Commit 7d622fd1 by 曹润柘

合并分支 'master' 到 'caorunzhe'

Master

查看合并请求 !712
parents 9b66d88c b5de0e7e
......@@ -219,7 +219,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\begin{example}
源语言句子:我们期待安理会尽早就此作出决定。
\qquad\ 机器译文\ \,1\ :We look forward to the Security Council making a decision on this
\qquad\ 机器译文\ \,1\ :We look forward to the Security Council making a decision on this
\hspace{8.3em}as soon as possible.
......@@ -405,7 +405,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\section{非自回归翻译}
\parinterval 目前大多数神经机器翻译模型都使用了编码器-解码器框架来实现,编码器的输出会被送入到解码器,解码器自左向右逐词生成目标语言句子,也就是,第$j$个目标语言单词的生成依赖于先前生成的$j-1$个词。这种翻译方式也被称作{\small\sffamily\bfseries{自回归解码}}\index{自回归解码}(Autoregressive Decoding)\index{Autoregressive Decoding}。虽然以Transformer为代表的模型使得训练过程高度并行化,加快了训练速度。但由于推断过程自回归的特性,模型无法同时生成译文中的所有单词,这导致模型的推断过程非常缓慢,这对于神经机器的实际应用是个很大的挑战。因此,如何设计一个在训练和推断阶段都能够并行化的模型是目前研究的热点之一。
\parinterval 目前大多数神经机器翻译模型都使用了编码器-解码器框架,编码器的输出会被送入到解码器,解码器自左向右逐词生成目标语言句子,也就是,第$j$个目标语言单词的生成依赖于先前生成的$j-1$个词。这种翻译方式也被称作{\small\sffamily\bfseries{自回归解码}}\index{自回归解码}(Autoregressive Decoding)\index{Autoregressive Decoding}。虽然以Transformer为代表的模型使得训练过程高度并行化,加快了训练速度。但由于推断过程自回归的特性,模型无法同时生成译文中的所有单词,这导致模型的推断过程非常缓慢,这对于神经机器的实际应用是个很大的挑战。因此,如何设计一个在训练和推断阶段都能够并行化的模型是目前研究的热点之一。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -429,7 +429,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\label{eq:14-9}
\end{eqnarray}
\noindent 其中,位置$j$上的输出$y_j$只依赖于输入句子$\seq{x}$,与其它位置上的输出无关。于是,所有位置上${y_j}$都可以并行生成,大大提高了GPU 等并行运算设备的利用率。这种方式一般可以带来几倍甚至十几倍的速度提升。
\noindent 其中,位置$j$上的输出$y_j$只依赖于输入句子$\seq{x}$,与其它位置上的输出无关。于是,所有位置上${y_j}$都可以并行生成,大大提高了GPU 等并行运算设备的利用率。理想情况下,这种方式一般可以带来几倍甚至十几倍的速度提升。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -437,7 +437,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{非自回归翻译模型的结构}
\parinterval 在介绍非自回归模型的具体结构之前,先来看看如何实现一个简单的非自回归翻译模型。这里用标准的Transformer来举例。首先为了一次性能够生成所有的词,需要丢弃解码端对未来信息屏蔽的矩阵,从而去掉模型的自回归性。此外,还要考虑生成译文的长度。自回归模型每步的输入是上一步解码出的结果,当预测到终止符<eos>时序列的生成就自动停止了,然而非自回归模型却没有这样的特性,因此还需要一个长度预测器来预测出其长度,之后再用这个长度得到每个位置的表示,进而完成整个序列的生成。
\parinterval 在介绍非自回归模型的具体结构之前,先来看看如何实现一个简单的非自回归翻译模型。这里用标准的Transformer来举例。首先为了一次性生成所有的词,需要丢弃解码端对未来信息屏蔽的矩阵,从而去掉模型的自回归性。此外,还要考虑生成译文的长度。自回归模型每步的输入是上一步解码出的结果,当预测到终止符<eos>时序列的生成就自动停止了,然而非自回归模型却没有这样的特性,因此还需要一个长度预测器来预测出其长度,之后再用这个长度得到每个位置的表示,进而完成整个序列的生成。
\parinterval\ref{fig:14-12}就是一个最简单的非自回归翻译模型,它的推断过程可以一次性解码出整个目标语言序列。但是这样得到的模型所翻译出的句子质量很低。比如,在IWSLT英德等数据上的BLEU值只有个位数,而现在最好的自回归模型已经能够达到30左右的BLEU值。这是因为每个位置词的分布$\funp{P}(y_j)$只依赖于源语言句子$\seq{x}$,使得$\funp{P}(y_j)$的预测不准确。
......@@ -450,7 +450,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\end{figure}
%----------------------------------------------------------------------
\parinterval 完全独立地对每个词建模,会出现什么问题呢?来看一个例子,将汉语“干得好!”翻译成英文,可以翻译成“Good job!”或者“Well done!”。假设生成这两种翻译的概率是相等的,即一半的概率是“Good job!”,另一半的概率是“Well done!”。由于非自回归模型的条件独立性假设,解码时第一个词“Good”和“Well”的概率是差不多大的,第二个词“job”和“done”的概率差不多大的,会使得模型生成出“Good done!”或者“Well job!”这样错误的翻译,如图\ref{fig:14-13}所示。这便是影响句子质量的关键问题,称之为{\small\sffamily\bfseries{多峰问题}}\index{多峰问题}(Multi-modality Problem)\index{Multi-modality Problem}\upcite{Gu2017NonAutoregressiveNM}。针对非自回归模型难以处理多峰问题进行改进是提升非自回归模型质量的关键。
\parinterval 完全独立地对每个词建模,会出现什么问题呢?来看一个例子,将汉语句子“干/得/好/!”翻译成英文,可以翻译成“Good job !”或者“Well done !”。假设生成这两种翻译的概率是相等的,即一半的概率是“Good job !”,另一半的概率是“Well done !”。由于非自回归模型的条件独立性假设,解码时第一个词“Good”和“Well”的概率是差不多大的,第二个词“job”和“done”的概率差不多大的,会使得模型生成出“Good done !”或者“Well job !”这样错误的翻译,如图\ref{fig:14-13}所示。这便是影响句子质量的关键问题,称之为{\small\sffamily\bfseries{多峰问题}}\index{多峰问题}(Multi-modality Problem)\index{Multi-modality Problem}\upcite{Gu2017NonAutoregressiveNM}。针对非自回归模型难以处理多峰问题进行改进是提升非自回归模型质量的关键。
%----------------------------------------------------------------------
\begin{figure}[htp]
......@@ -469,7 +469,10 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsubsection{1. 基于繁衍率的非自回归模型}
\parinterval\ref{fig:14-14}给出了基于繁衍率的Transformer非自回归模型的结构\upcite{Gu2017NonAutoregressiveNM},由以下四个模块组成:编码器,解码器,繁衍率预测器和解码端的位置注意力模块。
\parinterval\ref{fig:14-14}给出了基于繁衍率的Transformer非自回归模型的结构\upcite{Gu2017NonAutoregressiveNM},由以下四个模块组成:编码器,解码器,繁衍率预测器和解码端的位置注意力模块。与自回归翻译模型类似,Transformer模型的编码器和解码器都完全由前馈神经网络和多头注意力模块组成。在解码开始之前,非自回归模型需要知道译文的长度,以便并行生成所有单词。更重要的是,非自回归模型需要一次性生成出所有的译文单词,因此不能像自回归模型那样用已生成的词作为第一个解码器层的输入。
\parinterval 那么非自回归模型解码器的输入是什么呢?如果完全省略第一个解码器层的输入,或者仅使用位置嵌入,将会导致性能非常差。这里使用繁衍率来解决这个问题,繁衍率指的是对于每个源语言单词预测所对应的目标语言单词的个数(见{\chaptersix})。这样,最终译文长度则由所有源语言单词对应的繁衍率之和决定(图\ref{fig:14-14}中的数字1\ 1\ 2\ 0\ 1表示繁衍率序列)。这个繁衍率序列可以通过外部词对齐工具得到,从而来训练这个繁衍率预测器。但由于外部词对齐系统会出现错误,因此在模型收敛之后,需要在繁衍率预测器上加一个强化学习的损失来进行微调。
%----------------------------------------------------------------------
\begin{figure}[htp]
