Commit 6348171c by xiaotong

wording (sec 2, ppl)

parent 20c67c10
......@@ -742,6 +742,20 @@ c_{\textrm{KN}}(\cdot) = \left\{\begin{array}{ll}
\parinterval Kneser-Ney平滑是很多语言模型工具的基础\upcite{heafield2011kenlm,stolcke2002srilm}。还有很多以此为基础衍生出来的算法,感兴趣的读者可以通过参考文献自行了解\upcite{parsing2009speech,ney1994structuring,chen1999empirical}
%----------------------------------------------------------------------------------------
% NEW SSUB-SECTION
%----------------------------------------------------------------------------------------
\subsection{语言模型的评价}
\parinterval 在使用语言模型时,往往需要知道模型的质量。{\small\sffamily\bfseries{困惑度}}\index{困惑度}(Perplexity\index{Perplexity},PPL)是一种衡量语言模型的好坏的指标。对于一个真实的词序列$ w_1\dots w_m $,困惑度被定义为
\begin{eqnarray}
{\rm{PPL}}&=&{\rm P}{(w_1\dots w_m)}^{- \frac{1}{m}}
\label{eq:5-65}
\end{eqnarray}
\parinterval 本质上,PPL反映了语言模型对序列可能性预测能力的一种评估。如果$ w_1\dots w_m $\\是真实的自然语言,``完美''的模型会得到$ {\rm P} (w_1\dots w_m)=1 $,它对应了最低的困惑度$ {\rm{PPL}}=1$,这说明模型可以完美地对词序列出现的可能性进行预测。当然,真实的语言模型是无法达到$ {\rm{PPL}}=1$的,比如,在著名的Penn Treebank(PTB)数据上最好的语言模型的PPL值也只能到达35左右。可见自然语言处理任务的困难程度。
%----------------------------------------------------------------------------------------
% NEW SECTION
%----------------------------------------------------------------------------------------
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论