xshift=1em,yshift=-0.1em]h1.south);
\draw
[->,dashed,red,line width=1pt] ([xshift=-1em,yshift=0.1em]e0.north) .. controls +(north:2) and +(south:1) .. ([xshift=-3em,yshift=-0.1em]h1.south);
\draw
[->,dashed,red,line width=1pt] ([xshift=1em,yshift=0.1em]e2.north) .. controls +(north:2) and +(south:1) .. ([xshift=3em,yshift=-0.1em]h1.south);
\end{pgfonlayer}
}
\begin{pgfonlayer}
{
background
}
...
...
Chapter9/Figures/figure-parallel.tex
查看文件 @
5030054d
...
...
@@ -36,8 +36,8 @@
\draw
[<-,very thick,blue]
([xshift=0.5em,yshift=2pt]processor2.north) -- ([xshift=0.5em,yshift=-2pt]serverbox.south) node [pos=0.5,align=left,xshift=2.2em] (fetchlabel)
{
\footnotesize
{${
\bm
\theta
}_{
\textrm
{
new
}}$}}
;;;
\draw
[->,very thick,red]
([xshift=-0.5em,yshift=2pt]processor3.north) --
([xshift=3em,yshift=-2pt]serverbox.south);
\draw
[<-,very thick,blue]
([xshift=0.5em,yshift=2pt]processor3.north) -- ([xshift=4em,yshift=-2pt]serverbox.south) node [pos=0.49,align=left,xshift=2.2em] (fetchlabel)
{
\footnotesize
{
fetch (F
)
}}
;
\draw
[->,very thick,red]
([xshift=-0.5em,yshift=2pt]processor1.north) -- ([xshift=-4em,yshift=-2pt]serverbox.south) node [pos=0.5,align=right,xshift=-2em] (pushlabel)
{
\footnotesize
{
push (P
)
}}
;
\draw
[<-,very thick,blue]
([xshift=0.5em,yshift=2pt]processor3.north) -- ([xshift=4em,yshift=-2pt]serverbox.south) node [pos=0.49,align=left,xshift=2.2em] (fetchlabel)
{
\footnotesize
{
Fetch(
$
\cdot
$
)
}}
;
\draw
[->,very thick,red]
([xshift=-0.5em,yshift=2pt]processor1.north) -- ([xshift=-4em,yshift=-2pt]serverbox.south) node [pos=0.5,align=right,xshift=-2em] (pushlabel)
{
\footnotesize
{
Push(
$
\cdot
$
)
}}
;
\draw
[<-,very thick,blue]
([xshift=0.5em,yshift=2pt]processor1.north) -- ([xshift=-3em,yshift=-2pt]serverbox.south);
}
...
...
@@ -114,8 +114,8 @@
\draw
[<-,very thick,blue]
([xshift=0.5em,yshift=2pt]processor2.north) -- ([xshift=0.5em,yshift=-2pt]serverbox.south) node [pos=0.5,align=left,xshift=2.2em] (fetchlabel)
{
\footnotesize
{${
\bm
\theta
}_{
\textrm
{
new
}}$}}
;;;
\draw
[->,very thick,red]
([xshift=-0.5em,yshift=2pt]processor3.north) --
([xshift=3em,yshift=-2pt]serverbox.south);
\draw
[<-,very thick,blue]
([xshift=0.5em,yshift=2pt]processor3.north) -- ([xshift=4em,yshift=-2pt]serverbox.south) node [pos=0.49,align=left,xshift=2.2em] (fetchlabel)
{
\footnotesize
{
fetch (F
)
}}
;
\draw
[->,very thick,red]
([xshift=-0.5em,yshift=2pt]processor1.north) -- ([xshift=-4em,yshift=-2pt]serverbox.south) node [pos=0.5,align=right,xshift=-2em] (pushlabel)
{
\footnotesize
{
push (P
)
}}
;
\draw
[<-,very thick,blue]
([xshift=0.5em,yshift=2pt]processor3.north) -- ([xshift=4em,yshift=-2pt]serverbox.south) node [pos=0.49,align=left,xshift=2.2em] (fetchlabel)
{
\footnotesize
{
Fetch(
$
\cdot
$
)
}}
;
\draw
[->,very thick,red]
([xshift=-0.5em,yshift=2pt]processor1.north) -- ([xshift=-4em,yshift=-2pt]serverbox.south) node [pos=0.5,align=right,xshift=-2em] (pushlabel)
{
\footnotesize
{
Push(
$
\cdot
$
)
}}
;
\draw
[<-,very thick,blue]
([xshift=0.5em,yshift=2pt]processor1.north) -- ([xshift=-3em,yshift=-2pt]serverbox.south);
}
...