......@@ -480,16 +483,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\end{figure}
%----------------------------------------------------------------------
\parinterval 与自回归翻译模型类似,Transformer模型的编码器和解码器都完全由前馈神经网络和多头注意力模块组成。在解码开始之前,非自回归模型需要知道译文的长度,以便并行生成所有单词。更重要的是,非自回归模型需要一次性生成出所有的译文单词,因此不能像自回归模型那样用已生成的词作为第一个解码器层的输入。那么非自回归模型解码器的输入是什么呢?如果完全省略第一个解码器层的输入,或者仅使用位置嵌入,将会导致性能非常差。这里使用繁衍率来解决这个问题,繁衍率指的是对于每个源语言单词预测所对应的目标语言单词的个数(见\chaptersix)。翻译过程取决于繁衍率序列(图\ref{fig:14-14}中的数字1\ 1\ 2\ 0\ 1),最终译文长度则由所有源语言单词对应的繁衍率之和决定。这个繁衍率序列可以通过外部词对齐工具得到,从而来训练这个繁衍率预测器。但由于外部词对齐系统会出现错误,因此在模型收敛之后,需要在繁衍率预测器上加一个强化学习的损失来进行微调。
\parinterval 另外,在每个解码器层中还包括额外的位置注意力模块,该模块与Transformer模型的其它部分中使用的多头注意力机制相同,如公式\eqref{eq:14-10}
\begin{eqnarray}
\textrm{Attention}(\mathbi{Q},\mathbi{K},\mathbi{V}) &=& \textrm{Softmax}(\frac{\mathbi{Q}{\mathbi{K}}^{T}}{\sqrt{d_k}})\cdot \mathbi{V}
\label{eq:14-10}
\end{eqnarray}
\noindent 其中,$d_k$表示模型的隐层大小,其中位置编码作为$\mathbi{Q}$$\mathbi{K}$,解码端上一层的输出作为$\mathbi{V}$。将位置信息直接结合到注意力过程中,比单独的位置嵌入提供了更强的位置信息,同时该附加信息可能还会提高解码器执行局部重排序的能力。
\parinterval 另外,在每个解码器层中还包括额外的位置注意力模块,该模块与Transformer模型的其它部分中使用的多头注意力机制相同。其仍然基于$\mathbi{Q}$$\mathbi{K}$$\mathbi{V}$之间的计算(见{\chaptertwelve}),只是把位置编码作为$\mathbi{Q}$$\mathbi{K}$, 解码端上一层的输出作为$\mathbi{V}$。这种方法提供了更强的位置信息。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -499,7 +493,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\parinterval 知识蒸馏的基本思路是让学生模型所表示的函数尽可能去拟合教师模型所表示的函数(见\chapterthirteen)。如果想要训练一个小模型,同时希望它的性能与大模型一样好,这时可以把大模型看作传授知识的“教师”,把小模型看作接受知识的“学生”。在训练时,先将输入送给教师模型,让它预测出概率分布,作为小模型的监督信息来计算损失函数,进而完成小模型的训练。
\parinterval 类似的,可以让自回归模型作为“教师”,非自回归模型作为“学生”。把自回归神经机器翻译生成的句子作为新的训练样本,送给非自回归机器翻译进行学习\upcite{Gu2017NonAutoregressiveNM,Lee2018DeterministicNN,Zhou2020UnderstandingKD,Guo2020FineTuningBC}。这种方式能够一定程度上解决多峰问题。因为,经过训练的自回归模型会始终将相同的源语言句子翻译成相同的译文。这样的操作得到的数据集噪声更少,能够降低非自回归模型学习的难度。
\parinterval 类似的,可以让自回归模型作为“教师”,非自回归模型作为“学生”。把自回归神经机器翻译模型生成的句子作为新的训练样本,送给非自回归机器翻译模型进行学习\upcite{Gu2017NonAutoregressiveNM,Lee2018DeterministicNN,Zhou2020UnderstandingKD,Guo2020FineTuningBC}。这种方式能够一定程度上解决多峰问题。因为,经过训练的自回归模型会始终将相同的源语言句子翻译成相同的译文。这样的操作得到的数据集噪声更少,能够降低非自回归模型学习的难度。
%----------------------------------------------------------------------------------------
% NEW SUBSUB-SECTION
......@@ -515,11 +509,11 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{更好的训练目标}
\parinterval 虽然非自回归翻译可以显著提升翻译速度,但是很多情况下其翻译质量还是低于传统的自回归翻译\upcite{Gu2017NonAutoregressiveNM,Kaiser2018FastDI,Guo2020FineTuningBC}。因此,很多工作致力于缩小自回归模型和非自回归模型的性能差距\upcite{Ran2020LearningTR,Tu2020ENGINEEI,Shu2020LatentVariableNN}。一些方法通常通过修改训练目标来达到提升非自回归翻译品质的目的,例如:
\parinterval 虽然非自回归翻译可以显著提升翻译速度,但是很多情况下其翻译质量还是低于传统的自回归翻译\upcite{Gu2017NonAutoregressiveNM,Kaiser2018FastDI,Guo2020FineTuningBC}。因此,很多工作致力于缩小自回归模型和非自回归模型的性能差距\upcite{Ran2020LearningTR,Tu2020ENGINEEI,Shu2020LatentVariableNN}。一些通常通过修改训练目标来达到提升非自回归翻译品质的目的,例如:
\begin{itemize}
\vspace{0.5em}
\item 基于层级知识蒸馏的方法\upcite{Li2019HintBasedTF}。由于自回归模型和非自回归模型的结构相差不大,因此可以将翻译质量更高的自回归模型作为“教师”,通过给非自回归模型提供监督信号,使其逐块地学习前者的分布。研究人员发现了两点非常有意思的现象:1)非自回归模型输出的重复单词的位置的隐藏状态非常相似。2)非自回归模型的注意力分布比自回归模型的分布更加分散。这两点发现启发了研究人员使用自回归模型中的隐层状态来指导非自回归模型学习。通过计算两个模型隐层状态的距离以及注意力矩阵的KL散度\footnote{KL散度即相对熵}作为额外的损失来帮助非自回归模型的训练过程。
\item 基于层级知识蒸馏的方法\upcite{Li2019HintBasedTF}。由于自回归模型和非自回归模型的结构相差不大,因此可以将翻译质量更高的自回归模型作为“教师”,通过给非自回归模型提供监督信号,使其逐块地学习前者的分布。研究人员发现了两点非常有意思的现象:1)非自回归模型输出的重复单词的位置的隐藏状态非常相似。2)非自回归模型的注意力分布比自回归模型的分布更加分散。这两点发现启发了研究人员使用自回归模型中的隐层状态来指导非自回归模型学习。通过计算两个模型隐层状态的距离以及注意力矩阵的KL散度\footnote{KL散度即相对熵}作为额外的损失来帮助非自回归模型的训练过程。
\vspace{0.5em}
\item 基于模仿学习的方法\upcite{Wei2019ImitationLF}。这种观点认为非自回归模型可以从性能优越的自回归模型中学得知识。{\small\bfnew{模仿学习}}\index{模仿学习}(Imitation Learning\index{Imitation Learning})是强化学习中的一个概念,即从专家那里学习正确的行为,与监督学习很相似\upcite{Ho2016ModelFreeIL,Ho2016GenerativeAI,Duan2017OneShotIL}。与其不同的是,模仿学习不是照搬专家的行为,而是学习专家为什么要那样做。换句话说,学习的不是专家的镜像,而是一个专家的行为分布。这里,可以将自回归模型作为专家,非自回归模型学习不同时间步和不同层的解码状态,最后将模仿学习的损失与交叉熵损失加权求和后作为最终的优化目标。
\vspace{0.5em}
......@@ -533,9 +527,9 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{引入自回归模块}
\parinterval 非自回归翻译消除了序列生成中不同位置间的依赖,在每个位置都进行独立的预测,但这反过来会导致翻译质量显着下降,因为缺乏不同单词间依赖关系的建模。因此,也有研究聚焦于在非自回归模型中添加一些自回归组件来提升网络结构的表达能力。
\parinterval 非自回归翻译消除了序列生成中不同位置间的依赖,在每个位置都进行独立的预测,但这反过来会导致翻译质量显着下降,因为缺乏对不同单词间依赖关系的建模。因此,可以考虑在非自回归模型中添加一些自回归组件来提升网络结构的表达能力。
\parinterval 一种做法是将语法作为目标语言句子的框架\upcite{Akoury2019SyntacticallyST}。具体来说,先自回归地预测出一个目标语言的句法块序列,将句法树作为序列信息的抽象,然后根据句法块序列非自回归地生成所有目标语言单词。如图\ref{fig:14-21}所示,该模型由一个编码器和两个解码器组成。其中编码器和第一个解码器与标准的Transformer模型相同,用来自回归地预测句法树信息;第二个解码器将第一个解码器的句法信息作为输入,之后再非自回归地生成整个译文。在训练过程中,通过使用外部句法分析器获得对句法预测任务的监督信号。虽然可以简单地让模型预测整个句法树,但是这种方法会显著增加自回归步骤的数量,从而增大时间开销。因此,为了维持句法信息与解码时间的平衡,这里预测一些由句法类型和子树大小组成的块标识符(如VP3)而不是整个句法树。
