From 67b2399b2770b18e655ef4cbbe27936c13106e42 Mon Sep 17 00:00:00 2001
From: unknown <594448333@qq.com>
Date: Wed, 30 Dec 2020 11:01:20 +0800
Subject: [PATCH] 10

---
 Chapter10/chapter10.tex | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/Chapter10/chapter10.tex b/Chapter10/chapter10.tex
index d5467fe..9621a46 100644
--- a/Chapter10/chapter10.tex
+++ b/Chapter10/chapter10.tex
@@ -507,7 +507,7 @@ $\funp{P}({y_j | \mathbi{s}_{j-1} ,y_{j-1},\mathbi{C}})$由Softmax实现,Softm
 \subsection{长短时记忆网络}
 \label{sec:lstm-cell}
 
-\parinterval RNN结构使得当前时刻循环单元的状态包含了之前时间步的状态信息。但是这种对历史信息的记忆并不是无损的,随着序列变长,RNN的记忆信息的损失越来越严重。在很多长序列处理任务中(如长文本生成)都观测到了类似现象。对于这个问题,研究者们提出了{\small\bfnew{长短时记忆}}\index{长短时记忆}(Long Short-term Memory)\index{Long Short-term Memory,LSTM}模型,也就是常说的LSTM模型\upcite{HochreiterLong}。
+\parinterval RNN结构使得当前时刻循环单元的状态包含了之前时间步的状态信息。但是这种对历史信息的记忆并不是无损的,随着序列变长,RNN的记忆信息的损失越来越严重。在很多长序列处理任务中(如长文本生成)都观测到了类似现象。对于这个问题,研究者们提出了{\small\bfnew{长短时记忆}}\index{长短时记忆}(Long Short-term Memory)\index{Long Short-term Memory}模型,也就是常说的LSTM模型\upcite{HochreiterLong}。
 
 \parinterval LSTM模型是RNN模型的一种改进。相比RNN仅传递前一时刻的状态$\mathbi{h}_{t-1}$,LSTM会同时传递两部分信息:状态信息$\mathbi{h}_{t-1}$和记忆信息$\mathbi{c}_{t-1}$。这里,$\mathbi{c}_{t-1}$是新引入的变量,它也是循环单元的一部分,用于显性地记录需要记录的历史内容,$\mathbi{h}_{t-1}$和$\mathbi{c}_{t-1}$在循环单元中会相互作用。LSTM通过“门”单元来动态地选择遗忘多少以前的信息和记忆多少当前的信息。LSTM中所使用的门单元结构如图\ref{fig:10-11}所示,包括遗忘门,输入门和输出门。图中$\sigma$代表Sigmoid函数,它将函数输入映射为0-1范围内的实数,用来充当门控信号。
 
@@ -573,7 +573,7 @@ $\funp{P}({y_j | \mathbi{s}_{j-1} ,y_{j-1},\mathbi{C}})$由Softmax实现,Softm
 
 \subsection{门控循环单元}
 
-\parinterval LSTM 通过门控单元控制传递状态,忘记不重要的信息,记住必要的历史信息,在长序列上取得了很好的效果,但是其进行了许多门信号的计算,较为繁琐。{\small\bfnew{门循环单元}}\index{门循环单元}(Gated Recurrent Unit,GRU)\index{Gated Recurrent Unit,GRU}作为一个LSTM的变种,继承了LSTM中利用门控单元控制信息传递的思想,并对LSTM进行了简化\upcite{Cho2014Learning}。它把循环单元状态$\mathbi{h}_t$和记忆$\mathbi{c}_t$合并成一个状态$\mathbi{h}_t$,同时使用了更少的门控单元,大大提升了计算效率。
+\parinterval LSTM 通过门控单元控制传递状态,忘记不重要的信息,记住必要的历史信息,在长序列上取得了很好的效果,但是其进行了许多门信号的计算,较为繁琐。{\small\bfnew{门循环单元}}\index{门循环单元}(Gated Recurrent Unit,GRU)\index{Gated Recurrent Unit}作为一个LSTM的变种,继承了LSTM中利用门控单元控制信息传递的思想,并对LSTM进行了简化\upcite{Cho2014Learning}。它把循环单元状态$\mathbi{h}_t$和记忆$\mathbi{c}_t$合并成一个状态$\mathbi{h}_t$,同时使用了更少的门控单元,大大提升了计算效率。
 
 %----------------------------------------------
 \begin{figure}[htp]
--
libgit2 0.26.0