...
Chapter9/chapter9.tex
查看文件 @
5030054d
...
...
@@ -1029,7 +1029,7 @@ f(x)=\begin{cases} 0 & x\le 0 \\x & x>0\end{cases}
\parinterval
实现神经网络的开源系统有很多,比如,使用经典的Python工具包Numpy。也可以使用成熟的深度学习框架,比如,Tensorflow和Pytorch就是非常受欢迎的深度学习工具包,除此之外还有很多其他优秀的框架:CNTK、MXNet、PaddlePaddle、
\\
Keras、Chainer、dl4j、NiuTensor等。开发者可以根据自身的喜好和开发项目的要求选择所采用的框架。
\parinterval
这里以NiuTensor为例对张量计算库进行简单介绍。这类库需要提供张量计算接口,如张量的声明、定义和张量的各种代数运算,各种单元算子,如
$
+
$
、
$
-
$
、
$
\ast
$
、
$
/
$
、Log (取对数)、Exp (指数运算)、Power(幂方运算)、Absolute(绝对值)等,还有Sigmoid、Softmax等激活函数。除了上述单元算子外,张量计算库还支持张量之间的高阶运算,其中最常用的是矩阵乘法。表
\ref
{
tab:9-2
}
展示了一些
其他
的函数。
\parinterval
这里以NiuTensor为例对张量计算库进行简单介绍。这类库需要提供张量计算接口,如张量的声明、定义和张量的各种代数运算,各种单元算子,如
$
+
$
、
$
-
$
、
$
\ast
$
、
$
/
$
、Log (取对数)、Exp (指数运算)、Power(幂方运算)、Absolute(绝对值)等,还有Sigmoid、Softmax等激活函数。除了上述单元算子外,张量计算库还支持张量之间的高阶运算,其中最常用的是矩阵乘法。表
\ref
{
tab:9-2
}
展示了一些
常用
的函数。
%--------------------------------------------------------------------
\begin{table}
[htp]
...
...
@@ -1509,7 +1509,7 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f
\vspace
{
0.5em
}
\end{itemize}
\parinterval
图
\ref
{
fig:9-47
}
对比了同步更新和异步更新的区别,在这个例子中,使用4台设备对一个两层神经网络中的参数进行更新,其中使用了一个
{
\small\bfnew
{
参数服务器
}}
\index
{
参数服务器
}
(Parameter Server
\index
{
Parameter Server
}
)来保存最新的参数,不同设备(图中的G1、G2、G3)可以通过同步或者异步的方式访问参数服务器。图中的
$
{
\bm
\theta
}_
o
$
和
$
{
\bm
\theta
}_
h
$
分别代表输出层和隐藏层的全部参数,操作
push(P) 表示设备向参数服务器传送梯度,操作fetch(F
)表示参数服务器向设备传送更新后的参数。
\parinterval
图
\ref
{
fig:9-47
}
对比了同步更新和异步更新的区别,在这个例子中,使用4台设备对一个两层神经网络中的参数进行更新,其中使用了一个
{
\small\bfnew
{
参数服务器
}}
\index
{
参数服务器
}
(Parameter Server
\index
{
Parameter Server
}
)来保存最新的参数,不同设备(图中的G1、G2、G3)可以通过同步或者异步的方式访问参数服务器。图中的
$
{
\bm
\theta
}_
o
$
和
$
{
\bm
\theta
}_
h
$
分别代表输出层和隐藏层的全部参数,操作
Push(
$
\cdot
$
) 表示设备向参数服务器传送梯度,操作Fetch(
$
\cdot
$
)表示参数服务器向设备传送更新后的参数。
\parinterval
此外,在使用多个设备进行并行训练的时候,由于设备间带宽的限制,大量的数据传输会有较高的延时。对于复杂神经网络来说,设备间参数和梯度传递的时间消耗也会成为一个不得不考虑的因素。有时候,设备间数据传输的时间甚至比模型计算的时间都长,大大降低了并行度
\upcite
{
xiao2017fast
}
。对于这种问题,可以考虑对数据进行压缩或者减少传输的次数来缓解问题。
...
...