\parinterval 一种做法是将句法信息作为目标语言句子的框架\upcite{Akoury2019SyntacticallyST}。具体来说,先自回归地预测出一个目标语言的句法块序列,将句法树作为序列信息的抽象,然后根据句法块序列非自回归地生成所有目标语言单词。如图\ref{fig:14-21}所示,该模型由一个编码器和两个解码器组成。其中编码器和第一个解码器与标准的Transformer模型相同,用来自回归地预测句法树信息;第二个解码器将第一个解码器的句法信息作为输入,之后再非自回归地生成整个译文。在训练过程中,通过使用外部句法分析器获得对句法预测任务的监督信号。虽然可以简单地让模型预测整个句法树,但是这种方法会显著增加自回归步骤的数量,从而增大时间开销。因此,为了维持句法信息与解码时间的平衡,这里预测一些由句法标记和子树大小组成的块标识符(如VP3)而不是整个句法树。
%----------------------------------------------
\begin{figure}[htp]
......@@ -546,7 +540,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\end{figure}
%----------------------------------------------
\parinterval 另一种做法是半自回归地生成译文\upcite{Wang2018SemiAutoregressiveNM}。如图\ref{fig:14-20}所示,自回归模型从左到右依次生成译文,具有“最强”的自回归性;而非自回归模型完全独立的生成每个译文单词,具有“最弱”的自回归性;半自回归模型则是将整个译文分成$k$个块,在组内执行非自回归解码,在组间则执行自回归的解码,能够在每个时间步并行产生多个连续的单词。通过调整块的大小,半自回归模型可以灵活的调整到自回归模型(当$k$等于1)和非自回归模型(当$k$大于最大的译文长度)上来。
\parinterval 另一种做法是半自回归地生成译文\upcite{Wang2018SemiAutoregressiveNM}。如图\ref{fig:14-20}所示,自回归模型从左到右依次生成译文,具有“最强”的自回归性;而非自回归模型完全独立的生成每个译文单词,具有“最弱”的自回归性;半自回归模型则是将整个译文分成$k$个块,在组内执行非自回归解码,在组间则执行自回归的解码,能够在每个时间步并行产生多个连续的单词。通过调整块的大小,半自回归模型可以灵活的调整到自回归模型(当$k$等于1)和非自回归模型(当$k$大于等于最大的译文长度)上来。
%----------------------------------------------
\begin{figure}[htp]
......@@ -574,7 +568,7 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\subsection{基于迭代精化的非自回归翻译模型}
\parinterval 如果一次并行生成整个序列,往往会导致单词之间的关系很难捕捉,因此也限制了这类方法的能力。即使生成了错误的译文单词,这类方法也无法修改。针对这些问题,也可以使用迭代式的生成方式\upcite{Lee2018DeterministicNN,Ghazvininejad2019MaskPredictPD,Kasai2020NonAutoregressiveMT}。这种方法放弃了一次生成最终的译文句子,而是将解码出的文本再重新送给解码器,在每次迭代中来改进之前生成的译文单词,可以理解为句子级的自回归模型。这样做的好处在于,每次迭代的过程中可以利用已经生成的部分翻译结果,来指导其它部分的生成。
\parinterval 如果一次并行生成整个序列,往往会导致单词之间的关系很难捕捉,即使生成了错误的译文单词,这类方法也无法修改。针对这些问题,也可以使用迭代式的生成方式\upcite{Lee2018DeterministicNN,Ghazvininejad2019MaskPredictPD,Kasai2020NonAutoregressiveMT}。这种方法放弃了一次生成最终的译文句子,而是将解码出的译文再重新送给解码器,在每次迭代中来改进之前生成的译文单词,可以理解为句子级的自回归模型。这样做的好处在于,每次迭代的过程中可以利用已经生成的部分翻译结果,来指导其它部分的生成。
\parinterval\ref{fig:14-18}展示了这种方法的简单示例。它拥有一个编码器和$N$个解码器。编码器首先预测出译文的长度,然后将输入$\seq{x}$按照长度复制出$\seq{x'}$作为第一个解码器的输入,之后生成$\seq{y'}$作为第一轮迭代的输出。接下来再把$\seq{y'}$输入给第二个解码器输出$\seq{y''}$,以此类推。那么迭代到什么时候结束呢?一种简单的做法是提前制定好迭代次数,这种方法能够自主地对生成句子的质量和效率进行平衡。另一种称之为“自适应”的方法,具体是通过计算当前生成的句子上一次生成的变化量来自动停止,例如,使用杰卡德相似系数作为变化量函数\footnote{杰卡德相似系数是衡量有限样本集之间的相似性与差异性的一种指标,杰卡德相似系数值越大,样本相似度越高。}。另外,需要说明的是,图\ref{fig:14-18}中是使用多个解码器的一种逻辑示意。真实的系统仅需要一个解码器,并运行多次,就达到了迭代精化的目的。
......@@ -582,20 +576,20 @@ b &=& \omega_{\textrm{high}}\cdot |\seq{x}| \label{eq:14-4}
\begin{figure}[htp]
\centering
\input{./Chapter14/Figures/figure-iteration}
\caption{基于迭代精化的非自回归翻译模型}
\caption{基于迭代精化的非自回归翻译模型运行示例}
\label{fig:14-18}
\end{figure}
%----------------------------------------------
\parinterval 除了使用上一个步骤的输出,当前解码器的输入还使用了添加噪声的正确目标语言句子,两种使用情况之间使用一个超参数控制\upcite{Lee2018DeterministicNN}。另外,对于译文长度的预测,本章使用编码端的输出单独训练了一个独立的长度预测模块,这种方法也推广到了目前大多数模型上。
\parinterval 另一种方法借鉴了BERT的思想\upcite{devlin2019bert}提出了一种新的解码方法:Mask-Predict\upcite{Ghazvininejad2019MaskPredictPD}。类似于BERT中的[CLS],该方法在源语言句子的最前面加上了一个特殊符号[LEN]作为输入,用来预测目标句的长度$n$。之后,将特殊符[Mask](与BERT中的[Mask]有相似的含义)复制$n$次作为解码器的输入,然后用非自回归的方式生成目标端所有的词。这样生成的翻译可能是比较差的,因此可以将第一次生成的这些词中不确定(即生成概率比较低)的一些词再“擦”掉,依据目标端剩余的单词以及源语言句子重新进行预测,不断迭代,直到满足停止条件为止。图\ref{fig:14-19}给出了一个示例。
\parinterval 另一种方法借鉴了BERT的思想\upcite{devlin2019bert}称为Mask-Predict\upcite{Ghazvininejad2019MaskPredictPD}。类似于BERT中的[CLS],该方法在源语言句子的最前面加上了一个特殊符号[LEN]作为输入,用来预测目标句的长度$n$。之后,将特殊符[Mask](与BERT中的[Mask]有相似的含义)复制$n$次作为解码器的输入,然后用非自回归的方式生成目标端所有的词。这样生成的翻译可能是比较差的,因此可以将第一次生成的这些词中不确定(即生成概率比较低)的一些词再“擦”掉,依据目标端剩余的单词以及源语言句子重新进行预测,不断迭代,直到满足停止条件为止。图\ref{fig:14-19}给出了一个示例。
%----------------------------------------------
\begin{figure}[htp]
\centering
\input{./Chapter14/Figures/figure-mask-predict}
\caption{Mask-Predict的模型结构}
\caption{Mask-Predict方法的运行示例}
\label{fig:14-19}
\end{figure}
%----------------------------------------------
......
......@@ -32,9 +32,9 @@
\section{数据的有效使用}\label{effective-use-of-data}
\parinterval 数据稀缺是低资源机器翻译所面临的主要问题。充分使用既有数据是一种解决问题的思路。比如,在双语训练不充足的时候,可以简单地对双语数据的部分单词用近义词进行替换,达到丰富双语数据的目的\upcite{DBLP:conf/acl/FadaeeBM17a,DBLP:conf/emnlp/WangPDN18},也可以考虑用转述等方式生成更多的双语训练数据\upcite{DBLP:conf/emnlp/MartonCR09,DBLP:conf/eacl/LapataSM17}
\parinterval 数据稀缺是低资源机器翻译所面临的主要问题。充分使用既有数据是一种解决问题的思路。比如,在双语训练不充足的时候,可以对双语数据的部分单词用近义词进行替换,达到丰富双语数据的目的\upcite{DBLP:conf/acl/FadaeeBM17a,DBLP:conf/emnlp/WangPDN18},也可以考虑用转述等方式生成更多的双语训练数据\upcite{DBLP:conf/emnlp/MartonCR09,DBLP:conf/eacl/LapataSM17}
\parinterval 另一种思路是使用相比双语数据更容易获取的单语数据。实际上,在统计机器翻译时代,使用单语数据训练语言模型是构建机器翻译系统的关键步骤,好的语言模型往往会带来性能的增益。而这个现象在神经机器翻译中似乎并不明显,因为在大多数神经机器翻译的范式中,并不要求使用大规模单语数据来帮助机器翻译系统。甚至,连语言模型都不会作为一个独立的模块。这一方面是由于神经机器翻译系统的解码端本身就起着语言模型的作用,另一方面是由于双语数据的增多使得翻译模型可以更好的捕捉目标语言的规律。但是,双语数据总是有限的,很多场景下,单语数据的规模会远大于双语数据,如果能够让这些单语数据发挥作用,显然是一种非常好的选择。针对以上问题,下面将从数据增强、基于语言模型的单语数据使用等方面展开讨论。
