Skip to content
项目
群组
代码片段
帮助
当前项目
正在载入...
登录 / 注册
切换导航面板
M
mtbookv2
概览
Overview
Details
Activity
Cycle Analytics
版本库
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
问题
0
Issues
0
列表
Board
标记
里程碑
合并请求
0
Merge Requests
0
CI / CD
CI / CD
流水线
作业
日程表
图表
维基
Wiki
代码片段
Snippets
成员
Collapse sidebar
Close sidebar
活动
图像
聊天
创建新问题
作业
提交
Issue Boards
Open sidebar
NiuTrans
mtbookv2
Commits
6cb680d3
Commit
6cb680d3
authored
Aug 13, 2021
by
曹润柘
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
更新 chapter5.tex
parent
72323f69
显示空白字符变更
内嵌
并排
正在显示
1 个修改的文件
包含
1 行增加
和
1 行删除
+1
-1
Chapter5/chapter5.tex
+1
-1
没有找到文件。
Chapter5/chapter5.tex
查看文件 @
6cb680d3
...
@@ -503,7 +503,7 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti
...
@@ -503,7 +503,7 @@ g(\seq{s},\seq{t}) & \equiv & \prod_{j,i \in \widehat{A}}{\funp{P}(s_j,t_i)} \ti
\parinterval
在
\ref
{
sec:simple-mt-example
}
节中,我们实现了一个简单的基于词的统计机器翻译模型,内容涉及建模、训练和解码。但是,还有很多问题还没有进行深入讨论,比如,如何处理空翻译?如何对调序问题进行建模?如何用更严密的数学模型描述翻译过程?如何对更加复杂的统计模型进行训练?等等。针对以上问题,本节将系统地介绍IBM统计机器翻译模型。作为经典的机器翻译模型,对IBM模型的学习将有助于对自然语言处理问题建立系统化建模思想,特别是对问题的数学描述方法将会成为理解本书后续内容的基础工具。
\parinterval
在
\ref
{
sec:simple-mt-example
}
节中,我们实现了一个简单的基于词的统计机器翻译模型,内容涉及建模、训练和解码。但是,还有很多问题还没有进行深入讨论,比如,如何处理空翻译?如何对调序问题进行建模?如何用更严密的数学模型描述翻译过程?如何对更加复杂的统计模型进行训练?等等。针对以上问题,本节将系统地介绍IBM统计机器翻译模型。作为经典的机器翻译模型,对IBM模型的学习将有助于对自然语言处理问题建立系统化建模思想,特别是对问题的数学描述方法将会成为理解本书后续内容的基础工具。
\parinterval
首先,重新思考一下人类进行翻译的过程。对于给定的源语
句
$
\seq
{
s
}$
,人不会像计算机一样尝试很多的可能,而是快速准确地翻译出一个或者少数几个正确的译文。在人看来,除了正确的译文外,其他的翻译都是不正确的,或者说除了少数的译文人甚至都不会考虑太多其他的可能性。但是,在统计机器翻译的世界里,没有译文是不可能的。换句话说,对于源语言句子
$
\seq
{
s
}$
,所有目标语词串
$
\seq
{
t
}$
都是可能的译文,只是可能性大小不同。这个思想可以通过统计模型实现:每对
$
(
\seq
{
s
}
,
\seq
{
t
}
)
$
都有一个概率值
$
\funp
{
P
}
(
\seq
{
t
}
|
\seq
{
s
}
)
$
来描述
$
\seq
{
s
}$
翻译为
$
\seq
{
t
}$
的好与坏(图
\ref
{
fig:5-12
}
)。
\parinterval
首先,重新思考一下人类进行翻译的过程。对于给定的源语
言句子
$
\seq
{
s
}$
,人不会像计算机一样尝试很多的可能,而是快速准确地翻译出一个或者少数几个正确的译文。在人看来,除了正确的译文外,其他的翻译都是不正确的,或者说除了少数的译文人甚至都不会考虑太多其他的可能性。但是,在统计机器翻译的世界里,没有译文是不可能的。换句话说,对于源语言句子
$
\seq
{
s
}$
,所有目标语词串
$
\seq
{
t
}$
都是可能的译文,只是可能性大小不同。这个思想可以通过统计模型实现:每对
$
(
\seq
{
s
}
,
\seq
{
t
}
)
$
都有一个概率值
$
\funp
{
P
}
(
\seq
{
t
}
|
\seq
{
s
}
)
$
来描述
$
\seq
{
s
}$
翻译为
$
\seq
{
t
}$
的好与坏(图
\ref
{
fig:5-12
}
)。
%----------------------------------------------
%----------------------------------------------
\begin{figure}
[htp]
\begin{figure}
[htp]
...
...
编写
预览
Markdown
格式
0%
重试
或
添加新文件
添加附件
取消
您添加了
0
人
到此讨论。请谨慎行事。
请先完成此评论的编辑!
取消
请
注册
或者
登录
后发表评论