@@ -1585,15 +1585,15 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f
\end{figure}
%-------------------------------------------
相比较于简单的多层堆叠的结构,残差网络提供了跨层连接结构。这种结构在反向传播中有很大的好处,比如,对于
$
\mathbf
x
_
l
$
处的梯度可以进行如公式
\eqref
{
eq:9-45
}
的计算:
相比较于简单的多层堆叠的结构,残差网络提供了跨层连接结构。这种结构在反向传播中有很大的好处,比如,对于
一个训练样本,损失函数为
$
L
$
,
$
\mathbf
x
_
l
$
处的梯度可以进行如公式
\eqref
{
eq:9-45
}
的计算:
\begin{eqnarray}
\frac
{
\partial
J
}{
\partial
{
\mathbi
{
x
}}_
l
}&
=
&
\frac
{
\partial
J
}{
\partial
{
\mathbi
{
x
}}_{
l+1
}}
\cdot
\frac
{
\partial
{
\mathbi
{
x
}}_{
l+1
}}{
\partial
{
\mathbi
{
x
}}_
l
}
\nonumber\\
&
=
&
\frac
{
\partial
J
}{
\partial
{
\mathbi
{
x
}}_{
l+1
}}
\cdot
\left
(1+
\frac
{
\partial
F(
{
\mathbi
{
x
}}_
l)
}{
\partial
{
\mathbi
{
x
}}_
l
}
\right
)
\nonumber\\
&
=
&
\frac
{
\partial
J
}{
\partial
{
\mathbi
{
x
}}_{
l+1
}}
+
\frac
{
\partial
J
}{
\partial
{
\mathbi
{
x
}}_{
l+1
}}
\cdot
\frac
{
\partial
F(
{
\mathbi
{
x
}}_
l)
}{
\partial
{
\mathbi
{
x
}}_
l
}
\frac
{
\partial
L
}{
\partial
{
\mathbi
{
x
}}_
l
}&
=
&
\frac
{
\partial
L
}{
\partial
{
\mathbi
{
x
}}_{
l+1
}}
\cdot
\frac
{
\partial
{
\mathbi
{
x
}}_{
l+1
}}{
\partial
{
\mathbi
{
x
}}_
l
}
\nonumber\\
&
=
&
\frac
{
\partial
L
}{
\partial
{
\mathbi
{
x
}}_{
l+1
}}
\cdot
\left
(1+
\frac
{
\partial
F(
{
\mathbi
{
x
}}_
l)
}{
\partial
{
\mathbi
{
x
}}_
l
}
\right
)
\nonumber\\
&
=
&
\frac
{
\partial
L
}{
\partial
{
\mathbi
{
x
}}_{
l+1
}}
+
\frac
{
\partial
L
}{
\partial
{
\mathbi
{
x
}}_{
l+1
}}
\cdot
\frac
{
\partial
F(
{
\mathbi
{
x
}}_
l)
}{
\partial
{
\mathbi
{
x
}}_
l
}
\label
{
eq:9-45
}
\end{eqnarray}
由上式可知,残差网络可以将后一层的梯度
$
\frac
{
\partial
J
}{
\partial
{
\mathbi
{
x
}}_{
l
+
1
}}
$
不经过任何乘法项直接传递到
$
\frac
{
\partial
L
}{
\partial
{
\mathbi
{
x
}}_
l
}
$
,从而缓解了梯度经过每一层后多次累乘造成的梯度消失问题。在
{
\chaptertwelve
}
中还会看到,在机器翻译中残差结构可以和层归一化一起使用,而且这种组合可以取得很好的效果。
由上式可知,残差网络可以将后一层的梯度
$
\frac
{
\partial
L
}{
\partial
{
\mathbi
{
x
}}_{
l
+
1
}}
$
不经过任何乘法项直接传递到
$
\frac
{
\partial
L
}{
\partial
{
\mathbi
{
x
}}_
l
}
$
,从而缓解了梯度经过每一层后多次累乘造成的梯度消失问题。在
{
\chaptertwelve
}
中还会看到,在机器翻译中残差结构可以和层归一化一起使用,而且这种组合可以取得很好的效果。
\end{itemize}
...
...