\parinterval 另一种思路是使用更容易获取的单语数据。实际上,在统计机器翻译时代,使用单语数据训练语言模型是构建机器翻译系统的关键步骤,好的语言模型往往会带来性能的增益。而这个现象在神经机器翻译中似乎并不明显,因为在大多数神经机器翻译的范式中,并不要求使用大规模单语数据来帮助机器翻译系统。甚至,连语言模型都不会作为一个独立的模块。这一方面是由于神经机器翻译系统的解码端本身就起着语言模型的作用,另一方面是由于双语数据的增多使得翻译模型可以很好地捕捉目标语言的规律。但是,双语数据总是有限的,很多场景下,单语数据的规模会远大于双语数据,如果能够让这些单语数据发挥作用,显然是一种非常好的选择。针对以上问题,下面将从数据增强、基于语言模型的单语数据使用等方面展开讨论。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
......@@ -48,8 +48,8 @@
%----------------------------------------------------------------------------------------
\subsubsection{1. 回译}
\parinterval {\small\bfnew{回译}}\index{回译}(Back Translation, BT\index{Back Translation})是目前机器翻译任务上最常用的一种数据增强方法\upcite{Sennrich2016ImprovingNM,DBLP:conf/emnlp/EdunovOAG18,DBLP:conf/aclnmt/HoangKHC18}。回译的主要思想是:利用目标语言-源语言翻译模型(反向翻译模型)来生成伪双语句对,用于训练源语言-目标语言翻译模型(正向翻译模型)。假设现在需要训练一个英汉翻译模型。首先,使用双语数据训练汉英翻译模型,即反向翻译模型。然后通过该模型将额外的汉语单语句子翻译为英语句子,从而得到大量的生成英语- 真实汉语伪双语句对。然后,将回译得到的伪双语句对和真实双语句对混合,训练得到最终的英汉翻译模型。
回译方法是模型无关的,只需要训练一个反向翻译模型,就可以简单有效地利用单语数据来增加训练数据的数量,因此得到了广泛使用\upcite{Hassan2018AchievingHP,DBLP:conf/iclr/LampleCDR18,DBLP:conf/emnlp/LampleOCDR18}。图\ref{fig:16-1} 给出了回译方法的一个简要流程。
\parinterval {\small\bfnew{回译}}\index{回译}(Back Translation, BT\index{Back Translation})是目前机器翻译任务上最常用的一种数据增强方法\upcite{Sennrich2016ImprovingNM,DBLP:conf/emnlp/EdunovOAG18,DBLP:conf/aclnmt/HoangKHC18}。回译的主要思想是:利用目标语言-源语言翻译模型(反向翻译模型)来生成伪双语句对,用于训练源语言-目标语言翻译模型(正向翻译模型)。假设现在需要训练一个英汉翻译模型。首先,使用双语数据训练汉英翻译模型,即反向翻译模型。然后通过该模型将额外的汉语单语句子翻译为英语句子,从而得到大量的英语- 真实汉语伪双语句对。然后,将回译得到的伪双语句对和真实双语句对混合,训练得到最终的英汉翻译模型。
回译方法是模型无关的,只需要训练一个反向翻译模型,就可以利用单语数据来增加训练数据的数量,因此得到了广泛使用\upcite{Hassan2018AchievingHP,DBLP:conf/iclr/LampleCDR18,DBLP:conf/emnlp/LampleOCDR18}。图\ref{fig:16-1} 给出了回译方法的一个简要流程。
%----------------------------------------------
\begin{figure}[htp]
......@@ -60,9 +60,9 @@
\end{figure}
%----------------------------------------------
\parinterval 围绕如何利用回译方法生成伪双语数据这一问题,研究人员进行了详细地分析探讨。一般观点认为,反向翻译模型的性能越好,生成的伪数据质量也就越高,对正向翻译模型的性能提升也就越大\upcite{Sennrich2016ImprovingNM,DBLP:conf/aclnmt/HoangKHC18}。不过,在实践中发现,即使一些简单的策略也能带来性能的增长。比如,对于一些低资源翻译任务,通过将目标语言句子复制到源语言端构造伪数据便能带来增益\upcite{DBLP:conf/wmt/CurreyBH17}。原因在于,即使构造的双语伪数据是不准确的,其目标语言端仍然是真实数据,可以使解码器训练得更加充分,用来提升神经机器翻译模型生成结果的流畅度。但是,相比这些简单的伪数据生成策略,利用目标语言单语数据进行回译可以带来更高的提升\upcite{DBLP:conf/wmt/CurreyBH17}。一种可能的解释是,双语伪数据的源语言是模型生成的翻译结果,保留了两种语言之间的互译信息,相比真实数据又存在一定的噪声。神经机器翻译模型在伪双语句对上进行训练,可以学习到如何处理带有噪声的输入,提高了模型的健壮性。
\parinterval 围绕如何利用回译方法生成伪双语数据这一问题,研究人员进行了详细地分析探讨。一般观点认为,反向翻译模型的性能越好,生成的伪数据质量也就越高,对正向翻译模型的性能提升也就越大\upcite{Sennrich2016ImprovingNM,DBLP:conf/aclnmt/HoangKHC18}。不过,在实践中发现,即使一些简单的策略也能带来性能的增长。比如,对于一些低资源翻译任务,通过将目标语言句子复制到源语言端构造伪数据便能带来增益\upcite{DBLP:conf/wmt/CurreyBH17}。原因在于,即使构造的双语伪数据是不准确的,其目标语言端仍然是真实数据,可以使解码器训练得更加充分,进而提升神经机器翻译模型生成结果的流畅度。但是,相比这些简单的伪数据生成策略,利用目标语言单语数据进行回译可以带来更大的性能提升\upcite{DBLP:conf/wmt/CurreyBH17}。一种可能的解释是,双语伪数据的源语言是模型生成的翻译结果,保留了两种语言之间的互译信息,相比真实数据又存在一定的噪声。神经机器翻译模型在伪双语句对上进行训练,可以学习到如何处理带有噪声的输入,提高了模型的健壮性。
\parinterval 在回译方法中,反向翻译模型的训练只依赖于有限的双语数据,因此生成的源语言端伪数据的质量难以保证。为此,可以采用{\small\sffamily\bfnew{迭代式回译}}\index{迭代式回译}(Iterative Back Translation)\index{Iterative Back Translation}的方法\upcite{DBLP:conf/aclnmt/HoangKHC18},同时利用源语言端和目标语言端的单语数据,不断通过回译的方式来提升正向和反向翻译模型的性能。图\ref{fig:16-2}展示了迭代式回译的框架。首先,使用双语数据训练一个正向翻译模型,然后利用额外的源语言单语数据通过回译的方式生成伪双语数据,来提升反向翻译模型的性能,再利用反向翻译模型和额外的目标语言单语数据生成伪双语数据,用于提升正向翻译模型的性能。可以看出,迭代式回译的过程是完全闭环的,因此可以一直重复进行,直到正向和反向翻译模型的性能均不再提升。
\parinterval 在回译方法中,反向翻译模型的训练只依赖于有限的双语数据,因此生成的源语言端伪数据的质量难以保证。为此,可以采用{\small\sffamily\bfnew{迭代式回译}}\index{迭代式回译}(Iterative Back Translation)\index{Iterative Back Translation}的方法\upcite{DBLP:conf/aclnmt/HoangKHC18},同时利用源语言端和目标语言端的单语数据,不断通过回译的方式来提升正向和反向翻译模型的性能。图\ref{fig:16-2}展示了迭代式回译的框架。首先,使用双语数据训练一个正向翻译模型,然后利用额外的源语言单语数据通过回译的方式生成伪双语数据,来提升反向翻译模型的性能。之后,再利用反向翻译模型和额外的目标语言单语数据生成伪双语数据,用于提升正向翻译模型的性能。可以看出,迭代式回译的过程是完全闭环的,因此可以一直重复进行,直到正向和反向翻译模型的性能均不再提升。
%----------------------------------------------
\begin{figure}[htp]
......@@ -73,7 +73,7 @@
\end{figure}
%----------------------------------------------
\parinterval 进一步,研究人员发现,在低资源场景中,由于缺乏双语数据,高质量的伪双语数据对于模型来说更有帮助。而在富资源场景中,在回译产生的源语言句子中添加一些噪声,提高翻译结果的多样性,反而可以达到更好的效果,比较常用的方法是使用采样解码、Top-$k$解码和加噪\upcite{DBLP:conf/emnlp/EdunovOAG18,DBLP:conf/aclnmt/ImamuraFS18,DBLP:conf/emnlp/WuWXQLL19}。回译中常用的解码方式为束搜索,在生成每个词的时候只考虑预测概率最高的前几个词,因此生成的翻译结果质量更高,但导致的问题是翻译结果主要集中在部分高频词上,生成的伪数据缺乏多样性,也就很难去准确地覆盖真实的数据分布\upcite{DBLP:conf/icml/OttAGR18}。采样解码是指在解码过程中,对词表中所有的词按照预测概率进行随机采样,因此整个词表中的词都有可能被选中,从而使生成结果多样性更强,但翻译质量和流畅度也会明显下降。Top-$k$解码是对束搜索和采样解码的一个折中方法。在解码过程中,Top-$k$解码对词表中预测概率最高的前$k$个词进行随机采样,这样在保证翻译结果准确的前提下,提高了结果的多样性。加噪方法在束搜索的解码结果加入一些噪声,如丢掉或掩码部分词、打乱句子顺序等。这些方法在生成的源语言句子中引入了噪声,不仅增加了对包含低频词或噪声句子的训练次数,同时也提高了模型的健壮性和泛化能力\upcite{DBLP:conf/icml/VincentLBM08}