@@ -1609,7 +1609,7 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f
\parinterval
过拟合的模型通常会表现为部分非零参数过多或者参数的值过大。这种参数产生的原因在于模型需要复杂的参数才能匹配样本中的个别现象甚至噪声。基于此,常见的正则化方法有L1正则化和L2正则化,其命名方式是由
$
R
(
{
\bm
\theta
}
)
$
的计算形式来决定的。在L1正则化中,
$
R
(
{
\bm
\theta
}
)
$
即为参数
$
{
\bm
\theta
}
$
的
$
l
_
1
$
范数,即
$
R
(
{
\bm
\theta
}
)
=
{
\Vert
{
\bm
\theta
}
\Vert
}_
1
=
\sum
_{
i
=
1
}^{
n
}{
\vert
\theta
_
i
\vert
}
$
;在L2正则化中,
$
R
(
\bm
\theta
)
$
即为参数
${
\bm
\theta
}
$
的
$
l
_
2
$
范数的平方,即
$
R
(
\bm
\theta
)
=(
{
\Vert
{
\bm
\theta
}
\Vert
}_
2
)
^
2
=
\sum
_{
i
=
1
}^{
n
}{
\theta
_
i
^
2
}
$
。L1正则化中的正则项衡量了模型权数中的绝对值大小,倾向于生成值为0的参数,从而让参数变得更加稀疏;而L2正则化由于平方的加入,当参数中的某一项小到一定程度,比如0.001的时候,参数的平方结果已经可以忽略不计了,因此L2正则化会倾向生成很小的参数,在这种情况下,即便训练数据中含有少量随机噪音,模型也不太容易通过增加个别参数的值来对噪声进行过度拟合,即提高了模型的抗扰动能力。
\parinterval
此外,在
{
\chaptertwelve
}
即将介绍的Dropout和
Label Smoothing
方法也可以被看作是一种正则化操作。它们都可以提高模型在未见数据上的泛化能力。
\parinterval
此外,在
{
\chaptertwelve
}
即将介绍的Dropout和
标签平滑
方法也可以被看作是一种正则化操作。它们都可以提高模型在未见数据上的泛化能力。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
...
...
@@ -1884,7 +1884,7 @@ z_t&=&\gamma z_{t-1}+(1-\gamma) \frac{\partial J}{\partial {\theta}_t} \cdot \f
\subsubsection
{
1. 模型结构
}
\parinterval
最具代表性的神经语言模型是
Bengio等人提出的
{
\small\sffamily\bfseries
{
前馈神经网络语言模型
}}
\index
{
前馈神经网络语言模型
}
(Feed-forward Neural Network Language Model
\index
{
Feed-forward Neural Network Language Model
}
,简称FNNLM)。这种语言模型的目标是用神经网络计算
$
\funp
{
P
}
(
w
_
m|w
_{
m
-
n
+
1
}
\dots
w
_{
m
-
1
}
)
$
,之后将多个
$
n
$
-gram的概率相乘得到整个序列的概率
\upcite
{
bengio2003a
}
。
\parinterval
最具代表性的神经语言模型是
{
\small\sffamily\bfseries
{
前馈神经网络语言模型
}}
\index
{
前馈神经网络语言模型
}
(Feed-forward Neural Network Language Model
\index
{
Feed-forward Neural Network Language Model
}
,简称FNNLM)。这种语言模型的目标是用神经网络计算
$
\funp
{
P
}
(
w
_
m|w
_{
m
-
n
+
1
}
\dots
w
_{
m
-
1
}
)
$
,之后将多个
$
n
$
-gram的概率相乘得到整个序列的概率
\upcite
{
bengio2003a
}
。
%----------------------------------------------
\begin{figure}
[htp]
...
...
@@ -2162,10 +2162,10 @@ Jobs was the CEO of {\red{\underline{apple}}}.