\parinterval 进一步,研究人员发现,在低资源场景中,由于缺乏双语数据,高质量的伪双语数据对于模型来说更有帮助。而在富资源场景中,在回译产生的源语言句子中添加一些噪声,提高翻译结果的多样性,反而可以达到更好的效果,比较常用的方法是使用采样解码、Top-$k$解码和加噪\upcite{DBLP:conf/emnlp/EdunovOAG18,DBLP:conf/aclnmt/ImamuraFS18,DBLP:conf/emnlp/WuWXQLL19}。回译中常用的解码方式为束搜索,在生成每个词的时候只考虑预测概率最高的前几个词,因此生成的翻译结果质量更高,但导致的问题是翻译结果主要集中在部分高频词上,生成的伪数据缺乏多样性,也就很难去准确地覆盖真实的数据分布\upcite{DBLP:conf/icml/OttAGR18}。采样解码是指在解码过程中,对词表中所有的词按照预测概率进行随机采样,因此整个词表中的词都有可能被选中,从而使生成结果多样性更强,但翻译质量和流畅度也会明显下降。Top-$k$解码是对束搜索和采样解码的一个折中方法。在解码过程中,Top-$k$解码对词表中预测概率最高的前$k$个词进行随机采样,这样在保证翻译结果准确的前提下,提高了结果的多样性。加噪方法在束搜索的解码结果加入一些噪声,如丢掉或掩码部分词、打乱句子顺序等。这些方法在生成的源语言句子中引入了噪声,不仅增加了对包含低频词或噪声句子的训练次数,同时也提高了模型的健壮性和泛化能力\upcite{DBLP:conf/icml/VincentLBM08}
\parinterval 与回译方法类似,源语言单语数据也可以通过一个双语数据训练的正向翻译模型获得对应的目标语言数据,从而构造正向翻译的伪数据\upcite{DBLP:conf/emnlp/ZhangZ16}。与回译方法相反,这时的伪数据中源语言句子是真实的,而目标语言句子是自动生成的,构造的伪数据对译文的流畅性并没有太大帮助,其主要作用是提升编码器的特征提取能力。然而,由于伪数据中生成的译文质量很难保证,因此利用正向翻译模型生成伪数据的方法带来的性能提升效果要弱于回译,甚至可能是有害的\upcite{DBLP:conf/emnlp/WuWXQLL19}
......@@ -121,13 +121,13 @@
\end{itemize}
%----------------------------------------------
\parinterval 另外一种加噪方法是进行词替换。将一个句子中的某个词替换为其他词,可能并不会影响句子的合理性和流畅度。比如,对于“我/出去/玩。”这句话,将“我”替换为“你”、“他”、“我们”或者将“玩”替换为“骑车”、“学习”、“吃饭”等,虽然改变了语义,但句子在语法上仍然是合理的。词替换方法即是将双语数据中的部分词替换为词表中的其他词,在保证句子的语义或语法正确性的前提下,增加了训练数据的多样性。
\parinterval 另外一种加噪方法是进行词替换。将一个句子中的某个词替换为其他词,可能并不会影响句子的合理性和流畅度。比如,对于“我/出去/玩。”这句话,将“我”替换为“你”、“他”、“我们”。或者,将“玩”替换为“骑车”、“学习”、“吃饭”等,虽然改变了语义,但句子在语法上仍然是合理的。词替换方法即是将双语数据中的部分词替换为词表中的其他词,在保证句子的语义或语法正确性的前提下,增加了训练数据的多样性。
\parinterval 词替换的另一种策略是将源语言中的稀有词替换为语义相近的词\upcite{DBLP:conf/acl/FadaeeBM17a}。词表中的稀有词由于出现次数较少,很容易导致训练不充分问题,从而无法准确预测稀有词\upcite{DBLP:conf/acl/SennrichHB16a}。通过语言模型将源语言句子中的某个词替换为满足语法或语义条件的稀有词,再通过词对齐工具找到源语言句子中被替换的词在目标语言句子中对应的位置,借助翻译词典将这个目标语言位置的单词替换为词典中的翻译结果,从而得到伪双语数据。
\parinterval 词替换的另一种策略是将源语言中的稀有词替换为语义相近的词\upcite{DBLP:conf/acl/FadaeeBM17a}。词表中的稀有词由于出现次数较少,很容易导致训练不充分问题\upcite{DBLP:conf/acl/SennrichHB16a}。通过语言模型将源语言句子中的某个词替换为满足语法或语义条件的稀有词,再通过词对齐工具找到源语言句子中被替换的词在目标语言句子中对应的位置,借助翻译词典将这个目标语言位置的单词替换为词典中的翻译结果,从而得到伪双语数据。
\parinterval 此外,通过在源语言或目标语言中随机选择某些词,将这些词替换为词表中一个随机词,也可以得到伪双语数据\upcite{DBLP:conf/emnlp/WangPDN18}。随机选择句子中的某个词,将这个词的词嵌入替换为其他词的词嵌入加权表示融合,权重可以通过语言模型来计算,相比离散的替换方式(替换为其他词等),这种丰富的分布式表示相比直接使用词嵌入可以包含更多的语义信息,同一个词在不同的上下文中也会被替换为不同的上下文表示结果\upcite{DBLP:conf/acl/GaoZWXQCZL19}
\parinterval 此外,通过在源语言或目标语言中随机选择某些词,将这些词替换为词表中一个随机词,也可以得到伪双语数据\upcite{DBLP:conf/emnlp/WangPDN18}。随机选择句子中的某个词,将这个词的词嵌入替换为其他词的词嵌入的加权结果。相比直接替换单词,这种丰富的分布式表示相比直接使用词嵌入可以包含更多的语义信息,同一个词在不同的上下文中也会被替换为不同的上下文表示结果\upcite{DBLP:conf/acl/GaoZWXQCZL19}
\parinterval 相比上述两种方法只是对句子做轻微的修改,{\small\bfnew{转述}}(Paraphrasing)\index{转述}\index{Paraphrasing}方法考虑到了自然语言表达的多样性:通过对原始句子进行改写,使用不同的句式来传达相同含义的信息\upcite{DBLP:journals/coling/BhagatH13,2010Generating}。比如对于“东北大学的校训是自强不息、知行合一”这句话,可以使用其他的句式来表达同样的含义,例如:“自强不息、知行合一是东北大学的校训”。转述在机器翻译任务上得到了广泛引用\upcite{DBLP:conf/wmt/GuoH19,DBLP:conf/acl/ZhouSW19,DBLP:conf/eacl/LapataSM17},通过转述方法对原始的双语数据进行改写,训练数据可以覆盖更多的语言学现象。同时由于每个句子可以对应多个不同的翻译,转述方法可以避免模型过拟合,提高模型的泛化能力。
\parinterval 相比上述两种方法只是对句子做轻微的修改,{\small\bfnew{转述}}\index{转述}(Paraphrasing\index{Paraphrasing}方法考虑到了自然语言表达的多样性:通过对原始句子进行改写,使用不同的句式来传达相同含义的信息\upcite{DBLP:journals/coling/BhagatH13,2010Generating}。比如对于“东北大学的校训是自强不息、知行合一”这句话,可以使用其他的句式来表达同样的含义,例如:“自强不息、知行合一是东北大学的校训”。转述在机器翻译任务上得到了广泛引用\upcite{DBLP:conf/wmt/GuoH19,DBLP:conf/acl/ZhouSW19,DBLP:conf/eacl/LapataSM17},通过转述方法对原始的双语数据进行改写,训练数据可以覆盖更多的语言学现象。同时由于每个句子可以对应多个不同的翻译,转述方法可以避免模型过拟合,提高模型的泛化能力。
%----------------------------------------------------------------------------------------
% NEW SUB-SUB-SECTION
......@@ -147,21 +147,21 @@
\parinterval 可比语料大多存在于网页中,内容较为复杂,可能会存在较大比例的噪声,如HTML字符、乱码等。首先需要对内容进行充分的数据清洗操作,得到干净的可比语料,然后从中抽取出可用的双语句对。传统的抽取方法一般通过统计模型或双语词典来得到双语句对。比如,通过计算两个不同语言句子之间的单词重叠数或BLEU值\upcite{finding2006adafre,method2008keiji};或者通过排序模型或二分类器判断一个目标语言句子和一个源语言句子互译的可能性\upcite{DBLP:journals/coling/MunteanuM05,DBLP:conf/naacl/SmithQT10}
\parinterval 另外一种比较有效的方法是根据两种语言中每个句子的表示向量来抽取\upcite{DBLP:conf/emnlp/WuZHGQLL19}。首先,对于两种语言的每个句子,分别使用词嵌入加权平均等方法计算得到句子的表示向量,然后计算每个源语言句子和目标语言句子之间的余弦相似度,相似度大于一定阈值的句对则认为是可用的双语句对\upcite{DBLP:conf/emnlp/WuZHGQLL19}。然而,不同语言单独训练得到的词嵌入可能对应不同的表示空间,因此得到的表示向量无法用于衡量两个句子的相似度\upcite{DBLP:journals/corr/MikolovLS13}。为了解决这个问题,一般使用在同一表示空间的跨语言词嵌入来表示两种语言的单词\upcite{DBLP:journals/jair/RuderVS19}。在跨语言词嵌入中,不同语言相同意思的词对应的词嵌入具有较高的相似性,因此得到的句向量也就可以用于衡量两个句子是否表示相似的语义\upcite{DBLP:conf/icml/LeM14}。关于跨语言词嵌入的具体内容,可以参考\ref{unsupervised-dictionary-induction}节的内容。
\parinterval 另外一种比较有效的方法是根据两种语言中每个句子的表示向量来抽取数据\upcite{DBLP:conf/emnlp/WuZHGQLL19}。首先,对于两种语言的每个句子,分别使用词嵌入加权平均等方法计算得到句子的表示向量,然后计算每个源语言句子和目标语言句子之间的余弦相似度,相似度大于一定阈值的句对则认为是可用的双语句对\upcite{DBLP:conf/emnlp/WuZHGQLL19}。然而,不同语言单独训练得到的词嵌入可能对应不同的表示空间,因此得到的表示向量无法用于衡量两个句子的相似度\upcite{DBLP:journals/corr/MikolovLS13}。为了解决这个问题,一般使用在同一表示空间的跨语言词嵌入来表示两种语言的单词\upcite{DBLP:journals/jair/RuderVS19}。在跨语言词嵌入中,不同语言相同意思的词对应的词嵌入具有较高的相似性,因此得到的句向量也就可以用于衡量两个句子是否表示相似的语义\upcite{DBLP:conf/icml/LeM14}。关于跨语言词嵌入的具体内容,可以参考\ref{unsupervised-dictionary-induction}节的内容。
%----------------------------------------------------------------------------------------
% NEW SUB-SECTION
%----------------------------------------------------------------------------------------
\subsection{基于语言模型的方法}
\parinterval 除了构造双语数据进行数据增强,直接利用单语数据也是机器翻译中的常用方法。通常,单语数据会被用于语言模型的学习(见{\chaptertwo})。对于机器翻译系统,使用语言模型也是一件十分自然的事情,在目标语言端,语言模型可以帮助系统选择更加流畅的译文输出;在源语言端,语言模型也可以用于句子编码,进而更好地生成句子的表示结果。在传统方法中,语言模型更多的被使用在目标语言端。不过,近些年来随着预训练技术的发展,语言模型也被使用在神经机器翻译的编码端。下面将从语言模型在目标语言端的融合、预训练词嵌入、预训练编码器和多任务学习等方向介绍基于语言模型的单语数据使用方法。
\parinterval 除了构造双语数据进行数据增强,直接利用单语数据也是机器翻译中的常用方法。通常,单语数据会被用于语言模型的学习(见{\chaptertwo})。对于机器翻译系统,使用语言模型也是一件十分自然的事情,在目标语言端,语言模型可以帮助系统选择更加流畅的译文输出;在源语言端,语言模型也可以用于句子编码,进而更好地生成句子的表示结果。在传统方法中,语言模型更多地被使用在目标语言端。不过,近些年来随着预训练技术的发展,语言模型也被使用在神经机器翻译的编码端。下面将从语言模型在目标语言端的融合、预训练词嵌入、预训练编码器和多任务学习四方面介绍基于语言模型的单语数据使用方法。
%----------------------------------------------------------------------------------------
% NEW SUB-SUB-SECTION
%----------------------------------------------------------------------------------------
\subsubsection{1. 语言模型在目标语言端的融合}
\parinterval 融合目标语言端的语言模型是一种最直接的使用单语数据的方法\upcite{2015OnGulcehre,DBLP:journals/csl/GulcehreFXCB17,DBLP:conf/wmt/StahlbergCS18}。实际上,神经机器翻译模型本身也具备了语言模型的作用,因为解码器本质上也是一个语言模型,用于描述生成译文词串的规律。类似于语言模型,神经机器翻译模型可以自回归地生成翻译结果。对于一个双语句对$(\seq{x}, \seq{y})$,神经机器翻译模型根据源语言句子$\seq{x}$和前面生成的词来预测当前位置词的概率分布:
\parinterval 融合目标语言端的语言模型是一种最直接的使用单语数据的方法\upcite{2015OnGulcehre,DBLP:journals/csl/GulcehreFXCB17,DBLP:conf/wmt/StahlbergCS18}。实际上,神经机器翻译模型本身也具备了语言模型的作用,因为解码器本质上也是一个语言模型,用于描述生成译文词串的规律。类似于语言模型,神经机器翻译模型可以自回归地生成翻译结果。对于一个双语句对$(\seq{x}, \seq{y})$,神经机器翻译模型根据源语言句子$\seq{x}$和前面生成的译文单词来预测当前位置单词的概率分布:
\begin{eqnarray}
\log{P(\seq{y} | \seq{x}; \theta)} & = & \sum_{t}{\log{P(y_t | {\seq{y}}_{<t}, \seq{x}; \theta)}}
......@@ -170,9 +170,9 @@
\noindent 这里,$\theta$是神经机器翻译模型的参数,${\seq{y}}_{<t}$表示第$t$个位置前面已经生成的词序列。可以看出,模型的翻译过程与两部分信息有关,分别是源语言句子$\seq{x}$以及前面生成的翻译序列${\seq{y}}_{<t}$。语言模型可以与解码过程融合,根据${\seq{y}}_{<t}$生成流畅度更高的翻译结果。常用的融合方法主要分为浅融合和深融合\upcite{2015OnGulcehre}
\parinterval 浅融合方法独立训练翻译模型和语言模型,在生成每个词的时候,对两个模型的预测概率进行加权求和得到最终的预测概率。浅融合的不足在于,解码过程对每个词均采用相同的语言模型权重,这实际上是不合理的。比如,在汉语-英语翻译系统中,英语句子中的冠词可能在汉语句子中没有显式的单词对应,这种情况下,英语语言模型可以提供更多帮助,保证翻译结果更加符合英语的语言结构;而在翻译某些名词的时候,语言模型由于没有源语言句子的信息,反而会对解码过程产生干扰,因此权重越小越好。针对这个问题,深融合联合翻译模型和语言模型进行训练,从而在解码过程中动态地计算语言模型的权重,更好地融合翻译模型和语言模型来计算预测概率。
\parinterval 浅融合方法独立训练翻译模型和语言模型,在生成每个词的时候,对两个模型的预测概率进行加权求和得到最终的预测概率。浅融合的不足在于,解码过程对每个词均采用相同的语言模型权重,缺乏灵活性。针对这个问题,深融合联合翻译模型和语言模型进行训练,从而在解码过程中动态地计算语言模型的权重,更好地融合翻译模型和语言模型来计算预测概率。
\parinterval 大多数情况下,目标语言端语言模型的使用可以提高翻译结果的流畅度。不过,它并不会增加翻译结果对源语言句子表达的{\small\bfnew{充分性}}\index{充分性}(Adequacy\index{Adequacy}),即源语言句子的信息是否被充分体现到了译文中。也有一些研究发现,神经机器翻译过于关注译文的流畅度,但是充分性的问题没有很好的考虑,比如,神经机器翻译系统的结果中经常出现漏译等问题。也有一些研究人员提出控制翻译充分性的方法,让译文在流畅度和充分性之间达到平衡\upcite{DBLP:conf/acl/TuLLLL16,li-etal-2018-simple,DBLP:journals/tacl/TuLLLL17}
\parinterval 大多数情况下,目标语言端语言模型的使用可以提高译文的流畅度。不过,它并不会增加翻译结果对源语言句子表达的{\small\bfnew{充分性}}\index{充分性}(Adequacy\index{Adequacy}),即源语言句子的信息是否被充分体现到了译文中。也有一些研究发现,神经机器翻译过于关注译文的流畅度,但是充分性的问题没有得到很好考虑,比如,神经机器翻译系统的结果中经常出现漏译等问题。也有一些研究人员提出控制翻译充分性的方法,让译文在流畅度和充分性之间达到平衡\upcite{DBLP:conf/acl/TuLLLL16,li-etal-2018-simple,DBLP:journals/tacl/TuLLLL17}
%----------------------------------------------------------------------------------------
% NEW SUB-SUB-SECTION
......@@ -185,16 +185,16 @@
\parinterval 词嵌入可以被看作是对每个独立单词进行的表示学习,在自然语言处理的众多任务中都扮演着重要角色\upcite{DBLP:conf/icml/CollobertW08,2011Natural,DBLP:journals/corr/abs-1901-09069}。到目前为止已经有大量的词嵌入学习方法被提出(见{\chapternine}),因此可以直接应用这些方法在海量的单语数据上训练得到词嵌入,用来初始化神经机器翻译模型的词嵌入参数矩阵\upcite{DBLP:conf/aclwat/NeishiSTIYT17,2018When}
\parinterval 需要注意的是,在神经机器翻译中使用预训练词嵌入有两种方法。一种方法是直接将词嵌入作为固定的输入,也就是在训练神经机器翻译模型的过程中,并不调整词嵌入的参数。这样做的目的是完全将词嵌入模块独立出来,机器翻译可以被看作是在固定的词嵌入输入上进行的建模,从而降低了机器翻译模型学习的难度。另一种方法是仍然遵循``预训练+微调''的策略,将词嵌入作为机器翻译模型的初始值。在之后机器翻译训练过程中,词嵌入模型结果会被进一步更新。近些年,在词嵌入预训练的基础上进行微调的方法越来越受到研究者的青睐。因为在实践中发现,完全用单语数据学习的单词表示,与双语数据上的翻译任务并不完全匹配。同时目标语言的信息也会影响源语言的表示学习,在预训练词嵌入的基础上进一步进行微调是更加有效的方案
\parinterval 需要注意的是,在神经机器翻译中使用预训练词嵌入有两种方法。一种方法是直接将词嵌入作为固定的输入,也就是在训练神经机器翻译模型的过程中,并不调整词嵌入的参数。这样做的目的是完全将词嵌入模块独立出来,机器翻译可以被看作是在固定的词嵌入输入上进行的建模,从而降低了机器翻译模型学习的难度。另一种方法是仍然遵循``预训练+微调''的策略,将词嵌入作为机器翻译模型部分参数的初始值。在之后机器翻译训练过程中,词嵌入模型结果会被进一步更新。近些年,在词嵌入预训练的基础上进行微调的方法越来越受到研究者的青睐。因为在实践中发现,完全用单语数据学习的单词表示,与双语数据上的翻译任务并不完全匹配。同时目标语言的信息也会影响源语言的表示学习