\begin{itemize}
\vspace
{
0.5em
}
\item
端到端学习是神经网络方法的特点之一。这样,系统开发者不需要设计输入和输出的隐含结构,甚至连特征工程都不再需要。但是,另一方面,由于这种端到端学习完全由神经网络自行完成,整个学习过程没有人的先验知识做指导,导致学习的结构和参数很难进行解释。针对这个问题也有很多研究者进行
{
\small\sffamily\bfseries
{
可解释机器学习
}}
\index
{
可解释机器学习
}
(Explainable Machine Learning)
\index
{
Explainable Machine Learning
}
的研究
\upcite
{
DBLP:journals/corr/abs-1905-09418,moraffah2020causal,blodgett2020language,
}
。对于自然语言处理,方法的可解释性是十分必要的。从另一个角度说,如何使用先验知识改善端到端学习也是很多人关注的方向
\upcite
{
arthur2016incorporating,zhang-etal-2017-prior
,yang2017improving
}
,比如,如何使用句法知识改善自然语言处理模型
\upcite
{
stahlberg2016syntactically,currey2019incorporating,currey2018multi
,marevcek2018extracting,blevins2018deep
}
。
\item
端到端学习是神经网络方法的特点之一。这样,系统开发者不需要设计输入和输出的隐含结构,甚至连特征工程都不再需要。但是,另一方面,由于这种端到端学习完全由神经网络自行完成,整个学习过程没有人的先验知识做指导,导致学习的结构和参数很难进行解释。针对这个问题也有很多研究者进行
{
\small\sffamily\bfseries
{
可解释机器学习
}}
\index
{
可解释机器学习
}
(Explainable Machine Learning)
\index
{
Explainable Machine Learning
}
的研究
\upcite
{
DBLP:journals/corr/abs-1905-09418,moraffah2020causal,blodgett2020language,
}
。对于自然语言处理,方法的可解释性是十分必要的。从另一个角度说,如何使用先验知识改善端到端学习也是很多人关注的方向
\upcite
{
arthur2016incorporating,zhang-etal-2017-prior
}
,比如,如何使用句法知识改善自然语言处理模型
\upcite
{
stahlberg2016syntactically,currey2019incorporating,Yang2017TowardsBH
,marevcek2018extracting,blevins2018deep
}
。
\vspace
{
0.5em
}
\item
为了进一步提高神经语言模型性能,除了改进模型,还可以在模型中引入新的结构或是其他有效信息,该领域也有很多典型工作值得关注。例如在神经语言模型中引入除了词嵌入以外的单词特征,如语言特征(形态、语法、语义特征等)
\upcite
{
Wu2012FactoredLM,Adel2015SyntacticAS
}
、上下文信息
\upcite
{
mikolov2012context,Wang2015LargerContextLM
}
、知识图谱等外部知识
\upcite
{
Ahn2016ANK
}
;或是在神经语言模型中引入字符级信息,将其作为字符特征单独
\upcite
{
Kim2016CharacterAwareNL,Hwang2017CharacterlevelLM
}
或与单词特征一起
\upcite
{
Onoe2016GatedWR,Verwimp2017CharacterWordLL
}
送入模型中;在神经语言模型中引入双向模型也是一种十分有效的尝试,在单词预测时可以同时利用来自过去和未来的文本信息
\upcite
{
Graves2013HybridSR,bahdanau2014neural,Peters2018DeepCW
}
。
\vspace
{
0.5em
}
\item
词嵌入是自然语言处理近些年的重要进展。所谓“嵌入”是一类方法,理论上,把一个事物进行分布式表示的过程都可以被看作是广义上的“嵌入”。基于这种思想的表示学习也成为了自然语言处理中的前沿方法。比如,如何对树结构,甚至图结构进行分布式表示
\upcite
{
DBLP:journals/corr/abs-1809-01854,Yin2018StructVAETL,Aharoni2017TowardsSN
}
成为了分析自然语言的重要方法
。此外,除了语言建模,还有很多方式可以进行词嵌入的学习,比如,SENNA
\upcite
{
collobert2011natural
}
、word2vec
\upcite
{
DBLP:journals/corr/abs-1301-3781,mikolov2013distributed
}
、Glove
\upcite
{
DBLP:conf/emnlp/PenningtonSM14
}
、CoVe
\upcite
{
mccann2017learned
}
等。
\item
词嵌入是自然语言处理近些年的重要进展。所谓“嵌入”是一类方法,理论上,把一个事物进行分布式表示的过程都可以被看作是广义上的“嵌入”。基于这种思想的表示学习也成为了自然语言处理中的前沿方法。比如,如何对树结构,甚至图结构进行分布式表示
成为了分析自然语言的重要方法
\upcite
{
DBLP:journals/corr/abs-1809-01854,Yin2018StructVAETL,Aharoni2017TowardsSN
}
。此外,除了语言建模,还有很多方式可以进行词嵌入的学习,比如,SENNA
\upcite
{
collobert2011natural
}
、word2vec
\upcite
{
DBLP:journals/corr/abs-1301-3781,mikolov2013distributed
}
、Glove
\upcite
{
DBLP:conf/emnlp/PenningtonSM14
}
、CoVe
\upcite
{
mccann2017learned
}
等。
\vspace
{
0.5em
}
\end{itemize}
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论