\parinterval 虽然预训练词嵌入在海量的单语数据上学习到了丰富的表示,但词嵌入很主要的一个缺点是无法解决一词多义问题。在不同的上下文中,同一个单词经常表示不同的意思,但词嵌入是完全相同的。模型需要在编码过程中通过上下文去理解每个词在当前语境下的含义,从而增加了建模的复杂度。因此,上下文词向量在近些年得到了广泛的关注\upcite{DBLP:conf/acl/PetersABP17,mccann2017learned,DBLP:conf/naacl/PetersNIGCLZ18}。上下文词嵌入是指一个词的表示不仅依赖于单词自身,还依赖于上下文语境。由于在不同的上下文中,每个词对应的词嵌入是不同的,因此无法简单地通过词嵌入矩阵来表示,通常的做法是使用海量的单语数据预训练语言模型任务,使模型具备丰富的特征提取能力\upcite{DBLP:conf/naacl/PetersNIGCLZ18,radford2018improving,devlin2019bert}
\parinterval 虽然预训练词嵌入在海量的单语数据上学习到了丰富的表示,但词嵌入很主要的一个缺点是无法解决一词多义问题。在不同的上下文中,同一个单词经常表示不同的意思,但词嵌入是完全相同的。模型需要在编码过程中通过上下文去理解每个词在当前语境下的含义。因此,上下文词向量在近些年得到了广泛的关注\upcite{DBLP:conf/acl/PetersABP17,mccann2017learned,DBLP:conf/naacl/PetersNIGCLZ18}。上下文词嵌入是指一个词的表示不仅依赖于单词自身,还依赖于上下文语境。由于在不同的上下文中,每个词对应的词嵌入是不同的,因此无法简单地通过词嵌入矩阵来表示,通常的做法是使用海量的单语数据预训练语言模型任务,使模型具备丰富的特征提取能力\upcite{DBLP:conf/naacl/PetersNIGCLZ18,radford2018improving,devlin2019bert}
%----------------------------------------------------------------------------------------
% NEW SUB-SUB-SECTION
%----------------------------------------------------------------------------------------
\subsubsection{3. 预训练模型}
\parinterval 相比固定的词嵌入,上下文词嵌入包含了在当前语境中的语义信息,丰富了模型的输入表示,降低了训练难度。但是,模型仍有大量的参数需要从零学习,来进一步提取整个句子的表示。那么,能不能在预训练阶段中直接得到预训练好的模型参数,在下游任务中仅仅通过任务特定的数据对模型参数进行微调,来得到一个较强的模型呢?{\small\bfnew{生成式预训练}}(Generative Pre-training,GPT)\index{生成式预训练}\index{GPT}{\small\bfnew{来自Transformer的双向编码器表示}}(Bidirectional Encoder Representations From Transformers,BERT)\index{双向编码器表示}\index{BERT}对这个问题进行了探索,图\ref{fig:16-5}对比了GPT和BERT的模型结构。
\parinterval 相比固定的词嵌入,上下文词嵌入包含了在当前语境中的语义信息,丰富了模型的输入表示,降低了训练难度。但是,模型仍有大量的参数需要从零学习,来进一步提取整个句子的表示。一种可行的方案是在预训练阶段中直接得到预训练好的模型参数,在下游任务中仅仅通过任务特定的数据对模型参数进行微调,来得到一个较强的模型。基于这个想法,有大量的预训练模型被提出。比如,{\small\bfnew{生成式预训练}}(Generative Pre-training,GPT)\index{生成式预训练}\index{GPT}{\small\bfnew{来自Transformer的双向编码器表示}}(Bidirectional Encoder Representations From Transformers,BERT)\index{双向编码器表示}\index{BERT}就是两种典型的预训练模型。图\ref{fig:16-5}对比了二者的模型结构。
%----------------------------------------------
\begin{figure}[htp]
......@@ -207,11 +207,11 @@
\parinterval GPT\upcite{radford2018improving}通过Transformer模型自回归地训练单向语言模型,类似于神经机器翻译模型的解码器,相比双向LSTM等模型,Tranformer架构的表示能力更强。在大规模单语数据上预训练得到的模型结构只需要进行简单的修改,再通过任务特定的训练数据进行微调,就可以很好地适配到下游任务中。之后提出的BERT模型更是将预训练的作用提升到了新的水平\upcite{devlin2019bert}。GPT模型的一个缺陷在于模型只能进行单向编码,也就是前面的文本在建模时无法获取到后面的信息。而BERT提出了一种自编码的方式,使模型在预训练阶段可以通过双向编码的方式进行建模,进一步增强了模型的表示能力。
\parinterval BERT的核心思想是通过{\small\bfnew{掩码语言模型}}(Masked Language Model,MLM)\index{掩码语言模型}\index{MLM}任务进行预训练。掩码语言模型的思想类似于完形填空,随机选择输入句子中的部分词掩码,模型来预测这些被掩码的词。掩码的具体做法是将被选中的词替换为一个特殊的词[Mask],这样模型在训练过程中,无法得到掩码位置词的信息,需要联合上下文内容进行预测,因此提高了模型对上下文的特征提取能力。实验表明,相比在下游任务中仅利用上下文词嵌入,在大规模单语数据上预训练的模型具有更强的表示能力。而使用掩码的方式训练也给神经机器翻译提供了新的思路,在本章的部分内容中也会使用到类似方法。
\parinterval BERT的核心思想是通过{\small\bfnew{掩码语言模型}}(Masked Language Model,MLM)\index{掩码语言模型}\index{MLM}任务进行预训练。掩码语言模型的思想类似于完形填空,随机选择输入句子中的部分词掩码,之后让模型预测这些被掩码的词。掩码的具体做法是将被选中的词替换为一个特殊的词[Mask],这样模型在训练过程中,无法得到掩码位置词的信息,需要联合上下文内容进行预测,因此提高了模型对上下文的特征提取能力。实验表明,相比在下游任务中仅利用上下文词嵌入,在大规模单语数据上预训练的模型具有更强的表示能力。而使用掩码的方式进行训练也给神经机器翻译提供了新的思路,在本章中也会使用到类似方法。
\parinterval 在神经机器翻译任务中,预训练模型可以用于初始化编码器的模型参数\upcite{DBLP:conf/emnlp/ClinchantJN19,DBLP:conf/emnlp/ImamuraS19,DBLP:conf/naacl/EdunovBA19}。之所以用在编码器端而不是解码器端,主要原因是编码器的作用主要在于特征提取,训练难度相对较高,而解码器的作用主要在于生成,和编码器提取到的表示是强依赖的,相对比较脆弱\upcite{DBLP:journals/corr/abs-1908-06259}模型在预训练阶段的生成过程中并没有考虑到额外的表示信息,因此和神经机器翻译的编码器存在着明显的不一致问题,所以目前主流的做法是仅利用预训练模型对编码器的模型参数进行初始化。
\parinterval 在神经机器翻译任务中,预训练模型可以用于初始化编码器的模型参数\upcite{DBLP:conf/emnlp/ClinchantJN19,DBLP:conf/emnlp/ImamuraS19,DBLP:conf/naacl/EdunovBA19}。之所以用在编码器端而不是解码器端,主要原因是编码器的作用主要在于特征提取,训练难度相对较高,而解码器的作用主要在于生成,和编码器提取到的表示是强依赖的,相对比较脆弱\upcite{DBLP:journals/corr/abs-1908-06259}
\parinterval 然而,在实践中发现,参数初始化的方法在一些富资源语种上提升效果并不明显,甚至会带来性能的下降\upcite{DBLP:journals/corr/abs-2002-06823}。原因可能在于,预训练阶段的训练数据规模是非常大的,因此在下游任务数据量较少的情况下帮助较大。而在一些富资源语种上,双语句对的数据量可以达到千万级别,因此简单通过预训练模型来初始化模型参数无法带来明显的提升。此外,预训练模型的训练目标并没有考虑到序列到序列的生成,与神经机器翻译的训练目标并不完全一致,两者训练得到的模型参数可能存在一些区别。
\parinterval 然而,在实践中发现,参数初始化的方法在一些富资源语种上提升效果并不明显,甚至会带来性能的下降\upcite{DBLP:journals/corr/abs-2002-06823}。原因可能在于,预训练阶段的训练数据规模是非常大的,因此在下游任务数据量较少的情况下帮助较大。而在一些富资源语种上,双语句对的数据足够充分,因此简单通过预训练模型来初始化模型参数无法带来明显的提升。此外,预训练模型的训练目标并没有考虑到序列到序列的生成,与神经机器翻译的训练目标并不完全一致,两者训练得到的模型参数可能存在一些区别。
\parinterval 因此,一种做法将预训练模型和翻译模型进行融合,把预训练模型作为一个独立的模块来为编码器或者解码器提供句子级表示信息\upcite{DBLP:journals/corr/abs-2002-06823,DBLP:conf/aaai/YangW0Z00020}。另外一种做法是针对生成任务进行预训练。机器翻译是一种典型的语言生成任务,不仅包含源语言表示学习的问题,还有序列到序列的映射,以及目标语言端序列生成的问题,这些知识是无法单独通过(源语言)单语数据学习到的。因此,可以使用单语数据对编码器-解码器结构进行预训练\upcite{song2019mass,DBLP:conf/acl/LewisLGGMLSZ20,DBLP:conf/emnlp/QiYGLDCZ020}
......@@ -226,14 +226,14 @@
\end{figure}
%----------------------------------------------
\parinterval 此外,还有很多工作对如何将语言模型应用到神经机器翻译模型中进行了研究。研究人员分析了预训练词嵌入为何在神经机器翻译模型中有效\upcite{2018When};如何在神经机器翻译模型中利用预训练的BERT模型\upcite{DBLP:conf/emnlp/ClinchantJN19,DBLP:conf/emnlp/ImamuraS19,DBLP:conf/aaai/YangW0Z00020,DBLP:conf/aaai/WengYHCL20,DBLP:conf/emnlp/ImamuraS19};如何针对神经机器翻译任务进行预训练\upcite{DBLP:journals/corr/abs-2001-08210,DBLP:conf/aaai/JiZDZCL20,DBLP:conf/acl/LewisLGGMLSZ20};如何针对机器翻译中的Code-switching问题进行预训练\upcite{DBLP:journals/corr/abs-2009-08088};如何在微调过程中避免遗忘原始的语言模型任务\upcite{DBLP:journals/corr/abs-2010-09403}
\parinterval 此外,还有很多问题值得探讨。例如,为何预训练词嵌入在神经机器翻译模型中有效\upcite{2018When};如何在神经机器翻译模型中利用预训练的BERT模型\upcite{DBLP:conf/emnlp/ClinchantJN19,DBLP:conf/emnlp/ImamuraS19,DBLP:conf/aaai/YangW0Z00020,DBLP:conf/aaai/WengYHCL20,DBLP:conf/emnlp/ImamuraS19};如何针对神经机器翻译任务进行预训练\upcite{DBLP:journals/corr/abs-2001-08210,DBLP:conf/aaai/JiZDZCL20,DBLP:conf/acl/LewisLGGMLSZ20};如何针对机器翻译中的Code-switching问题进行预训练\upcite{DBLP:journals/corr/abs-2009-08088};如何在微调过程中避免灾难性遗忘\upcite{DBLP:journals/corr/abs-2010-09403}
%----------------------------------------------------------------------------------------
% NEW SUB-SUB-SECTION
%----------------------------------------------------------------------------------------
\subsubsection{4. 多任务学习}
\parinterval 在训练一个神经网络的时候,会给定模型一个训练目标,希望模型通过不断训练在这个目标上表现得越来越好。同时也希望模型在训练过程中可以自动提取到与训练目标相关的所有信息。然而,过分地关注单个训练目标,可能使模型忽略掉其他可能有帮助的信息,这些信息可能来自于一些其他相关的任务\upcite{DBLP:journals/corr/Ruder17a}。通过联合多个独立但相关的任务共同学习,任务之间相互``促进'',就是{\small\sffamily\bfnew{多任务学习}}\index{多任务学习}(Multitask Learning)\index{Multitask Learning}方法\upcite{DBLP:journals/corr/Ruder17a,DBLP:books/sp/98/Caruana98,liu2019multi}。多任务学习的常用做法是针对多个相关的任务,共享模型的部分参数来学习不同任务之间相似的特征,并通过特定的模块来学习每个任务独立的特征(见\chapterfifteen)。常用的策略是对底层的模型参数进行共享,顶层的模型参数用于独立学习各个不同的任务。
\parinterval 在训练一个神经网络的时候,会给定模型一个训练目标,希望模型通过不断训练在这个目标上表现得越来越好。然而,过分地关注单个训练目标,可能使模型忽略掉其他可能有帮助的信息,这些信息可能来自于一些其他相关的任务\upcite{DBLP:journals/corr/Ruder17a}。通过联合多个独立但相关的任务共同学习,任务之间相互``促进'',就是{\small\sffamily\bfnew{多任务学习}}\index{多任务学习}(Multitask Learning)\index{Multitask Learning}方法\upcite{DBLP:journals/corr/Ruder17a,DBLP:books/sp/98/Caruana98,liu2019multi}。多任务学习的常用做法是针对多个相关的任务,共享模型的部分参数来学习不同任务之间相似的特征,并通过特定的模块来学习每个任务独立的特征(见\chapterfifteen)。常用的策略是对底层的模型参数进行共享,顶层的模型参数用于独立学习各个不同的任务。
\parinterval 在神经机器翻译中,应用多任务学习的主要策略是将翻译任务作为主任务,同时设置一些仅使用单语数据的子任务,通过这些子任务来捕捉单语数据中的语言知识\upcite{DBLP:conf/emnlp/DomhanH17,DBLP:conf/emnlp/ZhangZ16,DBLP:journals/corr/LuongLSVK15}。一种多任务学习的方法是利用源语言单语数据,通过单个编码器对源语言数据进行建模,再分别使用两个解码器来学习源语言排序和翻译任务。源语言排序任务是指利用预排序规则\upcite{DBLP:conf/emnlp/WangCK07}对源语言句子中词的顺序进行调整,可以通过单语数据来构造训练数据,从而使编码器被训练得更加充分\upcite{DBLP:conf/emnlp/ZhangZ16},如图\ref{fig:16-7}所示。
%----------------------------------------------
......@@ -245,7 +245,7 @@
\end{figure}
%----------------------------------------------
\parinterval 虽然神经机器翻译模型可以看作一种语言生成模型,但生成过程中却依赖于源语言信息,因此无法直接利用目标语言单语数据进行多任务学习。针对这个问题,可以对原有翻译模型结构进行修改,在解码器底层增加一个语言模型子层,这个子层用于学习语言模型任务,与编码器端是完全独立的,如图\ref{fig:16-8}所示\upcite{DBLP:conf/emnlp/DomhanH17}。在训练过程中,可以分别将双语数据和单语数据送入翻译模型和语言模型进行计算,双语数据训练产生的梯度用于对整个模型进行参数更新,而单语数据产生的梯度只对语言模型子层进行参数更新。通过这种方式,可以有效利用单语数据使解码器端的底层网络训练得更加充分,从而提取到更有效的特征来生成翻译结果。
\parinterval 虽然神经机器翻译模型可以看作一种语言生成模型,但生成过程中却依赖于源语言信息,因此无法直接利用目标语言单语数据进行多任务学习。针对这个问题,可以对原有翻译模型结构进行修改,在解码器底层增加一个语言模型子层,这个子层用于学习语言模型任务,与编码器端是完全独立的,如图\ref{fig:16-8}所示\upcite{DBLP:conf/emnlp/DomhanH17}。在训练过程中,分别将双语数据和单语数据送入翻译模型和语言模型进行计算,双语数据训练产生的梯度用于对整个模型进行参数更新,而单语数据产生的梯度只对语言模型子层进行参数更新。通过这种方式,可以有效利用单语数据使解码器端的底层网络训练得更加充分,从而提取到更有效的特征来生成翻译结果。
%----------------------------------------------
\begin{figure}[htp]
......@@ -256,7 +256,7 @@
\end{figure}
%----------------------------------------------
\parinterval 此外,还有一些工作对多任务学习进行了探讨。一种策略是利用多任务学习思想来训练多到一模型(多个编码器,单个解码器)、一到多模型(单个编码器、多个解码器)和多到多模型(多个编码器、多个解码器),从而借助单语数据或其他数据来使编码器或解码器训练得更加充分\upcite{DBLP:journals/corr/LuongLSVK15},任务的形式包括翻译任务、成分句法分析任务、图像标注等。另外一种策略是利用多任务学习的思想同时训练多个语言的翻译任务\upcite{DBLP:conf/acl/DongWHYW15,DBLP:journals/tacl/JohnsonSLKWCTVW17},同样包括多到一翻译(多个语种到一个语种)、一到多翻译(一个语种到多个语种)以及多到多翻译(多个语种到多个语种),这种方法可以利用多种语言的训练数据进行学习,具有较大的潜力,逐渐受到了研究人员们的关注,具体内容可以参考\ref{multilingual-translation-model}节。
\parinterval 此外,还有一些工作对多任务学习进行了探讨。一种策略是利用多任务学习思想来训练多到一模型(多个编码器、单个解码器)、一到多模型(单个编码器、多个解码器)和多到多模型(多个编码器、多个解码器),从而借助单语数据或其他数据来使编码器或解码器训练得更加充分\upcite{DBLP:journals/corr/LuongLSVK15},任务的形式包括翻译任务、句法分析任务、图像分类等。另外一种策略是利用多任务学习的思想同时训练多个语言的翻译任务\upcite{DBLP:conf/acl/DongWHYW15,DBLP:journals/tacl/JohnsonSLKWCTVW17},同样包括多到一翻译(多个语种到一个语种)、一到多翻译(一个语种到多个语种)以及多到多翻译(多个语种到多个语种),这种方法可以利用多种语言的训练数据进行学习,具有较大的潜力,逐渐受到了研究人员们的关注,具体内容可以参考\ref{multilingual-translation-model}节。
%----------------------------------------------------------------------------------------
% NEW SECTION 16.2
......
Markdown 格式
0%
您添加了 0 到此讨论。请谨慎行事。
请先完成此评论的编辑!
注册 或者 后发表评论